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6. One-way ANOVA in a Row-Column
Design

Analysis of Variance (ANOVA); Resolvable Row-Column Design
Dr. Paul Schmidt

To install and load all the packages used in this chapter, run the following code:

for (pkg in c("agridat", "desplot", "emmeans", "ggtext", "here", "lme4d",
"lmerTest", "multcomp", "multcompView", "tidyverse")) {
if (!require (pkg, character.only = TRUE)) install.packages (pkqg)
}

library (agridat)
library (desplot)
library (emmeans)
library (ggtext)
library (here)

library (lmed)

library (1lmerTest)
library (multcomp)
library (multcompView)
library (tidyverse)

Row-Column Designs

In Chapter 3, we encountered the Latin Square design, which controls for two sources of
variation (rows and columns) simultaneously. However, the Latin Square has a major
limitation: the number of treatments must equal the number of rows and columns. This
makes it impractical for experiments with many treatments.

What is a Row-Column Design?

A resolvable row-column design extends the Latin Square concept to accommodate more
treatments. Like an alpha design, it has complete replicates that are subdivided - but here
each replicate is subdivided into both incomplete rows and incomplete columns. This
provides double blocking within each replicate.

The key features are:

1. Two-dimensional blocking: Each replicate has both row and column structure
2. Incomplete blocks: Neither rows nor columns contain all treatments

3. Resolvability: Replicates are complete, containing each treatment exactly once
4. Flexibility: Can accommodate various numbers of treatments

The advantages include:

1. Control of two gradients: Accounts for spatial trends in two directions simultaneously
2. More treatments than Latin Square: Not limited to txt arrangements

3. Increased precision: Double blocking can substantially reduce experimental error

4. Practical for field trials: Matches the rectangular layout of many field experiments
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Data

This example considers data published in R. A. Kempton, P. N. Fox, and M. Cerezo [1] from
a yield trial laid out as a resolvable row-column design. The trial had 35 genotypes ( gen ), 2
complete replicates ( rep ) with 5 rows ( row ) and 7 columns ( col ) each. Thus, each
replicate forms a 5x7 grid with incomplete rows and columns.

Import

The data is available as part of the {agridat} package:

dat <- as tibble(agridat::kempton.rowcol)
dat

# A tibble: 68 x 5

rep row col gen yield
<fct> <int> <int> <fct> <dbl>
1 R1 1 1 G20 3.77
2 R1 1 2 G04 3.21
3 R1 1 3 G33 4.55
4 R1 1 4 G28 4.09
5 R1 1 5 GO7 5.05
6 R1 1 6 Gl2 4.19
7 R1 1 7 G30 3.27
8 R1 2 1 G10 3.44
9 R1 2 2 Gl4 4.3
10 R1 2 4 G21 3.86

# i 58 more rows

The dataset contains:

* rep: Two complete replicates (R1, R2)

* row : Row position within replicate (1-5)

* col : Column position within replicate (1-7)
* gen: 35 genotypes

* yield: Crop yield

Note that there are missing values in this dataset - two plots have no yield recorded.

Format

For our analysis, gen should be encoded as a factor. We also create factor versions of row

and col for the statistical model:

dat <- dat %>%

mutate (
gen = as.factor (gen)
rowF = as.factor (ro

’
w) ,
colF = as.factor(col)

)

dat

# A tibble: 68 x 7

rep row col gen yield rowF colF
<fct> <int> <int> <fct> <dbl> <fct> <fct>
1 R1 1 1 G20 3.77 1 1
2 R1 1 2 G04 3.21 1 2
2
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# i 58 more rows

Explore

Let’'s examine the summary statistics by genotype:

dat $>%
group by (gen) %>%
summarize (

count = n{(),
mean yield =

) $>%

# A tibble: 35 x 4

# i 25 more rows

Most genotypes appear twice (once per replicate), but some have only one observation due

3 R1 1 3 G33
4 R1 1 4 G28
5 R1 1 5 GO7
6 R1 1 6 G12
7 R1 1 7 G30
8 R1 2 1 G10
9 R1 2 2 Gl4
10 R1 2 4 G21

mean (yield,
sd yield = sd(yield,

arrange (desc (mean_yield))

<fct> <int> <dbl>

1 G19 2 6.07
2 GO7 2 5.74
3 G33 2 5,13
4 GO6 2 4.96
5 G09 2 4.94
6 G11 2 4.93
7 Gl4 2 4.92
8 G27 2 4.89
9 GO3 2 4.78
10 G25 2 4.78

OO O P OO O

W s W w s 0D

> 55
.09
.05
0.9
.27
.44

NN R R e
BN R J oy 0 s W

.86

na.rm = TRUE),

na.rm = TRUE)

gen count mean yield sd yield

<dbl>
.84
.976
.820
.940
.68
.03
.877
.80
.0424
.361

to missing data. Let’s visualize the data:

arrange (mean) %>%
pull (gen) %>%
as.character ()

ggplot (data = dat) +

aes (
y = yield,
X = gen,
shape = rep
)
geom line (
aes (group = gen),
color = "darkgrey"
) +

geom point () +
scale x discrete (

name = "Genotype",
limits = gen order
NG

scale y continuous (

# sort genotypes by mean ield
gen order <- dat %>%
group by (gen) %>%
summarise (mean = mean (yield, na.rm = TRUE))
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name = "Yield",
limits = c (0, NA),
expand = expansion (mult = c (0, 0.05))

) +
scale shape discrete(
name = "Replicate"
) +
guides (shape guide legend (nrow 1)) +
theme classic () +
theme (
legend.position = "top",
axis.text.x = element text(angle = 90, vjust = 0.5)
)
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Now let’s look at the field layout. Note that the two missing plots will appear as white/empty:

desplot (
data = dat,
form = gen ~ col + row | rep, # fill color per genotype, panels per replicate
text = gen,
cex = 0.7,
shorten FALSE,
outl = row, outl.gpar = list(col = "black"), # lines

out2 = col, out2.gpar = list(col = "black"), # lines
main = "Field layout",
show.key = FALSE
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Field layout

The black lines show the row and column structure within each replicate. Each genotype

R1 R2
G17 | G09 | GO3 | G34 | G13 | G35 | GO1 | GO1 | G27 G29 | G14 | G28
GO05 | G32 | G02 | G27 | GO8 | G33 | GO9 [ G17 | G18 | G32 G02
G19 | G26 | G29 | G15 GO07 G10 | G30
G10 | G14 G21 | G31 | G0O6 G21 G13 | G03
G20 | G04 | G33 | G28 | GO7 | G12 G19 G08 | G06

appears once per replicate, but in different row-column positions.
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Model and ANOVA

Choosing Between Fixed and Random Effects

For a row-column design, the model needs to account for row and column effects within each
replicate. We can treat these as either fixed or random effects. Let's compare both
approaches:

# Rows and columns as fixed effects
mod fixed <- Im(yield ~ gen + rep + rep:rowF + rep:colF,
data = dat)

# Rows and columns as random effects
mod random <- lmer (yield ~ gen + rep + (1 | rep:rowF) + (1 | rep:colfF),
data = dat)

Now compare the average s.e.d. for genotype comparisons:

# s.e.d. for fixed model
sed fixed <- mod fixed $%>%
emmeans (pairwise ~ "gen", adjust = "none") %>%
pluck ("contrasts") $>%
as_tibble () %>%
pull ("SE") %>%
mean ()

NOTE: A nesting structure was detected in the fitted model:
rowF %$in% rep, colF %in% rep

# s.e.d. for random model
sed random <- mod random %>%
emmeans (pairwise ~ "gen", adjust = "none", lmer.df = "kenward-roger") %$>%
pluck ("contrasts") %$>%
as_tibble () %>%
pull ("SE") %>%
mean ()

tibble (
model = c("Fixed row/col", "Random row/col"),
mean sed = c(sed fixed, sed random)

)

# A tibble: 2 x 2

model mean sed
<chr> <dbl>
1 Fixed row/col 0.408
2 Random row/col 0.402

In this case, the fixed effects model has a slightly smaller s.e.d., so we’ll use it for our
analysis.

Model assumptions met?

It is at this point (i.e. after fitting the model and before interpreting the ANOVA) that one
should check whether the model assumptions are met. Find out more in Appendix A1:
Model Diagnostics.

Conducting the ANOVA
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a1_modeldiagnostics.qmd
a1_modeldiagnostics.qmd

ANOVA <- anova (mod fixed)
ANOVA

The genotype effect is not statistically significant (p > 0.05), indicating no strong evidence for
differences among genotypes in this trial. However, let’s still examine the mean comparisons.
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Mean Comparisons

mean comp <- mod fixed $>%
emmeans (specs = ~ gen) %$>%
cld(adjust = "none", Letters = letters)
mean_comp
gen emmean SE df lower.CL upper.CL .group
G04 3.48 0.270 12 2.89 4.07 a
G23 3.58 0.270 12 2,99 4.17 ab
G15 3.60 0.442 12 2.64 4.57 abcde
G35 3.63 0.277 12 3.03 4.24 abc
G31 3.79 0.280 12 3.18 4.40 abcd
G02 3.84 0.279 12 3.23 4.45 abcd
G26 3.90 0.291 12 3.26 4.53 abcde
G24 3.90 0.267 12 3.32 4.49 abcd £
G29 3.91 0.276 12 3.31 4.51 abcde
G30 3.99 0.270 12 3.40 4.58 abcdefg
G32 4.12 0.276 12 3.52 4.72 abcdefgh
G17 4.14 0.282 12 3.53 4.75 abcdefgh
GO09 4.15 0.274 12 3.56 4.75 abcdefgh
G34 4.20 0.267 12 3.62 4.78 abcdefgh
Gl6 4.23 0.432 12 3.29 5.17 abcdefghij
GO05 4.25 0.278 12 3.64 4.85 abcdefghi
G20 4.25 0.266 12 3.67 4.83 abcdefgh
G22 4.27 0.282 12 3.66 4.88 abcdefghi
G10 4.36 0.278 12 3.76 4.97 abcdefghij
G28 4.37 0.278 12 3.77 4.98 bcdefghij
G18 4.48 0.284 12 3.86 5.10 cdefghij
G21 4.57 0.269 12 3.98 5.16 defghij
GO08 4.58 0.285 12 3.95 5.20 defghij
G25 4.59 0.277 12 3.98 5.19 defghij
G13 4.73 0.284 12 4.11 5.35 e ghijkl
G27 4.75 0.282 12 4.13 5.36 fghijk
G33 4.76 0.286 12 4.13 5.38 e ghijk
Gl4 4.79 0.270 12 4.20 5.38 ghijkl
GO1 4.88 0.268 12 4.30 5.46 hijkl
GO07 4.94 0.270 12 4.35 5.53 hijkl
Gl1l 4.97 0.276 12 4.37 5.57 hijkl
Gl2 5.13 0.293 12 4.49 5.77 ijkl
GO03 5.15 0.281 12 4.54 5.76 Jjkl
GO6 5.53 0.280 12 4.92 6.14 k1l
G19 5.60 0.281 12 4.99 6.22 1
Results are averaged over the levels of: colF, rowF, rep
Confidence level used: 0.95
significance level used: alpha = 0.05
NOTE: If two or more means share the same grouping symbol,
then we cannot show them to be different.
But we also did not show them to be the same.

The compact letter display shows the groupings based on Fisher’s LSD test. With 35
genotypes, the letter display becomes complex, but it still provides a concise summary of
which genotypes differ significantly.

Visualizing Results

my caption <- "Black dots represent raw data. Red diamonds and error bars represent
adjusted means with 95% confidence limits per genotype. Means followed by a common
letter are not significantly different according to Fisher's LSD test."

ggplot () +
aes(x = gen) +
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# black dots representing the raw data
geom point (
data = dat,
aes(y = yield)
)+
# red diamonds representing the adjusted means
geom point (
data = mean comp,

aes (y = emmean),

shape = 18,

color = "red",

position = position nudge(x = 0.2)
) +

# red error bars representing the confidence limits of the adjusted means
geom errorbar (

data = mean comp,

aes (ymin = lower.CL, ymax = upper.CL),

color = "red",

width = 0.1,

position = position nudge(x = 0.2)
)+

# red letters
geom_text (
data = mean_ comp,
aes(y = upper.CL, label = str trim(.group)),

color = "red",

angle = 90,

hjust = -0.2,

position = position nudge(x = 0.2)
) +
scale x discrete(

name = "Genotype",

limits = as.character (mean compSgen)
) +
scale_y_continuous(

name = "Yield",

expand = expansion (mult = c (0, 0.05))
)+
coord cartesian(ylim = c(0, NA)) +

labs (caption = my caption) +

theme classic () +

theme (plot.caption = element textbox simple (margin = margin(t = 5)),
plot.caption.position = "plot",
axis.text.x = element text (angle = 90, vjust = 0.5))
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Black dots represent raw data. Red diamonds and error bars represent adjusted means with 95%
confidence limits per genotype. Means followed by a common letter are not significantly different

according to Fisher's LSD test.
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Bonus: Design Efficiency

Let's assess the efficiency of the row-column design compared to a simple RCBD (ignoring
the row and column structure):

# s.e.d. squared for RCBD (ignoring row/column structure)
avg_sed rcbd <- lm(yield ~ gen + rep, data = dat) %>%
emmeans (pairwise ~ "gen", adjust = "none") %>%
pluck ("contrasts") $>%
as_tibble () %>%
pull ("SE") %>%

mean ()

# Efficiency
avg _sed rcbd”2 / sed fixed"2

| [1] 1.953932

An efficiency > 1 indicates that the row-column design is more efficient than a simple RCBD,
meaning the row and column blocking successfully reduced experimental error.

Wrapping Up

You've now learned how to analyze data from a resolvable row-column design, which
provides powerful control over two sources of spatial variation.

1 Key Takeaways
1. Row-column designs control for two sources of variation simultaneously by blocking
in both row and column directions within each replicate.

2. More flexible than Latin Square: Can accommodate any number of treatments, not
limited to txt arrangements.

3. Double blocking within replicates provides increased precision when spatial trends
exist in two directions.

4. Model choice between fixed and random row/column effects can be based on which
gives smaller average s.e.d.

5. The model with fixed effects: yield ~ gen + rep + rep:rowF + rep:colf (rows and
columns nested within replicates).

6. Design efficiency > 1 compared to RCBD confirms the benefit of the additional row-
column structure.

7. Missing data handling: Row-column designs can still be analyzed when some
observations are missing, though precision may be affected.

Design Comparison Summary

Let's summarize the progression of designs covered in this chapter series:
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Design Blocking Structure Model Formula Best For

CRD None y ~ trt Homogeneous
conditions

RCBD Complete blocks y ~ trt + block One gradient

Latin Rows + columns (complete) y ~ trt + row + col Two gradients,

Square few treatments

Alpha Incomplete blocks in reps y ~ trt + rep + (1] Many

Design rep:block) treatments,
one gradient

Augmented Checks + entries y ~ trt + block Screening
many
unreplicated
entries

Row- Inc. rows + cols in reps y ~ trt + rep + Many

Column rep:row + rep:col treatments, two
gradients
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