
BioMath

1/5

10. Parameterized Reports

One template, many variants
Dr. Paul Schmidt

So far, we have created our report only for Adelie penguins. But what if we want the same
report for all three penguin species? Instead of maintaining three separate documents, we
can use parameters: A template that is filled with different values when rendering.

The concept
A parameterized report is like a form with blanks:

1. The template defines parameters with default values
2. When rendering, other values can be passed
3. The report adapts automatically

Defining parameters
Parameters are defined in the YAML header under params: :

title: "Penguin Report"
format: docx
params:
 species: "Adelie"

Here, species is the parameter name and "Adelie" is the default value.

Using parameters in code
In R code, you access parameters with params$parametername :

Filter data based on parameter
selected_penguins <- penguins %>%
 filter(species == params$species) %>%
 drop_na()

The body text can also contain parameters:
This report analyzes **Adelie** penguins.

A complete example
Here is our penguin report as a parameterized version:

title: "Penguin Report"
subtitle: "Adelie Penguins"
author: "Research Team"
date: today
format: docx
params:
 species: "Adelie"

1

BioMath

2/5

execute:
 echo: false
 warning: false
 message: false

Introduction

This report analyzes **Adelie** penguins from the
Palmer Penguins dataset. The dataset includes 146
individuals of this species.

Descriptive Statistics

```{r}
#| label: tbl-params-summary
#| tbl-cap: "Summary of measurements"
selected_penguins %>%
  summarise(
    N = n(),
    `Bill Length (mm)` = round(mean(bill_length_mm), 1),
    `Body Mass (g)` = round(mean(body_mass_g), 0)
  ) %>%
  flextable() %>%
  autofit()
```

Visualization

```{r}
#| label: fig-params-scatter
#| fig-cap: "Bill measurements of the selected penguin species"
#| fig-width: 5
#| fig-height: 4
ggplot(selected_penguins, aes(x = bill_length_mm, y = bill_depth_mm)) +
  geom_point(alpha = 0.6) +
  labs(
    x = "Bill Length (mm)",
    y = "Bill Depth (mm)",
    title = glue::glue("{params$species} Penguins")
  ) +
  theme_minimal()
```

Rendering with different parameters
In RStudio
1. Click on the arrow next to the Render button
2. Select “Render with Parameters…”
3. A dialog opens where you can change the values

Via command line
quarto render report.qmd -P species:Gentoo

Multiple parameters:
quarto render report.qmd -P species:Chinstrap -P year:2008

Programmatically in R

2

BioMath

3/5

Render one report
quarto::quarto_render(
 input = "report.qmd",
 execute_params = list(species = "Gentoo"),
 output_file = "report_gentoo.docx"
)

Rendering all variants at once
With a loop, you can automatically generate all versions:

library(purrr)

All penguin species
species_list <- c("Adelie", "Chinstrap", "Gentoo")

Render a report for each species
walk(species_list, function(sp) {
 quarto::quarto_render(
 input = "report.qmd",
 execute_params = list(species = sp),
 output_file = glue::glue("report_{tolower(sp)}.docx")
)
})

This creates three files: report_adelie.docx , report_chinstrap.docx ,
report_gentoo.docx .

Multiple parameters
You can define any number of parameters:
params:
 species: "Adelie"
 island: "Biscoe"
 min_year: 2007
 include_plots: true

And in code:

filtered_data <- penguins %>%
 filter(
 species == params$species,
 island == params$island,
 year >= params$min_year
)

Conditional execution
if (params$include_plots) {
 # Plot code here
}

Parameter types
Parameters can have different types:
params:
 species: "Adelie" # Text
 sample_size: 100 # Number
 include_plots: true # Boolean
 islands: # List

3

BioMath

4/5

 - Biscoe
 - Dream

Dynamic titles
The title can contain parameters:

title: "Adelie Penguin Analysis"
params:
 species: "Adelie"

Or simpler in the subtitle:

title: "Penguin Analysis"
subtitle: "Adelie"
params:
 species: "Adelie"

Practical use cases
Application Parameters

Reports per region region , year

Client reports client_name , client_id

Test versions include_draft_watermark: true

Language versions language: "de"

Data sources data_file: "data_2024.csv"

Tips
Set sensible defaults
The default value should be a typical, working value — this way you can easily test the
template.

Validate parameter values
At the beginning of the document, check if the parameters are valid:

Check if species exists
valid_species <- c("Adelie", "Chinstrap", "Gentoo")

if (!params$species %in% valid_species) {
 stop(glue::glue(
 "Invalid species: {params$species}. ",
 "Allowed are: {paste(valid_species, collapse = ', ')}"
))
}

4

BioMath

5/5

Output file names
When mass-producing, use meaningful file names:

output_file = glue::glue(
 "report_{params$species}_{Sys.Date()}.docx"
)

 Exercise: Create a parameterized report

1. Take the previous penguin report
2. Add a species parameter with default value “Adelie”
3. Replace all places that refer to Adelie with params$species
4. Render the report with different species (Adelie, Chinstrap, Gentoo)
5. Bonus: Write a loop that automatically generates all three reports

Further resources
• Quarto Parameters — Official documentation
• Parameterized Reporting with Quarto — Rendering options

What is next
In the final chapter, we will look beyond Word: PDF export with Typst, presentations with
Reveal.js, and HTML documents — all with the same Quarto knowledge.

Bibliography

5

https://quarto.org/docs/computations/parameters.html
https://quarto.org/docs/computations/parameters.html#rendering-with-parameters

	The concept
	Defining parameters
	Using parameters in code
	A complete example
	Rendering with different parameters
	In RStudio
	Via command line
	Programmatically in R

	Rendering all variants at once
	Multiple parameters
	Parameter types
	Dynamic titles
	Practical use cases
	Tips
	Set sensible defaults
	Validate parameter values
	Output file names

	Further resources
	What is next
	Bibliography

