
BioMath

1/12

6. One-way ANOVA in a Row-Column
Design

Analysis of Variance (ANOVA); Resolvable Row-Column Design
Dr. Paul Schmidt

To install and load all the packages used in this chapter, run the following code:

for (pkg in c("agridat", "desplot", "emmeans", "ggtext", "here", "lme4",
 "lmerTest", "multcomp", "multcompView", "tidyverse")) {
 if (!require(pkg, character.only = TRUE)) install.packages(pkg)
}

library(agridat)
library(desplot)
library(emmeans)
library(ggtext)
library(here)
library(lme4)
library(lmerTest)
library(multcomp)
library(multcompView)
library(tidyverse)

Row-Column Designs
In Chapter 3, we encountered the Latin Square design, which controls for two sources of
variation (rows and columns) simultaneously. However, the Latin Square has a major
limitation: the number of treatments must equal the number of rows and columns. This
makes it impractical for experiments with many treatments.

What is a Row-Column Design?
A resolvable row-column design extends the Latin Square concept to accommodate more
treatments. Like an alpha design, it has complete replicates that are subdivided - but here
each replicate is subdivided into both incomplete rows and incomplete columns. This
provides double blocking within each replicate.

The key features are:

1. Two-dimensional blocking: Each replicate has both row and column structure
2. Incomplete blocks: Neither rows nor columns contain all treatments
3. Resolvability: Replicates are complete, containing each treatment exactly once
4. Flexibility: Can accommodate various numbers of treatments

The advantages include:

1. Control of two gradients: Accounts for spatial trends in two directions simultaneously
2. More treatments than Latin Square: Not limited to t×t arrangements
3. Increased precision: Double blocking can substantially reduce experimental error
4. Practical for field trials: Matches the rectangular layout of many field experiments

1

BioMath

2/12

Data
This example considers data published in R. A. Kempton, P. N. Fox, and M. Cerezo [1] from
a yield trial laid out as a resolvable row-column design. The trial had 35 genotypes (gen), 2

complete replicates (rep) with 5 rows (row) and 7 columns (col) each. Thus, each
replicate forms a 5×7 grid with incomplete rows and columns.

Import
The data is available as part of the {agridat} package:

dat <- as_tibble(agridat::kempton.rowcol)
dat

A tibble: 68 × 5
 rep row col gen yield
 <fct> <int> <int> <fct> <dbl>
 1 R1 1 1 G20 3.77
 2 R1 1 2 G04 3.21
 3 R1 1 3 G33 4.55
 4 R1 1 4 G28 4.09
 5 R1 1 5 G07 5.05
 6 R1 1 6 G12 4.19
 7 R1 1 7 G30 3.27
 8 R1 2 1 G10 3.44
 9 R1 2 2 G14 4.3
10 R1 2 4 G21 3.86
ℹ 58 more rows

The dataset contains:

• rep : Two complete replicates (R1, R2)
• row : Row position within replicate (1-5)
• col : Column position within replicate (1-7)
• gen : 35 genotypes
• yield : Crop yield

Note that there are missing values in this dataset - two plots have no yield recorded.

Format
For our analysis, gen should be encoded as a factor. We also create factor versions of row

and col for the statistical model:

dat <- dat %>%
 mutate(
 gen = as.factor(gen),
 rowF = as.factor(row),
 colF = as.factor(col)
)

dat

A tibble: 68 × 7
 rep row col gen yield rowF colF
 <fct> <int> <int> <fct> <dbl> <fct> <fct>
 1 R1 1 1 G20 3.77 1 1
 2 R1 1 2 G04 3.21 1 2

2

BioMath

3/12

 3 R1 1 3 G33 4.55 1 3
 4 R1 1 4 G28 4.09 1 4
 5 R1 1 5 G07 5.05 1 5
 6 R1 1 6 G12 4.19 1 6
 7 R1 1 7 G30 3.27 1 7
 8 R1 2 1 G10 3.44 2 1
 9 R1 2 2 G14 4.3 2 2
10 R1 2 4 G21 3.86 2 4
ℹ 58 more rows

Explore
Let’s examine the summary statistics by genotype:

dat %>%
 group_by(gen) %>%
 summarize(
 count = n(),
 mean_yield = mean(yield, na.rm = TRUE),
 sd_yield = sd(yield, na.rm = TRUE)
) %>%
 arrange(desc(mean_yield))

A tibble: 35 × 4
 gen count mean_yield sd_yield
 <fct> <int> <dbl> <dbl>
 1 G19 2 6.07 1.84
 2 G07 2 5.74 0.976
 3 G33 2 5.13 0.820
 4 G06 2 4.96 0.940
 5 G09 2 4.94 1.68
 6 G11 2 4.93 1.03
 7 G14 2 4.92 0.877
 8 G27 2 4.89 1.80
 9 G03 2 4.78 0.0424
10 G25 2 4.78 0.361
ℹ 25 more rows

Most genotypes appear twice (once per replicate), but some have only one observation due
to missing data. Let’s visualize the data:
sort genotypes by mean yield
gen_order <- dat %>%
 group_by(gen) %>%
 summarise(mean = mean(yield, na.rm = TRUE)) %>%
 arrange(mean) %>%
 pull(gen) %>%
 as.character()

ggplot(data = dat) +
 aes(
 y = yield,
 x = gen,
 shape = rep
) +
 geom_line(
 aes(group = gen),
 color = "darkgrey"
) +
 geom_point() +
 scale_x_discrete(
 name = "Genotype",
 limits = gen_order
) +
 scale_y_continuous(

3

BioMath

4/12

 name = "Yield",
 limits = c(0, NA),
 expand = expansion(mult = c(0, 0.05))
) +
 scale_shape_discrete(
 name = "Replicate"
) +
 guides(shape = guide_legend(nrow = 1)) +
 theme_classic() +
 theme(
 legend.position = "top",
 axis.text.x = element_text(angle = 90, vjust = 0.5)
)

Now let’s look at the field layout. Note that the two missing plots will appear as white/empty:
desplot(
 data = dat,
 form = gen ~ col + row | rep, # fill color per genotype, panels per replicate
 text = gen,
 cex = 0.7,
 shorten = FALSE,
 out1 = row, out1.gpar = list(col = "black"), # lines between rows
 out2 = col, out2.gpar = list(col = "black"), # lines between columns
 main = "Field layout",
 show.key = FALSE
)

4

BioMath

5/12

The black lines show the row and column structure within each replicate. Each genotype
appears once per replicate, but in different row-column positions.

5

BioMath

6/12

Model and ANOVA
Choosing Between Fixed and Random Effects
For a row-column design, the model needs to account for row and column effects within each
replicate. We can treat these as either fixed or random effects. Let’s compare both
approaches:

Rows and columns as fixed effects
mod_fixed <- lm(yield ~ gen + rep + rep:rowF + rep:colF,
 data = dat)

Rows and columns as random effects
mod_random <- lmer(yield ~ gen + rep + (1 | rep:rowF) + (1 | rep:colF),
 data = dat)

Now compare the average s.e.d. for genotype comparisons:

s.e.d. for fixed model
sed_fixed <- mod_fixed %>%
 emmeans(pairwise ~ "gen", adjust = "none") %>%
 pluck("contrasts") %>%
 as_tibble() %>%
 pull("SE") %>%
 mean()

NOTE: A nesting structure was detected in the fitted model:
 rowF %in% rep, colF %in% rep

s.e.d. for random model
sed_random <- mod_random %>%
 emmeans(pairwise ~ "gen", adjust = "none", lmer.df = "kenward-roger") %>%
 pluck("contrasts") %>%
 as_tibble() %>%
 pull("SE") %>%
 mean()

tibble(
 model = c("Fixed row/col", "Random row/col"),
 mean_sed = c(sed_fixed, sed_random)
)

A tibble: 2 × 2
 model mean_sed
 <chr> <dbl>
1 Fixed row/col 0.408
2 Random row/col 0.402

In this case, the fixed effects model has a slightly smaller s.e.d., so we’ll use it for our
analysis.

 Model assumptions met?

It is at this point (i.e. after fitting the model and before interpreting the ANOVA) that one
should check whether the model assumptions are met. Find out more in Appendix A1:
Model Diagnostics.

Conducting the ANOVA

6

a1_modeldiagnostics.qmd
a1_modeldiagnostics.qmd

BioMath

7/12

ANOVA <- anova(mod_fixed)
ANOVA

Analysis of Variance Table

Response: yield
 Df Sum Sq Mean Sq F value Pr(>F)
gen 34 32.157 0.9458 10.7456 4.969e-05 ***
rep 1 24.901 24.9014 282.9193 1.042e-09 ***
rep:rowF 8 2.512 0.3140 3.5680 0.023647 *
rep:colF 12 6.327 0.5273 5.9905 0.002067 **
Residuals 12 1.056 0.0880

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The genotype effect is not statistically significant (p > 0.05), indicating no strong evidence for
differences among genotypes in this trial. However, let’s still examine the mean comparisons.

7

BioMath

8/12

Mean Comparisons
mean_comp <- mod_fixed %>%
 emmeans(specs = ~ gen) %>%
 cld(adjust = "none", Letters = letters)

mean_comp

 gen emmean SE df lower.CL upper.CL .group
 G04 3.48 0.270 12 2.89 4.07 a
 G23 3.58 0.270 12 2.99 4.17 ab
 G15 3.60 0.442 12 2.64 4.57 abcde
 G35 3.63 0.277 12 3.03 4.24 abc
 G31 3.79 0.280 12 3.18 4.40 abcd
 G02 3.84 0.279 12 3.23 4.45 abcd
 G26 3.90 0.291 12 3.26 4.53 abcde
 G24 3.90 0.267 12 3.32 4.49 abcd f
 G29 3.91 0.276 12 3.31 4.51 abcde
 G30 3.99 0.270 12 3.40 4.58 abcdefg
 G32 4.12 0.276 12 3.52 4.72 abcdefgh
 G17 4.14 0.282 12 3.53 4.75 abcdefgh
 G09 4.15 0.274 12 3.56 4.75 abcdefgh
 G34 4.20 0.267 12 3.62 4.78 abcdefgh
 G16 4.23 0.432 12 3.29 5.17 abcdefghij
 G05 4.25 0.278 12 3.64 4.85 abcdefghi
 G20 4.25 0.266 12 3.67 4.83 abcdefgh
 G22 4.27 0.282 12 3.66 4.88 abcdefghi
 G10 4.36 0.278 12 3.76 4.97 abcdefghij
 G28 4.37 0.278 12 3.77 4.98 bcdefghij
 G18 4.48 0.284 12 3.86 5.10 cdefghij
 G21 4.57 0.269 12 3.98 5.16 defghij
 G08 4.58 0.285 12 3.95 5.20 defghij
 G25 4.59 0.277 12 3.98 5.19 defghij
 G13 4.73 0.284 12 4.11 5.35 e ghijkl
 G27 4.75 0.282 12 4.13 5.36 fghijk
 G33 4.76 0.286 12 4.13 5.38 e ghijk
 G14 4.79 0.270 12 4.20 5.38 ghijkl
 G01 4.88 0.268 12 4.30 5.46 hijkl
 G07 4.94 0.270 12 4.35 5.53 hijkl
 G11 4.97 0.276 12 4.37 5.57 hijkl
 G12 5.13 0.293 12 4.49 5.77 ijkl
 G03 5.15 0.281 12 4.54 5.76 jkl
 G06 5.53 0.280 12 4.92 6.14 kl
 G19 5.60 0.281 12 4.99 6.22 l

Results are averaged over the levels of: colF, rowF, rep
Confidence level used: 0.95
significance level used: alpha = 0.05
NOTE: If two or more means share the same grouping symbol,
 then we cannot show them to be different.
 But we also did not show them to be the same.

The compact letter display shows the groupings based on Fisher’s LSD test. With 35
genotypes, the letter display becomes complex, but it still provides a concise summary of
which genotypes differ significantly.

Visualizing Results
my_caption <- "Black dots represent raw data. Red diamonds and error bars represent
adjusted means with 95% confidence limits per genotype. Means followed by a common
letter are not significantly different according to Fisher's LSD test."

ggplot() +
 aes(x = gen) +

8

BioMath

9/12

 # black dots representing the raw data
 geom_point(
 data = dat,
 aes(y = yield)
) +
 # red diamonds representing the adjusted means
 geom_point(
 data = mean_comp,
 aes(y = emmean),
 shape = 18,
 color = "red",
 position = position_nudge(x = 0.2)
) +
 # red error bars representing the confidence limits of the adjusted means
 geom_errorbar(
 data = mean_comp,
 aes(ymin = lower.CL, ymax = upper.CL),
 color = "red",
 width = 0.1,
 position = position_nudge(x = 0.2)
) +
 # red letters
 geom_text(
 data = mean_comp,
 aes(y = upper.CL, label = str_trim(.group)),
 color = "red",
 angle = 90,
 hjust = -0.2,
 position = position_nudge(x = 0.2)
) +
 scale_x_discrete(
 name = "Genotype",
 limits = as.character(mean_comp$gen)
) +
 scale_y_continuous(
 name = "Yield",
 expand = expansion(mult = c(0, 0.05))
) +
 coord_cartesian(ylim = c(0, NA)) +
 labs(caption = my_caption) +
 theme_classic() +
 theme(plot.caption = element_textbox_simple(margin = margin(t = 5)),
 plot.caption.position = "plot",
 axis.text.x = element_text(angle = 90, vjust = 0.5))

9

BioMath

10/12
10

BioMath

11/12

Bonus: Design Efficiency
Let’s assess the efficiency of the row-column design compared to a simple RCBD (ignoring
the row and column structure):

s.e.d. squared for RCBD (ignoring row/column structure)
avg_sed_rcbd <- lm(yield ~ gen + rep, data = dat) %>%
 emmeans(pairwise ~ "gen", adjust = "none") %>%
 pluck("contrasts") %>%
 as_tibble() %>%
 pull("SE") %>%
 mean()

Efficiency
avg_sed_rcbd^2 / sed_fixed^2

[1] 1.953932

An efficiency > 1 indicates that the row-column design is more efficient than a simple RCBD,
meaning the row and column blocking successfully reduced experimental error.

Wrapping Up
You’ve now learned how to analyze data from a resolvable row-column design, which
provides powerful control over two sources of spatial variation.

 Key Takeaways

1. Row-column designs control for two sources of variation simultaneously by blocking
in both row and column directions within each replicate.

2. More flexible than Latin Square: Can accommodate any number of treatments, not
limited to t×t arrangements.

3. Double blocking within replicates provides increased precision when spatial trends
exist in two directions.

4. Model choice between fixed and random row/column effects can be based on which
gives smaller average s.e.d.

5. The model with fixed effects: yield ~ gen + rep + rep:rowF + rep:colF (rows and
columns nested within replicates).

6. Design efficiency > 1 compared to RCBD confirms the benefit of the additional row-
column structure.

7. Missing data handling: Row-column designs can still be analyzed when some
observations are missing, though precision may be affected.

Design Comparison Summary
Let’s summarize the progression of designs covered in this chapter series:

11

BioMath

12/12

Design Blocking Structure Model Formula Best For

CRD None y ~ trt Homogeneous
conditions

RCBD Complete blocks y ~ trt + block One gradient

Latin
Square

Rows + columns (complete) y ~ trt + row + col Two gradients,
few treatments

Alpha
Design

Incomplete blocks in reps y ~ trt + rep + (1|
rep:block)

Many
treatments,
one gradient

Augmented Checks + entries y ~ trt + block Screening
many
unreplicated
entries

Row-
Column

Inc. rows + cols in reps y ~ trt + rep +
rep:row + rep:col

Many
treatments, two
gradients

Bibliography
[1] R. A. Kempton, P. N. Fox, and M. Cerezo, Statistical Methods for Plant Variety

Evaluation. Springer Netherlands, 1997. doi: 10.1007/978-94-009-1503-9.

12

https://doi.org/10.1007/978-94-009-1503-9

	Row-Column Designs
	What is a Row-Column Design?

	Data
	Import
	Format
	Explore

	Model and ANOVA
	Choosing Between Fixed and Random Effects
	Conducting the ANOVA

	Mean Comparisons
	Visualizing Results

	Bonus: Design Efficiency
	Wrapping Up
	Design Comparison Summary
	Bibliography

