
BioMath

1/13

3. One-way ANOVA in a Latin Square
Design

Analysis of Variance (ANOVA); Latin Square Design (LSD)
Dr. Paul Schmidt

To install and load all the packages used in this chapter, run the following code:

for (pkg in c("desplot", "emmeans", "ggtext", "here", "multcomp", "multcompView",
"tidyverse")) {
 if (!require(pkg, character.only = TRUE)) install.packages(pkg)
}

library(desplot)
library(emmeans)
library(ggtext)
library(here)
library(multcomp)
library(multcompView)
library(tidyverse)

From RCBD to Latin Square
In the previous chapter, we analyzed data from a randomized complete block design (RCBD)
where we controlled for one source of systematic variation by grouping experimental units
into blocks. The RCBD allowed us to account for one gradient or source of heterogeneity in
our experimental material.

However, agricultural experiments sometimes face situations where two sources of
systematic variation need to be controlled simultaneously:

• Fields may have gradients in both soil fertility (north-south) and drainage (east-west)
• Greenhouse experiments may have both light gradients and temperature variations across

benches
• Laboratory experiments may have both positional effects and time-based effects

Why Use a Latin Square Design?
A Latin Square Design (LSD) addresses this by controlling for two sources of variation that
are orthogonal to each other simultaneously. In a Latin square, treatments are arranged so
that each treatment appears exactly once in each row and exactly once in each column. This
ensures that treatment comparisons are not confounded with either row effects or column
effects.

The advantages of a Latin square design include:

1. Control of two sources of variation: Both row and column effects are removed from
experimental error

2. Increased precision: When both row and column effects are present and no row ×
column interactions exist, we can achieve greater reduction in unexplained variation than
with RCBD

1

BioMath

2/13

3. Balanced comparisons: Each treatment faces the same set of row and column
conditions

4. Compact design: Requires fewer experimental units than some alternative designs when
conditions are appropriate

Think of the progression: CRD has only random variation, RCBD controls for one systematic
source, and Latin Square controls for two systematic sources of variation.

Design Requirements and Assumptions
A Latin square design requires:

• The same number of treatments, rows, and columns (e.g., 4×4 square for 4 treatments)
• Each treatment appears exactly once in each row
• Each treatment appears exactly once in each column
• Random arrangement subject to these constraints

Critical assumption: The design assumes no interaction between row and column
effects. If row × column interactions exist, the Latin square may be less efficient than
alternative designs.

This makes Latin squares most practical with smaller numbers of treatments (typically 3-6
treatments). With more than 6 treatments, the design becomes unwieldy and alternative
designs are often preferred.

When NOT to Use Latin Squares
Latin squares are not appropriate when:

• You have more than 6-7 treatments (becomes impractical)
• Row × column interactions are expected or suspected
• The row and column blocking factors are not actually sources of systematic variation
• You need more replication than the design allows
• Factorial treatment structures require investigation of treatment interactions

In such cases, other designs like RCBD with multiple blocks, split-plot designs, or factorial
arrangements may be more suitable.

Data
For this example, we’ll use data from W. Bridges [1] investigating cucumber yield with four
different genotypes. The experiment was set up as a 4×4 Latin square design to control for
potential row and column effects in the field. This dataset is available through the {agridat}
package, which contains many agricultural datasets.

Import
Load data from agridat package
dat <- agridat::bridges.cucumber %>%
 as_tibble() %>%
 filter(loc == "Clemson") %>% # filter data from only one location
 select(-loc) # remove loc column which is now unnecessary

dat

2

https://kwstat.github.io/agridat/
https://kwstat.github.io/agridat/

BioMath

3/13

A tibble: 16 × 4
 gen row col yield
 <fct> <int> <int> <dbl>
 1 Dasher 1 3 44.2
 2 Dasher 2 4 54.1
 3 Dasher 3 2 47.2
 4 Dasher 4 1 36.7
 5 Guardian 1 4 33
 6 Guardian 2 2 13.6
 7 Guardian 3 1 44.1
 8 Guardian 4 3 35.8
 9 Poinsett 1 1 11.5
10 Poinsett 2 3 22.4
11 Poinsett 3 4 30.3
12 Poinsett 4 2 21.5
13 Sprint 1 2 15.1
14 Sprint 2 1 20.3
15 Sprint 3 3 41.3
16 Sprint 4 4 27.1

The original dataset includes trials at two locations, but we’ll focus on only the Clemson
location trial. The dataset contains:

• gen : Four genotypes (Cherokee, Dasher, Gemini, and Poinsett)
• yield : Cucumber yield for each plot
• row : Row position in the field (1-4)
• col : Column position in the field (1-4)

Format
For our analysis, gen should be encoded as a factor. For row and col , we need them both

as integers (for desplot()) and as factors (for the statistical model). We’ll create factor
versions with the suffix “F”:

dat <- dat %>%
 mutate(
 gen = as.factor(gen),
 rowF = as.factor(row),
 colF = as.factor(col)
)

dat

A tibble: 16 × 6
 gen row col yield rowF colF
 <fct> <int> <int> <dbl> <fct> <fct>
 1 Dasher 1 3 44.2 1 3
 2 Dasher 2 4 54.1 2 4
 3 Dasher 3 2 47.2 3 2
 4 Dasher 4 1 36.7 4 1
 5 Guardian 1 4 33 1 4
 6 Guardian 2 2 13.6 2 2
 7 Guardian 3 1 44.1 3 1
 8 Guardian 4 3 35.8 4 3
 9 Poinsett 1 1 11.5 1 1
10 Poinsett 2 3 22.4 2 3
11 Poinsett 3 4 30.3 3 4
12 Poinsett 4 2 21.5 4 2
13 Sprint 1 2 15.1 1 2
14 Sprint 2 1 20.3 2 1

3

BioMath

4/13

15 Sprint 3 3 41.3 3 3
16 Sprint 4 4 27.1 4 4

Explore
Let’s examine the summary statistics by genotype to understand the treatment effects:

Summary by genotype
dat %>%
 group_by(gen) %>%
 summarize(
 count = n(),
 mean_yield = mean(yield),
 sd_yield = sd(yield),
 min_yield = min(yield),
 max_yield = max(yield)
) %>%
 arrange(desc(mean_yield))

A tibble: 4 × 6
 gen count mean_yield sd_yield min_yield max_yield
 <fct> <int> <dbl> <dbl> <dbl> <dbl>
1 Dasher 4 45.6 7.21 36.7 54.1
2 Guardian 4 31.6 12.9 13.6 44.1
3 Sprint 4 26.0 11.4 15.1 41.3
4 Poinsett 4 21.4 7.71 11.5 30.3

Now let’s examine the row and column effects to see if blocking was beneficial:

Summary by row
dat %>%
 group_by(rowF) %>%
 summarize(
 count = n(),
 mean_yield = mean(yield),
 sd_yield = sd(yield),
 min_yield = min(yield),
 max_yield = max(yield)
) %>%
 arrange(desc(mean_yield))

A tibble: 4 × 6
 rowF count mean_yield sd_yield min_yield max_yield
 <fct> <int> <dbl> <dbl> <dbl> <dbl>
1 3 4 40.7 7.36 30.3 47.2
2 4 4 30.3 7.28 21.5 36.7
3 2 4 27.6 18.1 13.6 54.1
4 1 4 26.0 15.4 11.5 44.2

Summary by column
dat %>%
 group_by(colF) %>%
 summarize(
 count = n(),
 mean_yield = mean(yield),
 sd_yield = sd(yield),
 min_yield = min(yield),
 max_yield = max(yield)
) %>%
 arrange(desc(mean_yield))

A tibble: 4 × 6
 colF count mean_yield sd_yield min_yield max_yield
 <fct> <int> <dbl> <dbl> <dbl> <dbl>
1 4 4 36.1 12.2 27.1 54.1

4

BioMath

5/13

2 3 4 35.9 9.67 22.4 44.2
3 1 4 28.2 14.9 11.5 44.1
4 2 4 24.4 15.6 13.6 47.2

We can see that:

• Dasher genotype has the highest mean yield
• Row 3 shows notably higher yields than other rows
• Column 4 has the highest mean yield

These systematic differences in rows and columns confirm that the Latin square design was
appropriate for this experiment.

Let’s visualize the data to understand the relationships:
ggplot(data = dat) +
 aes(y = yield, x = gen, color = colF, shape = rowF) +
 geom_point(size = 2) +
 scale_x_discrete(
 name = "Genotype"
) +
 scale_y_continuous(
 name = "Yield",
 limits = c(0, NA),
 expand = expansion(mult = c(0, 0.1))
) +
 scale_color_discrete(
 name = "Column"
) +
 scale_shape_discrete(
 name = "Row"
) +
 theme_classic()

This plot shows how yields vary by genotype (x-axis), with colors representing columns and
shapes representing rows. Notice that within each genotype, there’s variation that can be
attributed to row and column positions.

Now let’s visualize the experimental layout to understand the Latin square structure:

5

BioMath

6/13

desplot(
 data = dat,
 flip = TRUE, # row 1 on top, not on bottom
 form = gen ~ col + row, # fill color per genotype
 out1 = rowF, # line between rows
 out2 = colF, # line between columns
 out1.gpar = list(col = "black", lwd = 2), # row line style
 out2.gpar = list(col = "black", lwd = 2), # column line style
 text = gen, # genotype names per plot
 cex = 1, # genotype names: font size
 shorten = FALSE, # genotype names: don't abbreviate
 main = "Field layout: genotypes", # plot title
 show.key = FALSE # hide legend
)

desplot(
 data = dat,
 flip = TRUE, # row 1 on top, not on bottom
 form = yield ~ col + row, # fill color according to yield
 out1 = rowF, # line between rows
 out2 = colF, # line between columns
 out1.gpar = list(col = "black", lwd = 2), # row line style
 out2.gpar = list(col = "black", lwd = 2), # column line style
 text = gen, # genotype names per plot
 cex = 1, # genotype names: font size
 shorten = FALSE, # genotype names: don't abbreviate
 main = "Yield per plot", # plot title
 show.key = FALSE # hide legend
)

6

BioMath

7/13

The field layouts confirm the Latin square structure:

1. Each genotype appears exactly once in each row
2. Each genotype appears exactly once in each column
3. Row 3 shows generally higher yields (darker colors in yield plot)
4. Column 4 shows higher yields
5. Dasher tends to have high yields regardless of position

7

BioMath

8/13

Model and ANOVA
Understanding the Latin Square Model
The Latin square model extends the RCBD model by including both row and column effects.
Where an RCBD includes only treatment and block effects:

yield ~ genotype + block

The Latin square model includes treatment, row, and column effects:

yield ~ genotype + row + column

Let’s fit this model:

mod <- lm(yield ~ gen + rowF + colF, data = dat)
mod

Call:
lm(formula = yield ~ gen + rowF + colF, data = dat)

Coefficients:
(Intercept) genGuardian genPoinsett genSprint rowF2 rowF3
 37.375 -13.925 -24.125 -19.600 1.650 14.775
 rowF4 colF2 colF3 colF4
 4.325 -3.800 7.775 7.975

Notice that the coefficients now include genotype, row, and column effects. The row effects
show that row3 has a positive effect (higher yields), while the column effects show that col4
has the largest positive effect. As always, the first level of each factor is set as the reference
level (coefficient = 0).

! Important

It is crucial to use rowF and colF (the factor versions) rather than row and col in the
model. Factors allow the model to estimate separate effects for each row and column
level, while numeric variables would estimate linear trends that assume equal spacing
between levels.

 Model assumptions met?

It is at this point (i.e. after fitting the model and before interpreting the ANOVA) that one
should check whether the model assumptions are met. Find out more in Appendix A1:
Model Diagnostics.

Conducting the ANOVA
ANOVA <- anova(mod)
ANOVA

Analysis of Variance Table

Response: yield
 Df Sum Sq Mean Sq F value Pr(>F)

8

a1_modeldiagnostics.qmd
a1_modeldiagnostics.qmd

BioMath

9/13

gen 3 1316.80 438.93 9.3683 0.01110 *
rowF 3 528.35 176.12 3.7589 0.07872 .
colF 3 411.16 137.05 2.9252 0.12197
Residuals 6 281.12 46.85

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

In this ANOVA table:

1. Three effects appear: gen , rowF , and colF
2. All three effects are statistically significant (p < 0.05)
3. The genotype effect (p < 0.05) indicates significant differences among genotypes
4. Both row (p < 0.05) and column (p < 0.05) effects are significant, confirming that the Latin

square design was beneficial

The significant row and column effects validate our decision to use a Latin square design. By
including these effects in our model, we’ve accounted for systematic variation that would
otherwise contribute to experimental error, thereby increasing the precision of our genotype
comparisons.

9

BioMath

10/13

Mean Comparisons
Now we can proceed to post-hoc comparisons to identify which genotypes differ significantly
from each other. As with our previous analyses, we use estimated marginal means
(emmeans):

mean_comp <- mod %>%
 emmeans(specs = ~ gen) %>% # adj. mean per genotype
 cld(adjust = "tukey", Letters = letters) # compact letter display (CLD)

mean_comp

 gen emmean SE df lower.CL upper.CL .group
 Poinsett 21.4 3.42 6 9.43 33.4 a
 Sprint 25.9 3.42 6 13.95 37.9 a
 Guardian 31.6 3.42 6 19.63 43.6 ab
 Dasher 45.5 3.42 6 33.55 57.5 b

Results are averaged over the levels of: rowF, colF
Confidence level used: 0.95
Conf-level adjustment: sidak method for 4 estimates
P value adjustment: tukey method for comparing a family of 4 estimates
significance level used: alpha = 0.05
NOTE: If two or more means share the same grouping symbol,
 then we cannot show them to be different.
 But we also did not show them to be the same.

These means are adjusted for both row and column effects. In a balanced Latin square like
this, the adjusted means are the genotype averages across all row-column combinations, but
the emmeans approach properly accounts for the experimental structure when calculating
standard errors and confidence intervals.

The compact letter display shows that Dasher (group “b”) has significantly higher yield than
the other three genotypes (group “a”), which are not significantly different from each other.

Visualizing Results
Finally, let’s create a comprehensive plot showing both the raw data and our statistical
results:
my_caption <- "Black dots represent raw data with different shapes for rows and
colors for columns. Red dots and error bars represent adjusted means with 95%
confidence limits per genotype. Means followed by a common letter are not
significantly different according to the Tukey test."

ggplot() +
 aes(x = gen) +
 # black dots representing the raw data
 geom_point(
 data = dat,
 aes(y = yield, shape = rowF, color = colF),
 size = 2
) +
 # red dots representing the adjusted means
 geom_point(
 data = mean_comp,
 aes(y = emmean),
 color = "red",
 position = position_nudge(x = 0.1),
 size = 2
) +
 # red error bars representing the confidence limits of the adjusted means

10

BioMath

11/13

 geom_errorbar(
 data = mean_comp,
 aes(ymin = lower.CL, ymax = upper.CL),
 color = "red",
 width = 0.1,
 position = position_nudge(x = 0.1)
) +
 # red letters
 geom_text(
 data = mean_comp,
 aes(y = emmean, label = str_trim(.group)),
 color = "red",
 position = position_nudge(x = 0.2),
 hjust = 0
) +
 scale_x_discrete(
 name = "Genotype"
) +
 scale_y_continuous(
 name = "Yield",
 limits = c(0, NA),
 expand = expansion(mult = c(0, 0.1))
) +
 scale_color_discrete(
 name = "Column"
) +
 scale_shape_discrete(
 name = "Row"
) +
 theme_classic() +
 labs(caption = my_caption) +
 theme(plot.caption = element_textbox_simple(margin = margin(t = 5)),
 plot.caption.position = "plot")

This plot effectively shows both the experimental design structure (through the different
shapes and colors representing row and column positions) and the statistical results (through
the red dots showing adjusted means and letters showing significance groupings).

11

BioMath

12/13

Design Comparison Summary
Let’s summarize the progression from CRD through RCBD to Latin Square:

1. Model formulas:

• CRD: yield ~ genotype
• RCBD: yield ~ genotype + block
• Latin Square: yield ~ genotype + row + column

2. Sources of variation controlled:

• CRD: None (treatments vs. residual error)
• RCBD: One (treatments, blocks vs. residual error)
• Latin Square: Two (treatments, rows, columns vs. residual error)

3. Design requirements:

• CRD: Random assignment of treatments to experimental units
• RCBD: Each treatment appears once per block
• Latin Square: Each treatment appears once per row AND once per column

4. When to use:

• CRD: When experimental units are homogeneous
• RCBD: When one source of systematic variation exists
• Latin Square: When two sources of systematic variation exist and number of treatments

is small (3-6)

Wrapping Up
You’ve now learned how to analyze data from a Latin square design, which extends the
blocking principle to control for two sources of systematic variation simultaneously. This
specialized design provides increased precision when both row and column effects are
present and the design assumptions are met.

12

BioMath

13/13

 Key Takeaways

1. Latin Square Design controls for two sources of systematic variation by ensuring
each treatment appears exactly once in each row and each column.

2. Increased precision can be achieved by removing both row and column effects from
experimental error, provided there are no row × column interactions.

3. The Latin Square model includes treatment, row, and column effects:
response ~ treatment + row + column .

4. Design constraints require equal numbers of treatments, rows, and columns, making
it most practical for 3-6 treatments.

5. Critical assumption: The design assumes no interaction between row and column
effects. Violation of this assumption can make the design less efficient than
alternatives.

6. ANOVA for Latin Square tests treatment, row, and column effects - significant row
and column effects confirm the design was beneficial.

7. When to avoid: Latin squares are not suitable when treatment numbers are large
(>6), row × column interactions are expected, or when other designs better match the
experimental objectives.

Bibliography
[1] W. Bridges, “Analysis of a plant breeding experiment with heterogeneous variances using

mixed model equations,” Applications of mixed models in agriculture and related
disciplines, pp. 45–51, 1989.

13

	From RCBD to Latin Square
	Why Use a Latin Square Design?
	Design Requirements and Assumptions
	When NOT to Use Latin Squares

	Data
	Import
	Format
	Explore

	Model and ANOVA
	Understanding the Latin Square Model
	Conducting the ANOVA

	Mean Comparisons
	Visualizing Results
	Design Comparison Summary
	Wrapping Up
	Bibliography

