BioMath

1. RIRStudio Fundamentals

How do | even use R?
Dr. Paul Schmidt

This chapter is mostly aimed at people who are very new to R. However, people who do
know R may still find useful insights from the sections where | emphasize how | personally
use R. Before you continue, make sure you have R and RStudio installed and you have
watched this chapter’s video on the basics of RStudio - more specifically you should know
how to use the most important panels like the Console, the Script editor and the
Environment.

1 Additional Resources

This is probably not the best tutorial you’ll ever find, so if you want other tutorials check
out this curated list of R Tutorials here.

This document shows R code in grey boxes and the resulting output in green boxes below.
Thus, you should always be able to obtain the same result you see in a green box, given you
ran the same code in (all previous) grey boxes.

Basic Code Execution

You can use R like a calculator. If you write and execute simple operations like so, it will
return the result in the console:

I 2+3

| [1] 5

As you can see, the result (i.e. 5) appears after [1]1 in this case. We will get back to why
that is in a bit but for now you can just ignore the 111 .

In R, it usually does not matter if and how many spaces you put between your numbers,
operators etc. Thus, the following code would also work:

|2 + 3
|[1]5

Accordingly, it is up to your personal preference e.g. whether you want to have spaces before
and after operators like +, - etc. or not.

113

https://youtu.be/sQzoQeQ82NI
https://github.com/ujjwalkarn/DataScienceR

BioMath

Q Tip

You can add comments to your code by using the # symbol. In any given line,

everything after the # symbol will be ignored by R. This is useful as you can write notes
to yourself or others at the exact position where they are relevant. For example:

| 2«5

I[l]5

Functions

Similar to what you may know from Microsoft Excel, you can use functions in R. The first
example shall be sart () to obtain the square root of a number:

I sqrt (9)

|[1]3

Again - just like in MS Excel - a function works by writing its name, then parentheses () and

(usually) at least one piece of information inside the parentheses. If you are wondering how a
specific function works, you can always (even without internet connection) have a look at the
documentation, i.e. the manual provided by the authors of the respective functions by
executing the function name with a question mark in front of it like so:

I ?sgrt

Note that if that does not work, you may try having two questions marks in front of it,

i.e. 22sqrt . This is necessary if you are looking for a function whose package you have not
loaded yet. We will talk later about what a package is.

The documentation will show up in the Help panel in RStudio (see screenshot below) and
contain quite a bit of information about this function. In fact, it may be overwhelming, but it
should be realized that the structure of each function’s documentation is always the same,

i.e. first comes a description, the the Usage and Arguments etc. and usually some example
code at the end.

2/13

BioMath

Files Plots Packages Help Viewsr Presemtation
-=an oA c
R: Miscellaneous Mathematical Functions - = Find in Topic

MathFun {base} R Documentation

Miscellaneous Mathematical Functions

Description
abs (x) computes the absolute value of x, sgrt (x) computes the (principal) square root ofx, 1/Z.
The naming follows the standard for computer languages such as C or Fortran.
Usage
abs (x
sqrt (x
Arguments

a numeric or compl ex vector or amay.

Details

These are internal generic primitive functions: methods can be defined for them individually or via the Math group
generic. For complex arguments (and the default method), z, aba (z) == Mod(z) and sgrt(z) == z~0.5.

abs (x) retumns an integer vector when x is integer of Logical.

54 methods

Both are S4 generic and members of the Math group generic.

References

Becker, R. A, Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth & Brooks/Cole.

See Also

Arithmecic for simple, log for logarithmic, sin for frigonometric, and Special for special mathematical functions.
‘ploimath’ for the use of sqrt in plot annotation.

Examples

Run examples

require (stats
require (graphi
XX

plot (xx, Sqrt
lines (splin

[Package base version 4.4.2 Index]

Variables

Besides built-in functions, R also knows certain things like = or the alphabet, which are
stored in the built-in constants named pi and letters . Note that these do not have
parentheses

| o
| [1] 3.141593

I letters

[1] ngn o Npw o nenondgn o ngn o ngn vlgvl "hY nin vljvl Wgwom]wonmgpnowpn o vlpvl "q" wpn o ngn
[20] WEW g T g e n vlyvl non

Q Tip

If you want to execute code written in your script, you can either or click on the Run

button in the top right corner of the script editor or press ctrl + Enter . Moreover, if you
did not highlight a specific part of your code, doing so will run the code in the line where
your cursor is at and afterwards jump the cursor to the next line. However, if you did
highlight a specific part of your code before executing, only that part will be executed.

While having those constants is useful, it is much more relevant to define your own variables
in R. This is done by using either the assignment operator <- or the equals sign =". The

"Does it make a difference whether | use <- or = ? The short answer is no. The more precise answer is
in this video.

3/13

https://stat.ethz.ch/R-manual/R-devel/library/base/html/Constants.html
https://youtu.be/oQLcpkDXysM

BioMath

former is more common in R, but the latter is also used in other programming languages like
Python.

Here is an example. Running the following code will not return anything in the console, but it
will store the number 5 in the variable x:

Ix <- 5

To check whether the variable x has been created and what it contains, you can simply type

x in the console and press Enter :
|
| i1 s

As said before, we may also use the equals sign = to assign a value to a variable:

I[l] 10

Note also that you can see all defined variables by looking at the Environment panel in
RStudio. This panel shows all variables and their values that you have defined so far.

Environment History Connections Tutorial

#® B B mpot - © 195MiB -
R - ' W, Global Environment - Q

ERTTEES
X

y

Note that a variable can be overwritten by assigning a new value to it. For example, if we
now assign the value 7 to x, the value of x will be overwritten:

Ix # show the current value of x

I[l] 5

X <- 7 # overwrite the value of x
X # show the new value of x

I[l] 7

4/13

BioMath

You can also perform operations with variables. For example, if you have defined x and y
as above, you can add them together:

IX+y
|[1] 17

Furthermore, you can also assign the result of an operation to a new variable. For example, if
you want to add x and y and store the result in a new variable z, you can do so like this:

zZ <- X t Yy
Z

I[l] 17

Note also that variables can hold all kinds of information, not just numbers as in the
examples above. Moreover, in practice, you may want to use more descriptive variable

names than x, v and z . For example, you could use a variable name like mytext to store
a text:

mytext <- "This is my text"
mytext

I[l] "This is my text"

As you can see, the difference between writing text to function as a variable name and as a
piece of text is that the text is written in quotation marks. This is how R knows that you are

not referring to a variable but to a piece of text. You may either use " or ' for this purpose,

but it is important to use the same type of quotation mark at the beginning and the end of the
text. Note that those pieces of text are called strings in programming.

5/13

BioMath

Data Types

As you just saw, R can deal with both numbers and text and actually many more types of
data. Each variable does not only hold the value you assigned to it, but also information

about the type of data it holds. We can check the data type of a variable via the typeof ()

function:
|typeof(x)

| [1] "double"
Itypeof(mytext)

I [1] "character"

As you can see, x is of type double and mytext is of type character . Here is a simplified
overview over some of R’s data types you may see more often:

Here is a simplified overview over some of R’s data types you may see more often:

* Numbers
> integer /[int : whole number
e.g. 42, -1504
* numeric/num & double/dbl :real number
e.g. 3.14, 0.051795
+ Text
> character / chr : string values
e.g. ‘hello”, “Two words”
* Factor
> factor / fct : categorical variable that stores both string and integer data values as
“levels”
e.g. Control, Treatment
* TRUE/FALSE
> logical/logi : logical value
either TRUE or FALSE

Vectors

Instead of working with individual numbers or pieces of text, we obviously need to work with
entire datasets. Before we get to a full table with multiple rows and columns, the first step is
to understand what a vector is in R: It is a sequence of elements that share the same data
type. You can also think of it as a single column in a dataset. Above, we actually already

looked at a vector: letters is a vector with 26 elements of data type character . We could

verify this using the length() or str() functions:

Ilength(letters)
| [1] 26

Istr(lottors)

6/13

BioMath

I chr [1:26] ngm o npM o nenondgn onan ngn Hgll nhw o wiw Hj" W o] g owpn o "p"

This is also a good opportunity to get back to the (11 we have ignored so far. When printing

the letters vector to the console, you probably see more than just [11] :

Iletters

[1] g NRHW nan ngn ngn wen llgll "hHY win lljll Wl owlw onpn wpn wan vlpvl vlqvl Ny owgw
[20] LRI DR LR VA U R LI PP vlyvl non

In fact, you see one of these numbers in square brackets at the beginning of each line. This
is the index of the element in the vector. The first element has index 1, the second element
has index 2, and so on. So here we see a [1] because "a" is the first element of this

vector, and a [20] because "t" is the twentieth element of this vector. Note that it depends

very much on the width of your console as well as the font size etc. how many elements you
see in one line. Here is a screenshot of what it looks like in RStudio when | make my console

very narrow and then print letters again:

Console Terminal Background Jobs
C . R442 - C/Users/PSchmidt/BioMath GmbH/Central - BioMat

[1] "a" “"b"™ “c" "d" "e™ "f"
[7] m_mn Ilh" man Ilj" 'Ilk“ II'I n

[13] "m" "n" "o" "p" "q" "r"
[19] m_mn "t" LI "V" 'Ilw“ lell
[25] "y" "z"

Accordingly, these numbers in brackets in the console output are really just for orientation.
However, we can actually access a single element of a vector by using exactly these
numbers in square brackets. For example, if you want to access the third element of the

letters vector, you can do so like this:

Iletters[3]

I [1] "c"

If you want to create a vector yourself, you write all elements into the < () function and
separate them with commas:

mynumbers <- c(1, 4, 9, 12, 12, 12, 16)
mynumbers

I[l] 1 4 9 12 12 12 16

mywords <- c("Hakuna", "Matata", "Simba")
mywords

I[l] "Hakuna" "Matata" "Simba"

Interestingly, we can also apply the sart () function we used above to a vector of numbers,
and it will simply take the square root of each element:

Isqrt(mynumbers)

713

However, there are also functions like mean () that return the average of all numbers in a
vector as a single output element:

I mean (mynumbers)

BioMath

Comparison Operators

In R, comparison operators are used to compare values and variables, much like you might
in mathematics or in spreadsheet formulas. They are fundamental in making decisions and
controlling the flow of your code. Here are the most commonly used comparison operators:

* Equal to (==): Checks if the values on either side are equal.

* Not equal to (!=): Determines if two values are different.

* Less than (<): Verifies if the value on the left is smaller than the one on the right.

* Greater than (>): Checks if the value on the left is larger than the one on the right.

* Less than or equal to (<=): True if the left value is less than or equal to the right value.

* Greater than or equal to (>=): True if the left value is greater than or equal to the right
value.

Here are some examples:
|s —s

| (11 TrRUE
ERK

| (11 TrRUE
|5 <5

| t11 RUE
|5 -5

| (11 Fase
|2 >

| (11 Farse
|5 >-«

| [1] TRUE

9/13

Function Arguments

So far, the functions we used had in common that they required only one input. The really
good stuff in R happens with more complex functions which need multiple inputs. Let us use

seq() as an example, which seems simple enough, because it generates a sequence of
numbers:

|seq(1,10)
|[1]12345678910

As you can see, puttingin 1 and 10 separated by a comma generates a numeric vector

with numbers from 1 to 10. However, | would like you to fully understand what is going on
here, because it will help a lot with more complex functions.

See, we could switch the numbers and the function will work as expected:
I seq (10, 1)

|[1]10987654321

So this means that the first input is always the starting point and the second one is always
the end point of the sequence, right? Well, yes by default, but you can have it your way if you
specifically use the names of the arguments. The individual inputs of a function are called
arguments and you can always look up the order of the arguments and their names in the
documentation of a function.

Looking at ?seq() itsays seq(from = 1, to = 1, by = ...) so this seq(10, 1) is more
explicitly this: seq(from = 1, to = 10, by = 1) . Here is proof that you could also write the
function with explicit argument names and it will return the exact same result:

Iseq(fromzl, to = 10, by = 1)
| 10 12 3 a5 6 7 8 910

Again: if you do not write out the arguments like this, it will simply assume the default order:
The first number supplied is from = the secondis to = and the third is by = - that’s just

how this function was created/programmed. However, if we write out the argument names,
we can rearrange them and use any order we like:

Iseq(l, 9, 2)
I [1] 1 35 7 9
Iseq(from =1, to =9, by = 2)

|[1]13579

Il
N
~
o+
o

Il
O

Iseq(from = 1, by
I [1] 1 3579
| seata, 2, 9

I[l]l

10

BioMath

10/13

In short: If you understand why the Examples A-C above produce the same result, but
Example D does not, you are good to go!

11

BioMath

R packages

Any function you will ever use in R is always part of an R package. An R package is a
collection of functions, data, and documentation.

base R

The functions we have used so far are part of the so-called base R. This is the set of
functions/packages that comes with every installation of R. Even if you just installed R, you
will quite a number of packages already available to you by looking at the Packages panel in
RStudio. Here you can see all the packages you have installed and you can also see which
ones are loaded. A loaded package is shown with a checkmark in front of it. If you want to
use a function from a package, you must load the package first. However, as said before,
you do not need to load the base R functions/packages, because they are always loaded,
which is why we were able to use the functions above.

loading packages

To load a package, you can use the library() function. For example, there is a package

called tools which is installed on your computer by default, but not loaded. If you want to
use a function from this package, you must load it first.

I library (package name here)

This command must be run once every time (!) you open a new R session, which basically
means every time you open RStudio.

installing packages

R really shines because of the ability to install additional packages from external sources.
Basically, anyone can create a function, put it in a package and make it available online.

Some packages are very sophisticated and popular - e.g. the package {ggplot2} , which is
not built-in, has been downloaded 168 million times. In order to install a package, the default
command is install.packages ("package name") . Alternatively, you can also click on the
“Install” button in the top left of the Packages tab and type in the package name there.

I install.packages ("package name here")

Once you have successfully installed a package, it will show up in your list of packages in the
Packages tab. However, it will not have a check mark, which means you must still load it

with the library() function if you want to use its functions:

» A package only needs to be installed once, but
* A package must be loaded every time you open a new R session!

1 Additional Resources

Check out Chapter Chapter 1 Getting started with R and RStudio in the book “An
Introduction to R”

12
12/13

https://cranlogs.r-pkg.org/badges/grand-total/ggplot2
https://intro2r.com/chap1.html
https://intro2r.com/
https://intro2r.com/

Wrapping Up

Congratulations! You’ve completed your introduction to R fundamentals and have taken your
first steps into the world of R programming. You now have the basic skills needed to start
writing and executing your own R code.

1.

7.

1 Key Takeaways

R can be used as a calculator with operations like addition (+), subtraction (-),
multiplication (*), and division (/).

Variables allow you to store values for later use:

* Use the assignment operator (<-) or equals sign (=) to create variables

» Variable names should be descriptive of their contents
+ Variables can hold various data types (numbers, text, etc.)

Functions are essential tools in R:

» They perform specific tasks using inputs (arguments)
* Access function documentation with ?function name
» Arguments can be specified by position or by name

R has several important data structures:

* Vectors store multiple values of the same type
* Access vector elements with square brackets (e.g., vector(3])

* Create vectors with the c () function

Comparison operators like ==, !=, <, > return logical values (TRUE/FALSE)
R packages extend functionality:

* Install packages once with install.packages ("package name")

* Load packages in each session with library (package_name)
» Base R includes many built-in functions and packages

Use comments with # to document your code and make it more understandable

Bibliography

13

BioMath

13/13

	Basic Code Execution
	Functions
	Variables

	Data Types
	Vectors
	Comparison Operators
	Function Arguments
	R packages
	base R
	loading packages
	installing packages

	Wrapping Up
	Bibliography

