2. The Tidyverse

A Modern Way of using R - Data Handling and More
Dr. Paul Schmidt

As we’ve covered the very basics in the last section, we are eager to finally handle actual
tables and not just individual values and vectors. And indeed, this is what we will do now.
However, this is also a good point to start talking about the Tidyverse.

The Tidyverse is not just one, but a collection of multiple R packages that work together and -
simply put - make using R for all kinds of data handling easier, faster and more powerful at
the same time. What follows are several comparisons of doing something with base R on
one hand and with the Tidyverse on the other hand. You must realize that R can do all of
those things without using functions and packages from the Tidyverse - after all R existed
without the tidyverse packages for a long time. However, the Tidyverse is a very popular and
powerful way of doing things and | am not the only one who prefers it over the base R way of
doing things.

To install and load all the packages used in this chapter, run the following code:
for (pkg in c("tidyverse")) {

if (!require (pkg, character.only = TRUE)) install.packages (pkg)
}

library (tidyverse)

Note that we get a quite long output when loading the package called Tidyverse. This is
because the Tidyverse is not just one package, but a collection of multiple packages. The
library (tidyverse) command loads all of them at once. This is a very convenient feature
as we usually use multiple packages from the Tidyverse at the same time. Thus, in the first
part of the output it simply lists all the 9 packages that were loaded. The second part about
the conflicts will be discussed later.

Q Tip

As you can see above, | have used a # not only to write comments, but also to
“‘comment out” code. More specifically | have added a # in front of the

install.packages ("tidyverse") command, which means that this command is not run

when you execute the code, but the code is easily available for you to run it if you need
to.

This is a very useful feature in R and many other programming languages. If you want to
run a command, but not right now, you can comment it out and run the rest of the code.
Note that there is even a shortcut in RStudio to comment out code: After highlighting one

or even multiple lines of code, press ctrl + shift + C to comment out the code. Press
the same combination again to uncomment the code.
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Tables

Table in base R: data.frame

For you, tables are likely the most important data structure in R. Often your data is stored in
a .xlsx, .csv or similar file and you then read it into R. A table in R is referred to as a

data.frame in base R terminology. Here is an example of how to create one yourself and

save it in a variable called my df :

(In practice you obviously you don’t often create tables manually as shown below. We will
discuss importing data soon.)

my df <- data.frame (

name = c("Wei", "Priya", "Kwame", "Juan"),
age = c (25, 30, 35, 28),

height = ¢ (180, 170, 190, 175)

)

my df

name age height
1 Wei 25 180

2 Priya 30 170
3 Kwame 35 190
4 Juan 28 175

As you can see, we used a function called data.frame () to create a table with three
columns: name , age and height . Thus, these three do not work as predefined argument

names like with the seq() function in the last section, but instead as the names of the
columns to be created. Moreover, the content of each column is defined by a vector of length
4 so that ultimately a table with 3 columns and 4 rows is created.

Note that a data.frame really is a collection of vectors. This fact helps you understand how to
work with tables in R. As a reminder: A vector is a collection of values of the same type. In
the example above, the name column is a vector of character values, the age column is a

vector of numeric values and the height column is a vector of numeric values as well. You
can try to think about data you work with in your daily life and it is likely that each column
contains values of the same type.

You have multiple options to access parts of a data.frame. For example, you can access a
single column by using the s operator. Doing so returns the individual vector that represents
the column:

Imy_df$name

I[l] "Wei" "Priya" "Kwame" "Juan"

You can also use the square brackets ( [1 ) to extract certain parts of the table - just like we

did with vectors in the last section. However, you have to remember that a table is two-
dimensional and thus you have to specify both the row and the column you want to access.

You can do this by using the [row, column] syntax. For example, to access the age of the
second person in the table, you can use:
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Imy_df[Z, "age"]

| [1] 30

Finally, here are two functions that you typically find in every R tutorial to investigate the
structure of a table:

Istr(my_df)
'data.frame': 4 obs. of 3 variables:
S name : chr "Wei" "Priya" "Kwame" "Juan"
$ age : num 25 30 35 28

$ height: num 180 170 190 175

First, we see that the data.frame has 4 observations (=rows) of 3 variables (=columns). Then,
we get a sort of overview of each column telling us their names, data types and the first few
values (in this case all values).

Isummary(my_df)

name age height
Length:4 Min. :25.00 Min. :170.0
Class :character 1st Qu.:27.25 lst Qu.:173.8
Mode :character Median :29.00 Median :177.5
Mean :29.50 Mean :178.8
3rd Qu.:31.25 3rd Qu.:182.5
Max . :35.00 Max . :190.0

This function also provides information about the columns of the table, but in a different way.
For example: for numeric columns, it gives you the minimum, 1st quartile, median, mean, 3rd
quartile and maximum value.

Table in the Tidyverse: tibble

Everything you have seen so far is the base R way of handling tables. Now, let’'s see how the
Tidyverse does it. The Tidyverse has its own table structure called tibble . According to the

authours the tibble “is a modern reimagining of the data.frame, keeping what time has proven
to be effective, and throwing out what is not.” In other words, the tibble is a bit more user-
friendly and has some advantages over the data.frame. Note that it is not a completely
separate data structure, but rather a modified version of - and still based on - the data.frame.

Before we can work with tibbles we must install and load the required package - which we
did at the beginning of this chapter. If you scroll up to the list of packages that was shown

when loading the tidyverse, you'll notice that one of them was called tibble . This is the
package that provides the tibble data structure and all the functions that come with it.

Here is how we would create the same table as above, but this time as a tibble and save it in
a variable called my tbl :

my tbl <- tibble (

name = c("Wei", "Priya", "Kwame", "Juan"),
age = c (25, 30, 35, 28),

height = ¢(180, 170, 190, 175)

)

my tbl
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# A tibble: 4 x 3
name age height
<chr> <dbl> <dbl>

1 Wei 25 180

2 Priya 30 170

3 Kwame 35 190

4 Juan 28 175

Note that regarding the code, there really is only one difference to the base R way of creating
a table: We use the tibble() function instead of the data.frame() function. However, the

output is a bit different and this is where the advantages of the tibble come into play. While it
is still the same table in terms of its content, the tibble is automatically printed in a more user-

friendly way. Here is an example of a tibble with 153 rows, 12 columns, missing values NA
and negative values:

# A tibble: 153 x 12
ozone_1 solar_r_2 wind_3 temp_4 month_5 day_6 ozone_7

L ol e | w, - N L n . N ol b |
<int> <dbL> <int> <int> <int> <dbl >

198 7.4 67
118 8 72
149 12. 74
313 11. 62
14. 56
14. 66
8. 65
99 13. 59
19 20. 61
194 8. 69
i 143 more rows
i 5 more variables: solar_r_8 <int>, wind_9 <dbl>,
emp_10 <int>, month_11 <int>, day_12 <int>
“print(n = ...)’ Ssee more rows
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1. There is an extra first line telling us about the number of rows and columns.

2. There is an extra line below the column names telling us about the data type of each
column.

3. Only the first ten rows of data are printed.

4. Only the first columns of data are printed.

9. Missing values Na and negative numbers are printed in red.

All of these small things really add up over time and make working with tibbles more pleasant
than with data.frames. Finally, note that in its heart, a tibble is still a data.frame and in most
cases you can do everything with a tibble that you can do with a data.frame. Here are the
same commands we used above as proof:

Imy_tbl$name
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I[l] "Wedi" "Priya" "Kwame" "Juan"

|str(my_tbl)

tibble [4 x 3] (S3: tbl df/tbl/data.frame)
$ name : chr [1l:4] "Wei" "Priya" "Kwame" "Juan"
$ age : num [1:4] 25 30 35 28
$ height: num [1:4] 180 170 190 175

I summary (my tbl)

name age height
Length:4 Min. :25.00 Min. :170.0
Class :character 1st Qu.:27.25 1st Qu.:173.8
Mode :character Median :29.00 Median :177.5
Mean :29.50 Mean :178.8
3rd Qu.:31.25 3rd Qu.:182.5
Max. :35.00 Max. :190.0

Therefore, there basically is no downside and instead only advantages to using tibbles over
data.frames. And what is true here for tables also exemplifies the general idea of the
Tidyverse: It is not necessarily a completely new way of doing things, but rather a more user-
friendly and powerful way of doing things that were already possible before.

1 Additional Resources

At this point | would like to recommend a free, oline book that is a great resource for
learning the Tidyverse and R in general: “R for Data Science (2e)”. It was written by
Hadley Wickham, Mine Cetinkaya-Rundel, and Garrett Grolemund, which are themselves
authors of some of the most important Tidyverse packages.

A new example dataset

Before we continue, let us get rid of the small tables we created above and instead use a
built-in dataset that comes with R. This dataset is called PlantGrowth and contains data on

the weight of 30 plants in 3 different groups. As it is built-in (just like pi ; see last chapter) we
can access it directly by its name. However, it is a data.frame and | would like to work with a
tibble instead. Therefore, | will convert it to a tibble using the as_tibble () function and save

it into a variable called tbl :

tbl <- as tibble (PlantGrowth)

tbl

# A tibble: 30 x 2
weight group
<dbl> <fct>
4.17 ctrl
.58 ctrl
.18 ctrl
.11 ctrl
.5 ctrl
.61 ctrl
.17 ctrl
.53 ctrl
.33 ctrl

O 0 J o U W DN -
G > U1 B D oY U1 U1
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10 5.14 ctrl
# i 20 more rows

Note that you can now for the first time see the tibble functionality in action where it does not
flood the output with all 30 rows of data, but instead only shows the first 10 rows and adds a
“... with 20 more rows” below. This is a very useful feature when working with large datasets.
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Plots

Plot in base R: plot()

Base R has a plot() function which is good at getting some first data visualizations with

very little code. It guesses what type of plot you would like to see via the data type of the

respective data to be plotted:

plot (tblSweight) # scatter plot of values in the order they appear
plot (tblSgroup) # bar plot of frequency of each level

plot (x = tblSgroup, y = tblSweight) # boxplot for values of each level
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Plot in the Tidyverse: ggplot()

However, | really just use plot() to geta quick first glance at data. In order to get
professional visualizations | always use the tidyverse package {ggplot2} and its function

ggplot () . It seems like it can create any plot you can imagine. However, its high capability

comes with the price of a long learning curve. Therefore, | only refer to additional resources
for now and will cover some basics in the next sections. Yet, as an appetizer, here is a
screenshot of some plots created with ggplot by Cédric Scherer:

US National Parks Visitation 2000-2016
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Food Carbon Footprint Index 2018

THE RISE OF CRAFT BEER !
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https://www.cedricscherer.com/2021/01/01/review-2020-personal-dataviz-highlights/

+ How | use ggplot2
* ggplot2 extensions gallery



https://schmidtpaul.github.io/dsfair_quarto/ch/summaryarticles/ggplot2intro.html
https://exts.ggplot2.tidyverse.org/gallery/
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The pipe oprerator

The pipe operator ( $>% or |>) “completely changed the way how we code in R, making it

more simple and readable” (Alvarez, 2001). | started using the pipe as %>% from the {dplyr}
package'. However, since May 18, 2021 (= R 4.1.0) the pipe is officially part of Base R -
although written as 1> . Note that there are some differences between %>% and |> - find
more about it e.g. here, here or here.

To understand what makes it so great we need to start using more than one function at a

time. So far, we have only used functions individually. Yet, in real life you will often find
yourself having to combine multiple functions.

As an example, say we have three numbers 1, 4 and 10 (i.e. a vector c(1, 4, 10) )and we
want to (i) take their square root, then (ii) get the mean of those values and (iii) take the
square root of that mean. Finally, we want to save the result in a variable called result .

© Exercise: Combining Multiple Functions

Before you continue reading, try achieving this with the knowledge you already have,
i.e. without the pipe operator.

1 Solution

See the following three sections for different approaches to solve this problem.

Solution 1: Intermediate results

One way of achieving our goal here is do it step by step and save each intermediate result in
a variable. This is a very common approach in programming and is called “stepwise” or
“iterative” approach. Here is how it would look like in R:

X <- c(1, 4, 10)

stepl <- sqgrt(x) # Step 1: Take the square root

step2 <- mean(stepl) # Step 2: Get the mean

result <- sqgrt(step2) # Step 3: Take the square root of the mean
result

I [1] 1.433211

This works perfectly fine and it is easy to read, since we can see each step. However, it is
also takes quite some code and creates variables that we do not really care about.

Solution 2: Nested functions

Another way of achieving the same result is to use nested functions - just like you would in
Microsoft Excel. This means that we put one function inside another function:

X <- c(1, 4, 10)
result <- sqgrt (mean (sgrt(x)))
result

'But it was not the first package to use it. This blog post has a nice summary of the history of the pipe
operator in R.

9/29


http://adolfoalvarez.cl/blog/2021-09-16-plumbers-chains-and-famous-painters-the-history-of-the-pipe-operator-in-r/
https://twitter.com/TimTeaFan/status/1582118234220007424
http://adolfoalvarez.cl/blog/2021-09-16-plumbers-chains-and-famous-painters-the-history-of-the-pipe-operator-in-r/#base-r
https://stackoverflow.com/questions/67633022/what-are-the-differences-between-rs-new-native-pipe-and-the-magrittr-pipe
http://adolfoalvarez.cl/blog/2021-09-16-plumbers-chains-and-famous-painters-the-history-of-the-pipe-operator-in-r/

I[l] 1.433211

The obvious advantage is that it takes less code and does not create unnecessary variables.

However, it is also less readable, because you have to read from the inside out. This is not a
problem for simple functions like this one, but it can get very confusing with more complex
functions.

Solution 3: The pipe operator

This combines the advantages of both approaches above, as it (i) allows you to write
functions from left to right / top to bottom and thus in the order they are executed and the
way you think about them and (ii) does not create extra variables for intermediate steps:

X <- c(1, 4, 10)
result <- x %>% sqgrt() %$>% mean() %>% sqgrt()
result

I [1] 1.433211

You can think about it like this: Something (in this case x ) goes into the pipe and is directed

to the next function sart () . By default, this function takes what came out of the previous
pipe and puts it as its first argument. This happens with every pipe.

Maybe it helps to realize that these two do identical things:

sqrt (9)

9 $>% sqgrt ()

Q Tip

The keyboard shortcut for writing %>% in RStudio is CTRL+SHIFT+M. Keyboard
shortcuts can be customized in RStudio as described here.

10
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dplyr Verbs

We now have an idea how creating tables, plots and generally coding is nicer when using the

Tidyverse. Another very important part of the Tidyverse is the package {dplyr} . This
package provides a set of functions that are very useful for data manipulation. These
functions are often referred to as “verbs” because they describe what you want to do with
your data. Taken directly from the documentation:

{dplyr} is a grammar of data manipulation, providing a consistent set of verbs that help
you solve the most common data manipulation challenges:

* mutate () adds new variables that are functions of existing variables.
* select() picks variables based on their names.

* filter() picks cases based on their values.

* summarise () reduces multiple values down to a single summary.

* arrange () changes the ordering of the rows.

These all combine naturally with group_by () which allows you to perform any operation
“by group”. If you are new to dplyr, the best place to start is the data transformation
chapter in R for data science.

In my experience you really can do most of the data manipulation before and after the actual
statistics with these functions. In other words, it is exactly these functions who can and
should replace the manual work you may currently be doing in MS Excel to handle your data.
In the following sections | will give very brief examples of how to use these functions while
always pointing to more thorough resources.

Before we start using them, let’s create some toy datasets that are nice to work with. Please
ignore that we have not introduced some of the functions used below yet. We will cover them
in the next sections. For now, we just want to create these four datasets to work with:

datl <- as tibble(PlantGrowth)

dat2 <- datl %>% head()

dat3 <- datl %>% slice(1:4, 11:14, 21:24)

dat4 <- datl %>% slice(l, 2, 11, 12, 21, 22) %>%

mutate (varl = 1:6, var2 = 22:27, var3 = 3:8, vard = 4:9)

11
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https://dplyr.tidyverse.org/
https://r4ds.hadley.nz/data-transform
https://r4ds.hadley.nz/data-transform

i Note

Here is something that must be realized before we continue.

What you see above is code that created 4 new datasets/objects/variables (dat1 - dat3),
each by taking a different dataset and manipulating it in some way. The first dataset is the
built-in dataset plantGrowth but formatted as a tibble. The reason why the manipulated
version (i.e. the tibble version of PlantGrowth )is permanently available as dat1 is
because we used the <- operator and saved that manipulated version in that new
variable called dat1 . Note further that we do not actually see these new datasets. If we
wanted to see datl, we would have to run datl (or print(datl) ) so that its contentis
printed to the console.

In the following sections we will do a loooot of data manipulations, because that’s what
we will learn. However, we will actually never save the manipulated datasets into new
variables. Instead, we will run the code withoutthe ... <- and thus always simply print

the manipulated version of the dataset to the console. This is good for the purpose of
seeing what a function does. Yet it is obviously not what you will do in real life. In real life
you will always save the manipulated version of the dataset into a new variable.

12
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select()

The select () function allows you to select certain columns from a table. This is very useful

when you have a large table and only want to work with a few columns. So this is our
dataset:

Idat4

# A tibble: 6 x 6
weight group varl var2 var3 var4
<dbl> <fct> <int> <int> <int> <int>

1 4.17 ctrl 1 22 3 4
2 5.58 ctrl 2 23 4 5
3 4.81 trtl 3 24 5 6
4 4.17 trtl 4 25 6 7
5 6.31 trt2 5 26 7 8
6 5.12 trt2 6 27 8 9

And when | use the select () function to select the column group , it will return a new table
with only that column:

Idat4 $>% select (group)

# A tibble: 6 x 1
group

<fct>

ctrl

ctrl

trtl

trtl

trt2

trt2

o U W N

Moreover, you can name more than one column:
Idat4 $>% select (group, var2, vari4)
# A tibble: 6 x 3

group var2 varé
<fct> <int> <int>

1 ctrl 22 4
2 ctrl 23 5
3 trtl 24 6
4 trtl 25 7
5 trt2 26 8
6 trt2 27 9
1 Note

Once again a reminder that the pipe operator ( $>% ) is not strictly necessary here. The
function select works by itself and it needs the data as its first argument. Thus, you could
also write select(dat4, group) Or select(dat4, group, var2, var4) . However, we will

continue using the pipe operator, because it makes the code easier to read and
understand - at least in the long run.

You can even select multiple columns at once by using the : operator. For example, if you

want to select all columns from var2 to var4, you can do this:

13
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Idat4 $>% select (group, var2:vard)

# A tibble: 6 x 4
group var2 var3 varé
<fct> <int> <int> <int>

1 ctrl 22 3 4
2 ctrl 23 5
3 trtl 24 5 6
4 trtl 25 6 7
5 trt2 26 7 8
6 trt2 27 8 9

You can also use the - operator to exclude certain columns. For example, if you want to
select all columns except varl , you can do this:

Idat4 %$>% select (-varl)

# A tibble: 6 x 5

weight group var2 var3 varé
<dbl> <fct> <int> <int> <int>

1 4.17 ctrl 22 3 4
2 5.58 ctrl 23 4 5
3 4.81 trtl 24 5 6
4 4.17 trtl 25 6 7
5) 6.31 trt2 26 7 8
6 5.12 trt2 27 8 9

Finally, there are several helper functions that allow you to select columns based on their
names. For example, if you want to select all columns that start with “var”, you can use the

helper function starts with() like so:

I dat4 $>% select(starts with("var"))

# A tibble: 6 x 4
varl var2 var3 var4
<int> <int> <int> <int>
1 1 22 3 4
2 2 23 5
3 3 24 5 6
4 4 25 6 7
5 5 26 7 8
6 6 27 8 9
Other, similar functions are ends_with() , contains() , matches() and num range() .
There are also functions like is.numeric() , is.character() etc. that allow you to select

columns based on their data type. For example, if you want to select all numeric columns,
you can do it like so:

I dat4 %$>% select (where(~is.numeric(.x)))
# A tibble: 6 x 5

weight wvarl var2 var3 varé
<dbl> <int> <int> <int> <int>

1 4.17 1 22 3 4
2 5.58 2 23 4 5
3 4.81 3 24 5 6
4 4.17 4 25 6 7
5 6.31 5 26 7 8
6 5,12 6 27 8 9

14
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These are very powerful features of the select () function and allow you to select columns
based on their names or data types without having to type them all out manually. Finally,
there is even a helper function called everything () , which allows you to select all columns.

This may not seem very useful at first, but you could e.g. use it to reorder columns by
selecting specific columns first and then all other columns afterwards:

I datd4 $>% select (var2, everything())
# A tibble: 6 x 6

var2 weight group varl var3 var4
<int> <dbl> <fct> <int> <int> <int>

1 22 4.17 ctrl 1 3 4
2 23 5.58 ctrl 2 4 5
3 24 4.81 trtl 3 5 6
4 25 4.17 trtl 4 6 7
5 26 6.31 trt2 5 7 8
6 27 5.12 trt2 6 8 9

1 Additional Resources

L]

5.4 Select columns with select() in R for data science
Subset columns using their names and types with select()
Select variables that match a pattern with starts_with() etc.
Select variables with a function with where()
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filter()

The filter () function allows you to filter rows based on certain conditions. You are
probably familiar with this from Excel, where this is also called filtering.

In order to have something to filter from, we will use dat1 as it has 30 observations. In order
to keep only those observations where the weight is greater than 6, we can use the

filter () function like so:
Idatl $>% filter (weight > 6)

# A tibble: 4 x 2
weight group
<dbl> <fct>
1 6.11 ctrl
2 6.03 trtl
3 6.31 trt2
4 6.15 trt2

You can add a second condition by using the & operator to make it so that both condition 1
AND condition 2 must be true. For example, if you want to keep only those observations
where the weight is greater than 6 AND the group is “trt2”, you can do this:

I datl $>% filter (weight > 6 & group == "trt2")

# A tibble: 2 x 2
weight group
<dbl> <fct>
1 6.31 trt2
2 6.15 trt2

If you are confused why we need to write == instead of =, go back to the “Comparison

Operators” section in the previous chapter and also remember that a single = is used for
assigning values to variables. However, here we are not assigning anything, but rather
checking if the value of group is equal to “trt2”. Thus, we need to use the double ==
operator.

You can also use the | operator to make it so that either condition 1 OR condition 2 must be

true. For example, we could keep only those observations where the weight is greater than
6 OR smaller than 4:

Idatl $>% filter (weight > 6 | weight < 4)

# A tibble: 6 x 2
weight group
<dbl> <fct>
6.11 ctrl
.59 trtl
.83 trtl
.03 trtl
.31 trt2
.15 trt2

o U1 W N
o O O W W

The next three examples will all lead to the same result, but achieve it in different ways. It is
almost always the case that there is not just a single way to do something in R, but
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sometimes one way is more efficient or easier to read than another. Our goal for all of them is
to keep all observations that do not belong to the control group.

We could do it with the | operator we just learned about:

I datl $>% filter (group == "trtl" | group == "trt2")

O J o U1 WDN

]

10
11
12
13
14
15
16
17
18
19
20

For situations where you would need to combine several more conditions, the %in% operator

is a more efficient way of doing this. It allows you to check if a value is in a vector of values.
For example, we could do the same as above like this:

I datl %$>% filter (group %in% c("trtl", "trt22"))

O ~J oUW DN
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18
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20

Finally, we could also use the != operator to check if the group is not equal to “ctrl”:

weight
<dbl>

[IsN

Gr U1 o) > O O U1 U1 U1 oY i B D OYW O W DD
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.54
o9
ey
029
.92
.15
@
- 26

weight
<dbl>

4.
.17
.41
> 99
.87
.83
.03
-89
.32
.69
.31
.12
.54
0

.37
229
0 92
0 L5
.8

.26

G 0oy > U1 OO OO oY DD YW O WD

81

# A tibble: 20 x 2

group
<fct>
trtl
trtl
trtl
trtl
trtl
trtl
trtl
trtl
trtl
trtl
trt2
trt2
trt2
trt2
trt2
trt2
trt2
trt2
trt2
trt2

# A tibble: 20 x 2

group
<fct>
trtl
trtl
trtl
trtl
trtl
trtl
trtl
trtl
trtl
trtl
trt2
trt2
trt2
trt2
trt2
trt2
trt2
trt2
trt2
trt2
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Idatl %>% filter (group != "ctrl")

In this specific case, the last of the three options is the shortest and easiest to read.

» 5.2 Filter rows with filter() in R for data science
» Subset rows using column values with filter()

18
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arrange()

The arrange () function allows you to arrange (i.e. sort) the rows of a table based on the

values of one or more columns. Here we use dat3 which has 4 rows for each of the three

groups:
Idat3
weight
<dbl>
1 4.17
2 5.58
3 5.18
4 6.11
5 4.81
6 4.17
7 4.41
8 3.59
9 6.31
10 5.12
11 5.54
12 5.5

We can sort the table by the weight column like this:

Idat3 $>% arrange (weight)

O J oy U W DN

el

10
11
12

As you can see, it is sorted ascendingly by default. If you want to sort it descendingly, you
can use the desc() helper function and wrap it around the respective column name:

Idat3 $>% arrange (desc (weight))

O W 0w J oy U b W

=

weight
<dbl>

3
.17
.17
.41
-1
.12
o 1L
o)
.54
.58
.11
o3

oY O U1 U1 U1 O U1 W DD

59

weight
<dbl>

o
oLl
.58
.54
o5
o 1L
.12
.81
.41
.17

B s 01 01 0 O O oY

31

# A tibble: 12 x 2

group
<fct>
ctrl
ctrl
ctrl
ctrl
trtl
trtl
trtl
trtl
trt2
trt2
trt2
trt2

# A tibble: 12 x 2

group
<fct>
trtl
ctrl
trtl
trtl
trtl
trt2
ctrl
trt2
trt2
ctrl
ctrl
trt2

# A tibble: 12 x 2

group
<fct>
trt2
ctrl
ctrl
trt2
trt2
ctrl
trt2
trtl
trtl
ctrl

19

BioMath

19/29



11 4.17 trtl
12 3.59 trtl

You can also sort by multiple columns. For example, you can first sort by group and then by

weight . This works here, because of the duplicate values in the group column: The
resulting table has the three groups in alphabetical order, but the rows within each group are
sorted by weight :

Idat3 $>% arrange (group, weight)

# A tibble: 12 x 2
weight group
<dbl> <fct>
4.17 ctrl
.18 ctrl
.58 ctrl
.11 ctrl
.59 trtl
.17 trtl
.41 trtl
.81 trtl
.12 trt2
.5 trt2
.54 trt2
.31 trt2

O J oy U W DN

el

10
11
12

oY U1 U1 U1 W D B> W oy U1 O

Note that here you could wrap group, weight or both in the desc() function as well, if you
wanted to sort descendingly.

Finally, a slightly more advanced example would be to sort by a certain custom order. This is
sometimes necessary, because you may not always want e.g. your groups in an alphabetical

order (or reverse alphabetical order). Let’s pretend you want to sort by group in the order
“trt2”, “ctrl”, “trt1”. We can achieve this by defining our custom order and making use of the
helper function match () :

myorder <- c("trtl", "ctrl", "trt2")
dat3 %$>% arrange (match (group, myorder))

# A tibble: 12 x 2
weight group
<dbl> <fct>
4.81 trtl
.17 trtl
.41 trtl
.59 trtl
.17 ctrl
.58 ctrl
.18 ctrl
.11 ctrl
.31 trt2
.12 trt2
.54 trt2
.5 trt2

O J o) Ul WD

(el

10
11
12

G U1 U1 oy O U1 U1 i W b D>

And of course you could even go on and e.g. sort weight within each group descendingly

dat3 %>% arrange (match (group, myorder), desc(weight)) .
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+ 5.2 Filter rows with filter() in R for data science
» Subset rows using column values with filter()
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mutate()

The mutate () function allows you to mutate (i.e. change) the values of existing columns or

create new columns. Let’s again use dat2 which has only 6 rows and create a new column

called “kg” that contains the weight in kilograms (i.e. assuming weight is in grams, so we
divid by 1000):

|dat2 $>% mutate (kg = weight / 1000)

# A tibble: 6 x 3

weight group kg
<dbl> <fct> <dbl>
1 4.17 ctrl 0.00417
2 5.58 ctrl 0.00558
3 5.18 ctrl 0.00518
4 6.11 ctrl 0.00611
5 4.5 ctrl 0.0045
6 4.61 ctrl 0.00461

So as you can, mutate works by assigning (i.e. using =) a new column name (in this case
kg ) to the result of the operation (in this case dividing by 1000) on the existing column

weight .,

We could instead do the exact same operation but assign it to the column name weight .
This will overwrite the existing column weight with the new values or in other words, it will

mutate/change the existing column weight :

Idat2 $>% mutate (weight = weight / 1000)

# A tibble: 6 x 2
weight group
<dbl> <fct>
.00417 ctrl
.00558 ctrl
.00518 ctrl
.00611 ctrl
.0045 ctrl
.00461 ctrl

o U b W N
O O O O O o

We can also create multiple columns at once and they don’t need to be related to any of the
existing columns:

dat2 %$>%
mutate (
"Name with Space®™ = "Hello!",
numberl0 = 10

# A tibble: 6 x 4
weight group "Name with Space’™ numberlO

<dbl> <fct> <chzr> <dbl>
1 4.17 ctrl Hello! 10
2 5.58 ctrl Hello! 10
3 5.18 ctrl Hello! 10
4 6.11 ctrl Hello! 10
5 4.5 ctrl Hello! 10
6 4.61 ctrl Hello! 10
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So here, two columns are created and simply filled with the same value for all rows. Note that
the column name Name with Space contains spaces, which is not allowed in R. However, if

you really want to, you can use backticks ( ° ) to create column names with spaces or other
special characters.

A bit more advanced, but very powerful is the combination of mutate() and case when() .
This allows you to create new columns based on conditions. In the following example we

create a column named size that contains the values “large”, “small” or “normal” depending

on the value of the weight column. If the weight is greater than 5.5, it is “large”, if it is
smaller than 4.5, it is “small” and everything else is “normal’”:

dat2 %>%
mutate (size = case when (
weight > 5.5 ~ "large",
weight < 4.5 ~ "small",
TRUE ~ "normal"

))

# A tibble: 6 x 3
weight group size
<dbl> <fct> <chr>
4.17 ctrl small
.58 ctrl large
.18 ctrl normal
.11 ctrl 1large
.5 ctrl normal
.61 ctrl normal

o U W N
SO oy 01 U1

Thus, you can see that the respective condition works the exact same way as for the
filter () function. However, we then write a tilde ( ~ ) and the value we want to assign to

the new column if the condition is true. These conditions are actually evaluated in the order
they are written. This means that if the first condition is true, the second condition will not be
evaluated. For this example this means that once a size is set to “large”, it wont be checked

for the following conditions. Because of this behaviour, we can simply put a TRUE as the last

condition, as it will simply be true for all remaining values and assign the value “normal” to
them.

You can have as many conditions as you want and make them as complicated as you want -
e.g. using &« and | operators. This can save you a lot of time and manual work.

Finally, another very powerful function combination that can save lots of time and manual
work is that of mutate () and across() . Itis designed to help you make changes to multiple

columns at once. For example, maybe you dont just need to convert the weight column to
kilograms, but also the varl, var2, var3 and var4 columns. Sure, you could do this

without across() like this:

datd %>%
mutate (
weight = weight / 1000,
varl = varl / 1000,
var2 = var2 / 1000,
var3 = var3 / 1000,
vard = vard / 1000
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# A tibble: 6 x 6
weight group varl var2 var3 var4
<dbl> <fct> <dbl> <dbl> <dbl> <dbl>

1 0.00417 ctrl 0.001 0.022 0.003 0.004
2 0.00558 ctrl 0.002 0.023 0.004 0.005
3 0.00481 trtl 0.003 0.024 0.005 0.006
4 0.00417 trtl 0.004 0.025 0.006 0.007
5 0.00631 trt2 0.005 0.026 0.007 0.008
6 0.00512 trt2 0.006 0.027 0.008 0.009

However, just imagine you had 500 instead of 5 columns to deal with. It is much more
efficient to use the across() function. Here is how it works:

I dat4 $>% mutate (across(c(weight, varl:var4), ~ .x / 1000))
# A tibble: 6 x 6

weight group varl var2 var3 var4
<dbl> <fct> <dbl> <dbl> <dbl> <dbl>

1 0.00417 ctrl 0.001 0.022 0.003 0.004
2 0.00558 ctrl 0.002 0.023 0.004 0.005
3 0.00481 trtl 0.003 0.024 0.005 0.006
4 0.00417 trtl 0.004 0.025 0.006 0.007
5 0.00631 trt2 0.005 0.026 0.007 0.008
6 0.00512 trt2 0.006 0.027 0.008 0.009

Yes, this looks quite different from how we used mutate () up until here, but it is always the
same structure:

®* mutate (across (PART1, PART2))

* PART1: The columns you want to mutate.

* PART2: The operation you want to perform on those columns - using .x as the
placeholder for the column values.

Selecting the columns in PART1 works exactly like for the select () function, so you can
use those same helper functions like starts_with() , ends_with() , contains() ,
where (is.numeric()) etc. PART2 expects a function and in our case we need the ~

operator to tell R to create a function that takes the input .x and divides it by 1000.

1 Additional Resources

5.5 Add new variables with mutate() in R for data science

+ Create, modify, and delete columns with mutate()

» A general vectorised if with case_when()

* Apply a function (or functions) across multiple columns with across()
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© Exercise: Combining dplyr Verbs

Using datl , write a single pipe that accomplishes the following steps (not necessarily in

this order):

1. Keep only the rows where weight is greater than 5

2. Add a new column called weight_kg that contains the weight divided by 1000

3. Sort the result by weight in descending order

4. Keep only the columns group and weight kg

The final result should be a tibble with 2 columns and fewer than 30 rows.

1 Solution

da

O ~J o U bW N

\e]

10
11
12
13
14
15
16
17

Note: The order of filter ()

tl $>%

filter (weight > 5)
mutate (weight kg = weight / 1000)
arrange (desc (weight))
select (group, weight kg)

# A tibble: 17 x 2
group weight kg
<fct> <dbl>
trt2 0.00631
trt2 0.00615
ctrl 0.00611
trtl 0.00603
trtl 0.00587
trt2 0.0058
ctrl 0.00558
trt2 0.00554
trt2 0.0055
trt2 0.00537
ctrl 0.00533
trt2 0.00529
trt2 0.00526
ctrl 0.00518
ctrl 0.00517
ctrl 0.00514
trt2 0.00512

>%

, mutate () ,and arrange () could be changed without

affecting the result. However, select () must come last (or at least after mutate () and

filter() ), because we need the weight column for those operations.
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summarize()

The summarize () function allows you to summarize a table by calculating summary
statistics for one or more columns. Its

We will use datl again, which has 30 rows. Let’'s say we want to calculate the mean weight

of all plants in the dataset. We can do this with the summarize () function like so:
|datl $>% summarize (mean weight = mean (weight))

# A tibble: 1 x 1
mean weight
<dbl>
1 5.07

This will return a new table with a single column called mean_weight that contains the mean

weight of all plants in the dataset. Note that the syntax is quite similar to that of mutate() ,
but instead of adding a new column to the existing table, it creates a new table with the
summary statistics.

So far, this is actually not very useful, as we could have also just done this:

mean (dat1$weight) to getthat number. However, the real power of summarize () comes into
play when you want to calculate summary statistics for multiple groups and combine
summarize () and the group by () function like so:

datl %>%
group by (group) %>%
summarize (mean weight = mean (weight))

# A tibble: 3 x 2
group mean weight

<fct> <dbl>
1 ctrl 5.03
2 trtl 4.66
3 trt2 5.53

As you can see, immediately get the mean weight for each group. This is beause the
group_by () function basically tells the data to apply all following functions to each group

separately. So in this case, it tells the summarize () function to calculate the mean weight for

each group separately. Thus, this can save lots of time and manual work if you have many
groups.

It gets even better though, when you add in all the other descriptive statistics you want to
calculate. For example, if you want to calculate the mean, standard deviation, median,
minimum and maximum weight for each group, you can do this:

datl %>%

group by (group) %>%

summarize (
mean weight = mean (weight),
median weight = median(weight),
sd _weight = sd(weight),
min weight = min(weight),
max weight = max(weight)
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# A tibble: 3 x 6
group mean weight median weight sd weight min weight max weight

<fct> <dbl> <dbl> <dbl> <dbl> <dbl>
1 ctrl 5.03 5.15 0.583 4.17 6.11
2 trtl 4.66 4.55 0.794 3.59 6.03
3 trt2 50,53 5.44 0.443 4.92 6.31

So basically, you can create the entire descriptive statistics table in one go.

And just to make sure this is clear: Grouping does not need to be only for a single variable.
You may very well have an experiment with multiple factors and you want to calculate the
mean weight for each combination of those factors. In that case, you can simply add more

variables to the group by () function. We can add in such a second factor to dat3 like this:

dat3 $>%
mutate (factor2 = rep(x = c("A", "B"), times = 6))

# A tibble: 12 x 3
weight group factor2
<dbl> <fct> <chr>

4.17 ctrl A
.58 ctrl
.18 ctrl
.11 ctrl
.81 trtl
.17 trtl
.41 trtl
.59 trtl
.31 trt2
.12 trt2
.54 trt2
.5 trt2

O J oUW DN

el
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12
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And then use it in the group_by () function:

dat3 $>%
mutate (factor2 = rep(x = c("A", "B"), times = 6)) %>%
group by (group, factor2) 3%>%
summarize (mean weight = mean (weight))

‘summarise () ° has grouped output by 'group'. You can override using the
' .groups  argument.

# A tibble: 6 x 3

# Groups: group [3]

group factor2 mean weight

<fct> <chr> <dbl>
1 ctrl A 4.68
2 ctrl B 5.85
3 trtl A 4.61
4 trtl B 3.88
5 trt2 A 5.92
6 trt2 B 5.31

This will give you the mean weight for each combination of group and factor2 .

Finally, you can also use the across () function to apply a function to multiple columns at

once. For example, if you want to calculate the mean per group not just for the weight
column, but for all numeric columns in the data, you can do:
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dat4d $>%
group by (group) %>%
summarize (across (where (is.numeric), ~ mean(.x)))

# A tibble: 3 x 6
group weight wvarl wvar2 var3 varé
<fct> <dbl> <dbl> <dbl> <dbl> <dbl>
1 ctrl 4.88 1.5 22.5 3.5 4.5
2 trtl 4.49 3.5 24.5 5.5 6.5
3 trt2 5.72 5.5 26.5 7.5 8.5

And yes, we can go further and compute more than just means. For example, if you want to
calculate the mean and standard deviation for all numeric columns in the data, you can do:

datd %>%
group by (group) %>%
summarize (across (where (is.numeric), list(mean = ~ mean(.x), sd = ~ sd(.x))))

# A tibble: 3 x 11
group weight mean weight sd varl mean varl sd var2 mean var2 sd var3 mean

<fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 ctrl 4.88 0,997 1.5 0.707 225 0.707 3.5
2 trtl 4.49 0.453 3Jo5 0.707 24.5 0.707 5.5
3 trt2 5,72 0.841 5.5 0.707 26.5 0.707 705

# i 3 more variables: var3 sd <dbl>, var4 mean <dbl>, vard4 sd <dbl>

Alright, you've made it - the dplyr introduction is over. You now know many of the most
important functions of the dplyr package and how to use them. Obviously it is quite
overwhelming and no one is asking you to remember all of this by hear. Instead, | hope you
can see how powerful these functions are and how they can save you a lot of time and
manual work.

1 Additional Resources

* 5.6 Grouped summaries with summarise() in R for data science
» Summarise each group to fewer rows with summarise()
* Group by one or more variables with group_by()

| Important

There is one last, but important piece of information: Once you used group by () on a
table, it stays grouped unless you use ungroup () on it afterwards. So any function you

apply to a dataset that went through group by () will be applied separately per group.
This did not cause any problems above since we never did anything other than using the
summarize () function on the grouped data, but you must be aware of this if you are

using the grouped (summary) results for further steps. Otherwise this can lead to
unexpected results. You can find an example and further resources on such unintended
outcomes here.
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Wrapping Up

Well done! You've acquired the core Tidyverse skills that data scientists rely on daily to
transform messy data into clean, analyzable datasets.

1 Key Takeaways

1. The Tidyverse is a collection of R packages designed for data science that makes
data manipulation easier, faster, and more powerful.

2. Tibbles are the Tidyverse’s modern reimagining of data frames, offering improved
display formatting and more consistent behavior.

3. The pipe operator ( 5>% or |>)is a powerful tool that makes code more readable by
allowing you to chain operations in a logical left-to-right sequence.

4. The core dplyr “verbs” provide a consistent grammar for data manipulation:

select () : Choose specific columns by name, position, or pattern
filter () : Extract rows that meet specific conditions

arrange () : Sort data based on column values

mutate () : Create new columns or modify existing ones

summarize () : Calculate summary statistics

5. These verbs become especially powerful when combined with:

* group_by () : Perform operations separately within groups

across () : Apply the same function to multiple columns

* Helper functions like starts_with() , contains() ,and where ()

6. Remember to use ungroup () after grouped operations to avoid unexpected results in

subsequent analysis steps.

Bibliography
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