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4. One-way ANOVA in an Alpha Design

Analysis of Variance (ANOVA); Alpha Design with Incomplete Blocks
Dr. Paul Schmidt

To install and load all the packages used in this chapter, run the following code:

for (pkg in c("agridat", "desplot", "emmeans", "ggtext", "here", "lmed",
"ImerTest", "multcomp", "multcompView", "tidyverse")) {
if (!require (pkg, character.only = TRUE)) install.packages (pkqg)
}

library (agridat)
library (desplot)
library (emmeans)
library (ggtext)
library (here)

library (1lmed)

library (lmerTest)
library (multcomp)
library (multcompView)
library (tidyverse)

From Complete to Incomplete Blocks

In the previous chapters, we analyzed data from designs where each block contained all
treatments: the RCBD had each cultivar appearing once per block, and the Latin Square had
each treatment appearing once per row and once per column. These are called complete
block designs.

However, when the number of treatments becomes large, it may not be practical or even
possible to fit all treatments into a single block. For example, if we have 24 genotypes and
our field plots can only accommodate 4 plots per block due to soil heterogeneity constraints,
we cannot use a complete block design. This is where incomplete block designs come in.

What is an Alpha Design?

An alpha design (also called a-design) is a type of resolvable incomplete block design.
“‘Resolvable” means that the incomplete blocks can be grouped into complete replicates,
where each replicate contains every treatment exactly once. Within each replicate,
treatments are distributed across multiple smaller incomplete blocks.

The advantages of alpha designs include:

1. Handling many treatments: Practical when complete blocks would be too large

2. Local error control: Smaller blocks are more homogeneous, reducing experimental error

3. Resolvability: Complete replicates allow for traditional replicate-based analysis as a
fallback

4. Flexibility: Can accommodate various numbers of treatments and block sizes

Introduction to Mixed Models

In the previous chapters, we used 1m() to fit our models, treating all effects as fixed. For
incomplete block designs, we typically use mixed models, which contain both fixed effects
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(like our treatment/genotype effect) and random effects (like incomplete block effects). We
use the 1mer () function from the {ImerTest} package to fit mixed models, where random

effects are specified with (1 | factor) instead of + factor .

Data

This example considers data published in J. John and E. Williams [1] from a yield (t/ha) trial

laid out as an alpha design. The trial had 24 genotypes ( gen ), 3 complete replicates ( rep )

and 6 incomplete blocks ( block ) within each replicate. The block size was 4, meaning each
incomplete block contained 4 of the 24 genotypes.

Import

The data is available as part of the {agridat} package:

dat <- as tibble(agridat::john.alpha)
dat

# A tibble: 72 x 7
plot rep block gen yield row col
<int> <fct> <fct> <fct> <dbl> <int> <int>

1 1 R1 Bl Gl1 4.12 1 1
2 2 R1 Bl G04 4.45 2 1
3 3 R1 Bl GO05 5.88 3 1
4 4 R1 Bl G22 4.58 4 1
5 5 R1 B2 G21 4.65 5 1
6 6 R1 B2 G10 4.17 6 1
7 7 R1 B2 G20 4.01 7 1
8 8 R1 B2 G02 4.34 8 1
9 9 R1 B3 G23 4.23 9 1
10 10 R1 B3 Gl4 4.76 10 1

# i 62 more rows

The dataset contains:

* rep: Three complete replicates (R1, R2, R3)

* block : Six incomplete blocks within each replicate (B1-B6)
* gen: 24 genotypes (G01-G24)

* yield: Crop yield in tons per hectare

* row and col : Field plot coordinates for visualization

Explore
Let’s first examine the summary statistics by genotype:

dat %$>%
group by (gen) %>%
summarize (
count = n{(),
mean yield = mean(yield),
sd yield = sd(yield),
min yield = min(yield),
max yield = max(yield)
) $>%
arrange (desc (mean_yield))
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# A tibble: 24

<fct> <int>
GO1
GO05
G1l2
G15
G19
G13
G21
G17
Glo
GO06
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Each genotype appears exactly 3 times (once per replicate). Genotype G11 has the highest

x 6

# i 14 more rows
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mean yield, while G24 has the lowest.

Now let’'s examine the block structure:

dat $>%
summarize (
count = n(

mean yield

) %>%
arrange (rep,

# A tibble: 18

<fct> <fct>

1 R1 Bl
2 R1 B2
3 R1 B3
4 R1 B4
5 R1 B5
6 R1 B6
7 R2 Bl
8 R2 B2
9 R2 B3
10 R2 B4
11 R2 B5
12 R2 B6
13 R3 Bl
14 R3 B2
15 R3 B3
16 R3 B4
17 R3 B5
18 R3 B6

We can see that each of the 18 incomplete blocks (6 blocks x 3 replicates) contains exactly 4

)y

= mean (yield),
.groups = "drop"

group by (rep, block)

block)

x 4
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plots. Let’s visualize the data:

# sort genotyr
group_ by (gen
summarise (me
arrange (mean
pull (gen) %>
as.character

ggplot (data =
aes (
y = yield,

) %>%
an =
) £>2

0

dat)

gen order <- dat %>%

.36
.33
o 19
.58
.12
.23
.22
.01
.21
.11
.38
.96
.30
.22
215
.61

mean (yield))
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X = gen,
shape = rep

) +

geom line (
aes (group = gen),
color "darkgrey"

) +

geom point () +

scale x discrete(
name = "Genotype",
limits = gen order

) +

scale y continuous (
name = "Yield",
limits = ¢ (0, NA),
expand = expansion (mult c(0, 0.05))

) +

scale shape discrete(
name = "Replicate"

)

guides (shape = guide legend(nrow = 1)) +

theme classic () +

theme (
legend.position = "top",
axis.text.x = element text (angle = 90, vjust = 0.5)

)
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Genotype

The grey lines connect observations of the same genotype across replicates, helping to
visualize genotype consistency. Now let’s look at the field layout:
desplot (

data = dat,
flip = TRUE,

form = gen ~ col + row | rep, # fill color per genotype, panels per replicate
outl = block, # lines between incomplete blocks
outl.gpar = list(col = "black", lwd = 1, lty = "dashed"),
main = "Field layout",
key.cex = 0.6,
layout = c(3, 1) # force all reps in one row
)
4
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block Field layout

gen
GO01
G02
G03
G04
G05
G06
G07
G08
G09
G10
G11
G12
G13
G14
G15
G16
G17
G18
G19
G20
G21
G22
G23
G24

The dashed lines separate the incomplete blocks within each replicate. Notice how each
genotype appears once per replicate, but in different blocks.
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Model and ANOVA

Model with Random Incomplete Blocks

For an alpha design, the model includes:

* Fixed effects: genotype ( gen ) and replicate ( rep )

* Random effects: incomplete blocks nested within replicates ( rep:block )

The incomplete blocks are treated as random because we are not interested in the specific
block effects themselves, but rather want to account for the variation they introduce. This is
the key difference from our previous analyses.

mod <- lmer (yield ~ gen + rep + (1 | rep:block),
data = dat)

The syntax (1 | rep:block) specifies that the interaction of rep and block (i.e., the 18
unique incomplete blocks) should be treated as a random effect.

Model assumptions met?

Itis at this point (i.e. after fitting the model and before interpreting the ANOVA) that one
should check whether the model assumptions are met. Find out more in Appendix A1:
Model Diagnostics.

Conducting the ANOVA

For mixed models, we use a slightly different ANOVA approach with Kenward-Roger degrees
of freedom, which provides more accurate F-tests for small sample sizes:

ANOVA <- anova (mod, ddf = "Kenward-Roger")
ANOVA

Type III Analysis of Variance Table with Kenward-Roger's method

Sum Sg Mean Sg NumDF DenDF F value Pr (>F)
gen 10.5070 0.45683 23 35.498 5.3628 4.496e-06 ***
rep 1.5703 0.78513 2 11.519 9.2124 0.004078 **
Signif. codes: 0 '***' (Q.001 '**' 0.01 '*' 0.05 '.' 0.1 " ' 1

The ANOVA shows that the genotype effect is statistically significant (p < 0.05), indicating
that at least one genotype differs from the others in yield.
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a1_modeldiagnostics.qmd
a1_modeldiagnostics.qmd

Mean Comparisons

As in previous chapters, we use emmeans () to obtain adjusted means and perform post-hoc

comparisons:

mean comp <- mod %>%
emmeans (specs = ~ gen) %>%
cld(adjust = "none", Letters = letters)

mean_comp

gen emmean SE df lower.CL upper.CL .group

GO03 3.50 0.199 44.3 3.10 3.90 a

GO09 3.50 0.199 44.3 3.10 3.90 ab

G20 4.04 0.199 44.3 3.64 4.44 bc

GO07 4.11 0.199 44.3 3.71 4.51 cd

G24 4.15 0.199 44.3 3.75 4.55 cd

G23 4.25 0.199 44.3 3.85 4.65 cde

G1l1 4.28 0.199 44.3 3.88 4.68 cde

G18 4.36 0.199 44.3 3.96 4.76 cdef
G10 4.37 0.199 44.3 3.97 4.77 cdef
G02 4.48 0.199 44.3 4.08 4.88 cdefg
G04 4.49 0.199 44.3 4.09 4.89 cdefg
G22 4.53 0.199 44.3 4.13 4.93 cdefgh
GO08 4.53 0.199 44.3 4.13 4.93 cdefgh
GO06 4.54 0.199 44.3 4.14 4.94 cdefgh
G17 4.60 0.199 44.3 4.20 5.00 defghi
Gl6 4.73 0.199 44.3 4.33 5.13 efghi
G1l2 4.76 0.199 44.3 4.35 5.16 efghi
G13 4.76 0.199 44.3 4.36 5.16 efghi
Gl4 4.78 0.199 44.3 4.37 5.18 efghi
G21 4.80 0.199 44.3 4.39 5.20 efghi
G19 4.84 0.199 44.3 4.44 5.24 fghi
G15 4.97 0.199 44.3 4.57 5.37 ghi
GO05 5.04 0.199 44.3 4.64 5.44 hi
GO1 5.11 0.199 44.3 4.71 5.51 i

Results are averaged over the levels of: rep
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
significance level used: alpha = 0.05
NOTE: If two or more means share the same grouping symbol,
then we cannot show them to be different.
But we also did not show them to be the same.

Note that these means are adjusted for both replicate and incomplete block effects. The
compact letter display shows which genotypes are significantly different from each other

according to Fisher’s LSD test.

Visualizing Results

letter are not significantly different according to Fisher's LSD test."

ggplot () +
aes (x = gen) +
# black dots representing the raw data
geom point (
data = dat,
aes (y = yield)
) +

# red diamonds representing the adjusted means

my caption <- "Black dots represent raw data. Red diamonds and error bars represent
adjusted means with 95% confidence limits per genotype. Means followed by a common
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geom point (

data = mean comp,

aes (y = emmean),

shape = 18,

color = "red",

position = position nudge(x = 0.2)
) +

# red error bars representing the confidence limits of the adjusted means
geom_errorbar (

data = mean comp,

aes (ymin = lower.CL, ymax = upper.CL),

color "red",

width 0.1,

position = position nudge(x = 0.2)
) +

# red letters
geom_text (
data = mean_ comp,

aes (y lower.CL, label = str trim(.group)),
color = "red",
angle 90,
hjust 1.1,
position = position nudge(x = 0.2)
) + N
scale x discrete(
name = "Genotype",
limits = as.character (mean compS$gen)
) +

scale y continuous (
name = "Yield",
limits = ¢ (0, NA),
expand = expansion (mult = c(0, 0.05))
) +
labs (caption = my caption) +
theme classic() +
theme (plot.caption = element textbox simple (margin = margin(t = 5)),
plot.caption.position = "plot",
axis.text.x element text (angle = 90, vjust = 0.5))
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Black dots represent raw data. Red diamonds and error bars represent adjusted means with 95%

confidence limits per genotype. Means followed by a common letter are not significantly different
according to Fisher's LSD test.
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Bonus: Design Efficiency

The efficiency of an incomplete block design can be assessed by comparing it to the
analogous RCBD (ignoring incomplete blocks). We compare the squared standard errors of
differences:

# s.e.d. squared for alpha design
avg sed alpha <- mod %>%
emmeans (pairwise ~ "gen", adjust = "none", lmer.df = "kenward-roger") %$>%
pluck ("contrasts") %>%
as_tibble () %>%
pull ("SE") %>%
mean ()

# s.e.d. squared for RCBD (ignoring incomplete blocks)
avg _sed rcbd <- lm(yield ~ gen + rep, data = dat) %>%
emmeans (pairwise ~ "gen", adjust = "none") %>%
pluck ("contrasts") $>%
as_tibble () %>%
pull ("SE") %>%
mean ()

# Efficiency
avg_sed rcbd”2 / avg_sed alpha”2

I[l] 1.230428

An efficiency > 1 indicates that the alpha design is more efficient than a simple RCBD,
meaning the incomplete blocks successfully reduced experimental error.

Wrapping Up

You've now learned how to analyze data from an alpha design, which extends the blocking
principle to situations where complete blocks are impractical.

1 Key Takeaways

1. Alpha designs are resolvable incomplete block designs useful when the number of
treatments is too large for complete blocks.

2. Mixed models with 1mer () are used to analyze incomplete block designs, treating
incomplete blocks as random effects.

3. Random effects syntax: Use (1 | factor) for random effects instead of + factor
for fixed effects.

4. The model includes fixed genotype and replicate effects, plus random incomplete
block effects: yield ~ gen + rep + (1 | rep:block) .

5. Kenward-Roger degrees of freedom provide more accurate F-tests for mixed
models with small sample sizes.

6. Design efficiency can be assessed by comparing to an analogous RCBD - efficiency
> 1 confirms the benefit of incomplete blocking.
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