
BioMath

1/30

1. Combining Tables

bind_rows, bind_cols, Joins and Pivoting with dplyr and tidyr
Dr. Paul Schmidt

To install and load all packages used in this chapter, run the following code:

for (pkg in c("tidyverse")) {
 if (!require(pkg, character.only = TRUE)) install.packages(pkg)
}

library(tidyverse)

Introduction
In practice, data rarely comes in a single, perfectly prepared table. Instead, we often have
multiple data sources that need to be combined: measurements from different laboratories,
master data and transaction data, or simply data spread across multiple Excel sheets. This
chapter shows how to combine tables in R using various approaches.

We distinguish three fundamental approaches:

1. Stacking: Simply placing tables below each other (bind_rows()) or next to each other

(bind_cols())
2. Joining: Intelligently linking tables based on common key columns
3. Reshaping: Transforming data between “wide” and “long” formats

1

BioMath

2/30

Stacking Tables
The simplest way to combine tables is “stacking” - placing tables either below or next to each
other. For this purpose, we have bind_rows() and bind_cols() .

Example Data
For this section, we create three small tibbles with fruit data:

fruit_1 <- tibble(
 variety = c("Apple", "Pear"),
 price = c(1.20, 1.50)
)

fruit_2 <- tibble(
 variety = c("Orange", "Banana"),
 price = c(0.80, 1.10)
)

fruit_3 <- tibble(
 variety = c("Cherry", "Plum"),
 price = c(3.50, 2.20),
 origin = c("Germany", "Spain")
)

fruit_1

A tibble: 2 × 2
 variety price
 <chr> <dbl>
1 Apple 1.2
2 Pear 1.5

fruit_2

A tibble: 2 × 2
 variety price
 <chr> <dbl>
1 Orange 0.8
2 Banana 1.1

fruit_3

A tibble: 2 × 3
 variety price origin
 <chr> <dbl> <chr>
1 Cherry 3.5 Germany
2 Plum 2.2 Spain

Note that fruit_1 and fruit_2 have the same columns (variety and price), while
fruit_3 has an additional column origin .

bind_rows()
The function bind_rows() stacks tables vertically - it adds rows. This is useful when you
have data from different time periods or different sources that share the same structure.

bind_rows(fruit_1, fruit_2)

2

BioMath

3/30

A tibble: 4 × 2
 variety price
 <chr> <dbl>
1 Apple 1.2
2 Pear 1.5
3 Orange 0.8
4 Banana 1.1

This works as expected: the rows are simply stacked on top of each other.

Different Columns
The big advantage of bind_rows() over the base R function rbind() becomes apparent

when the tables have different columns. While rbind() throws an error in this case,
bind_rows() combines the tables anyway and fills missing values with NA :

bind_rows(fruit_1, fruit_3)

A tibble: 4 × 3
 variety price origin
 <chr> <dbl> <chr>
1 Apple 1.2 <NA>
2 Pear 1.5 <NA>
3 Cherry 3.5 Germany
4 Plum 2.2 Spain

As we can see, fruit_1 had no origin column, so these values are filled with NA . This is
very convenient when combining data from different sources that don’t have exactly the
same columns.

Tracking Origin with .id
When combining multiple tables, we often want to know which original table each row came
from. For this, there’s the .id argument:

bind_rows(
 "Store_A" = fruit_1,
 "Store_B" = fruit_2,
 .id = "source"
)

A tibble: 4 × 3
 source variety price
 <chr> <chr> <dbl>
1 Store_A Apple 1.2
2 Store_A Pear 1.5
3 Store_B Orange 0.8
4 Store_B Banana 1.1

Here we gave names to the tables (“Store_A”, “Store_B”) and created a new column with
.id = "source" that contains these names.

Combining All Three Tables
We can also stack more than two tables at once:

bind_rows(fruit_1, fruit_2, fruit_3)

3

BioMath

4/30

A tibble: 6 × 3
 variety price origin
 <chr> <dbl> <chr>
1 Apple 1.2 <NA>
2 Pear 1.5 <NA>
3 Orange 0.8 <NA>
4 Banana 1.1 <NA>
5 Cherry 3.5 Germany
6 Plum 2.2 Spain

The origin column only exists for the last two rows (from fruit_3), all others get NA .

4

BioMath

5/30

bind_cols()
The function bind_cols() combines tables horizontally - it glues columns together.

 Caution

With bind_cols() there is no intelligent linking via key columns! The tables are simply
“blindly” glued together side by side. This means: the rows must be in exactly the same
order, and the tables must have the same number of rows.

An example:

names_df <- tibble(
 first_name = c("Anna", "Ben", "Clara"),
 last_name = c("Mueller", "Schmidt", "Weber")
)

age_df <- tibble(
 age = c(28, 34, 22),
 profession = c("Physician", "Engineer", "Student")
)

bind_cols(names_df, age_df)

A tibble: 3 × 4
 first_name last_name age profession
 <chr> <chr> <dbl> <chr>
1 Anna Mueller 28 Physician
2 Ben Schmidt 34 Engineer
3 Clara Weber 22 Student

This works because both tibbles have three rows and we know that row 1 in both tibbles
belongs to the same person.

When is bind_cols() Dangerous?
bind_cols() can lead to incorrect results if the row order doesn’t match:

WRONG: Different order!
names_sorted <- names_df %>% arrange(first_name)
age_original <- age_df

bind_cols(names_sorted, age_original)

A tibble: 3 × 4
 first_name last_name age profession
 <chr> <chr> <dbl> <chr>
1 Anna Mueller 28 Physician
2 Ben Schmidt 34 Engineer
3 Clara Weber 22 Student

Here the names were sorted alphabetically, but the age data was not - Anna now gets age 28
assigned, which happened to be correct before sorting (and is coincidentally still correct), but
Ben and Clara are swapped! This is a common mistake!

When Should You Use bind_cols()?
bind_cols() is safe when:

• The data comes from the same source and is guaranteed to have the same order

5

BioMath

6/30

• You just performed multiple calculations on the same data yourself
• You verify correctness after combining

In most other cases, a join is the better choice because it links via a key column.

6

BioMath

7/30

Joining Tables
Joins are the most powerful method for combining tables. They link tables intelligently via
one or more common columns (the “keys”). This means it doesn’t matter what order the rows
are in - R automatically finds the matching rows.

Example Data
For the joins, we use a different dataset: city data. We create three tibbles with different
information about cities:

Tibble 1: Six major cities in Central Europe with population
cities_europe <- tibble(
 city = c("Berlin", "Hamburg", "Munich", "Copenhagen", "Amsterdam", "London"),
 population_mio = c(3.9, 1.9, 1.5, 0.7, 0.9, 9.0)
)

Tibble 2: Ten German cities with rental prices (Euro per square meter)
cities_rent <- tibble(
 city = c("Berlin", "Hamburg", "Munich", "Frankfurt", "Cologne",
 "Duesseldorf", "Stuttgart", "Leipzig", "Dresden", "Nuremberg"),
 rent_sqm = c(18.29, 17.18, 22.64, 19.62, 15.21,
 16.04, 17.26, 11.38, 7.33, 9.65)
)

Tibble 3: The same ten German cities with additional statistics
cities_stats <- tibble(
 city = c("Berlin", "Hamburg", "Munich", "Frankfurt", "Cologne",
 "Duesseldorf", "Stuttgart", "Leipzig", "Dresden", "Nuremberg"),
 area_km2 = c(892, 755, 310, 248, 405, 217, 207, 297, 328, 186),
 green_space_pct = c(14.4, 16.8, 11.9, 21.5, 17.2, 18.9, 24.0, 14.8, 12.3, 19.1)
)

cities_europe

A tibble: 6 × 2
 city population_mio
 <chr> <dbl>
1 Berlin 3.9
2 Hamburg 1.9
3 Munich 1.5
4 Copenhagen 0.7
5 Amsterdam 0.9
6 London 9

cities_rent

A tibble: 10 × 2
 city rent_sqm
 <chr> <dbl>
 1 Berlin 18.3
 2 Hamburg 17.2
 3 Munich 22.6
 4 Frankfurt 19.6
 5 Cologne 15.2
 6 Duesseldorf 16.0
 7 Stuttgart 17.3
 8 Leipzig 11.4
 9 Dresden 7.33
10 Nuremberg 9.65

cities_stats

7

BioMath

8/30

A tibble: 10 × 3
 city area_km2 green_space_pct
 <chr> <dbl> <dbl>
 1 Berlin 892 14.4
 2 Hamburg 755 16.8
 3 Munich 310 11.9
 4 Frankfurt 248 21.5
 5 Cologne 405 17.2
 6 Duesseldorf 217 18.9
 7 Stuttgart 207 24
 8 Leipzig 297 14.8
 9 Dresden 328 12.3
10 Nuremberg 186 19.1

Note that cities_europe contains three German cities (Berlin, Hamburg, Munich) that also

appear in the other two tibbles, plus three non-German cities. The tibbles cities_rent and
cities_stats have exactly the same ten German cities but different columns.

The Concept: Key Columns
In a join, you specify which column(s) should be used as “keys”. R then searches for
matching values in this column and combines the corresponding rows.

In our example data, city is the obvious key column - it appears in all three tibbles and
uniquely identifies each row.

Mutating Joins
“Mutating joins” add columns from one table to another - they “mutate” the source table by
extending it with new columns. There are four variants that differ in which rows are included
in the result.

left_join()
The left_join() keeps all rows from the left table and adds matching columns from the
right table. If there is no matching partner in the right table, the new columns are filled with
NA .

8

BioMath

9/30

 Source of Visualizations

The animated graphics in this chapter come from Garrick Aden-Buie. He has created a
fantastic collection of visualizations there that illustrate the different join types and other
tidyverse operations. Worth a visit!

cities_europe %>%
 left_join(cities_rent, by = "city")

A tibble: 6 × 3
 city population_mio rent_sqm
 <chr> <dbl> <dbl>
1 Berlin 3.9 18.3
2 Hamburg 1.9 17.2
3 Munich 1.5 22.6
4 Copenhagen 0.7 NA
5 Amsterdam 0.9 NA
6 London 9 NA

We can see:

• All 6 cities from cities_europe are in the result
• Berlin, Hamburg, and Munich have received rental prices
• Copenhagen, Amsterdam, and London have NA for rent_sqm because they don’t appear

in cities_rent

The left_join() is the most commonly used join because you often have a “main table”
that you want to extend with additional information without losing rows.

9

https://www.garrickadenbuie.com/project/tidyexplain/

BioMath

10/30

right_join()
The right_join() is the mirror image of left_join() : it keeps all rows from the right
table.

cities_europe %>%
 right_join(cities_rent, by = "city")

A tibble: 10 × 3
 city population_mio rent_sqm
 <chr> <dbl> <dbl>
 1 Berlin 3.9 18.3
 2 Hamburg 1.9 17.2
 3 Munich 1.5 22.6
 4 Frankfurt NA 19.6
 5 Cologne NA 15.2
 6 Duesseldorf NA 16.0
 7 Stuttgart NA 17.3
 8 Leipzig NA 11.4
 9 Dresden NA 7.33
10 Nuremberg NA 9.65

Now we have:

• All 10 German cities from cities_rent
• Berlin, Hamburg, and Munich have population figures
• The 7 other German cities have NA for population_mio

10

BioMath

11/30

 Tip

In practice, instead of right_join(a, b) you can simply write left_join(b, a) - the
result is the same (only the column order differs). Many R users therefore use almost
exclusively left_join() .

inner_join()
The inner_join() keeps only rows that appear in both tables. Rows without a partner
are completely excluded.

cities_europe %>%
 inner_join(cities_rent, by = "city")

A tibble: 3 × 3
 city population_mio rent_sqm
 <chr> <dbl> <dbl>
1 Berlin 3.9 18.3
2 Hamburg 1.9 17.2
3 Munich 1.5 22.6

Only Berlin, Hamburg, and Munich remain - the only cities that appear in both tables. There
are no NA values in the result.

full_join()
The full_join() keeps all rows from both tables. This is the most “generous” variant.

11

BioMath

12/30

cities_europe %>%
 full_join(cities_rent, by = "city")

A tibble: 13 × 3
 city population_mio rent_sqm
 <chr> <dbl> <dbl>
 1 Berlin 3.9 18.3
 2 Hamburg 1.9 17.2
 3 Munich 1.5 22.6
 4 Copenhagen 0.7 NA
 5 Amsterdam 0.9 NA
 6 London 9 NA
 7 Frankfurt NA 19.6
 8 Cologne NA 15.2
 9 Duesseldorf NA 16.0
10 Stuttgart NA 17.3
11 Leipzig NA 11.4
12 Dresden NA 7.33
13 Nuremberg NA 9.65

The result has 13 rows: 3 German cities with complete data, 3 non-German cities (population
only), and 7 additional German cities (rent only).

Exercise: Joins with Plant Data
First prepare the data:

Load and extend PlantGrowth dataset
data(PlantGrowth)

Dataset 1: Weight measurements with unique ID
plants_weight <- PlantGrowth %>%
 mutate(plant_id = 1:n()) %>%
 select(plant_id, group, weight)

12

BioMath

13/30

Dataset 2: Height measurements (only available for some plants!)
set.seed(123)
plants_height <- tibble(
 plant_id = c(1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29),
 height_cm = round(rnorm(15, mean = 26, sd = 3), 1)
)

View the datasets
plants_weight

 plant_id group weight
1 1 ctrl 4.17
2 2 ctrl 5.58
3 3 ctrl 5.18
4 4 ctrl 6.11
5 5 ctrl 4.50
6 6 ctrl 4.61
7 7 ctrl 5.17
8 8 ctrl 4.53
9 9 ctrl 5.33
10 10 ctrl 5.14
11 11 trt1 4.81
12 12 trt1 4.17
13 13 trt1 4.41
14 14 trt1 3.59
15 15 trt1 5.87
16 16 trt1 3.83
17 17 trt1 6.03
18 18 trt1 4.89
19 19 trt1 4.32
20 20 trt1 4.69
21 21 trt2 6.31
22 22 trt2 5.12
23 23 trt2 5.54
24 24 trt2 5.50
25 25 trt2 5.37
26 26 trt2 5.29
27 27 trt2 4.92
28 28 trt2 6.15
29 29 trt2 5.80
30 30 trt2 5.26

plants_height

A tibble: 15 × 2
 plant_id height_cm
 <dbl> <dbl>
 1 1 24.3
 2 3 25.3
 3 5 30.7
 4 7 26.2
 5 9 26.4
 6 11 31.1
 7 13 27.4
 8 15 22.2
 9 17 23.9
10 19 24.7
11 21 29.7
12 23 27.1
13 25 27.2
14 27 26.3
15 29 24.3

13

BioMath

14/30

 Exercise

Answer the following questions using the appropriate join functions:

a) Add the height measurements to all plants. Plants without height measurement should
get NA . How many plants have a height measurement?

b) Create a dataset with only the plants for which both weight and height were
measured.

c) Which plants (plant_id) have no height measurement? Use a filtering join.

d) For the plants with both measurements, calculate the ratio weight / height_cm and

store it in a new column ratio .

14

BioMath

15/30

 Solution

a) left_join: Keep all plants, add height where available
plants_complete <- plants_weight %>%
 left_join(plants_height, by = "plant_id")

plants_complete

 plant_id group weight height_cm
1 1 ctrl 4.17 24.3
2 2 ctrl 5.58 NA
3 3 ctrl 5.18 25.3
4 4 ctrl 6.11 NA
5 5 ctrl 4.50 30.7
6 6 ctrl 4.61 NA
7 7 ctrl 5.17 26.2
8 8 ctrl 4.53 NA
9 9 ctrl 5.33 26.4
10 10 ctrl 5.14 NA
11 11 trt1 4.81 31.1
12 12 trt1 4.17 NA
13 13 trt1 4.41 27.4
14 14 trt1 3.59 NA
15 15 trt1 5.87 22.2
16 16 trt1 3.83 NA
17 17 trt1 6.03 23.9
18 18 trt1 4.89 NA
19 19 trt1 4.32 24.7
20 20 trt1 4.69 NA
21 21 trt2 6.31 29.7
22 22 trt2 5.12 NA
23 23 trt2 5.54 27.1
24 24 trt2 5.50 NA
25 25 trt2 5.37 27.2
26 26 trt2 5.29 NA
27 27 trt2 4.92 26.3
28 28 trt2 6.15 NA
29 29 trt2 5.80 24.3
30 30 trt2 5.26 NA

Number of plants with height measurement
plants_complete %>%
 filter(!is.na(height_cm)) %>%
 nrow()

[1] 15

b) inner_join: Only plants with both measurements
plants_both <- plants_weight %>%
 inner_join(plants_height, by = "plant_id")

plants_both

 plant_id group weight height_cm
1 1 ctrl 4.17 24.3
2 3 ctrl 5.18 25.3
3 5 ctrl 4.50 30.7
4 7 ctrl 5.17 26.2
5 9 ctrl 5.33 26.4
6 11 trt1 4.81 31.1
7 13 trt1 4.41 27.4
8 15 trt1 5.87 22.2
9 17 trt1 6.03 23.9
10 19 trt1 4.32 24.7
11 21 trt2 6.31 29.7
12 23 trt2 5.54 27.1
13 25 trt2 5.37 27.2
14 27 trt2 4.92 26.3
15 29 trt2 5.80 24.3

c) anti_join: Plants without height measurement
plants_weight %>%
 anti_join(plants_height, by = "plant_id")

 plant_id group weight
1 2 ctrl 5.58
2 4 ctrl 6.11
3 6 ctrl 4.61
4 8 ctrl 4.53
5 10 ctrl 5.14
6 12 trt1 4.17
7 14 trt1 3.59
8 16 trt1 3.83
9 18 trt1 4.89
10 20 trt1 4.69
11 22 trt2 5.12
12 24 trt2 5.50
13 26 trt2 5.29
14 28 trt2 6.15
15 30 trt2 5.26

d) Calculate ratio
plants_both <- plants_both %>%
 mutate(ratio = weight / height_cm)

plants_both

 plant_id group weight height_cm ratio
1 1 ctrl 4.17 24.3 0.1716049
2 3 ctrl 5.18 25.3 0.2047431
3 5 ctrl 4.50 30.7 0.1465798
4 7 ctrl 5.17 26.2 0.1973282
5 9 ctrl 5.33 26.4 0.2018939
6 11 trt1 4.81 31.1 0.1546624
7 13 trt1 4.41 27.4 0.1609489
8 15 trt1 5.87 22.2 0.2644144
9 17 trt1 6.03 23.9 0.2523013
10 19 trt1 4.32 24.7 0.1748988
11 21 trt2 6.31 29.7 0.2124579
12 23 trt2 5.54 27.1 0.2044280
13 25 trt2 5.37 27.2 0.1974265
14 27 trt2 4.92 26.3 0.1870722
15 29 trt2 5.80 24.3 0.2386831

15

BioMath

16/30

Different Column Names
Sometimes the key column has different names in the two tables. You can specify this in the
by argument:

Example: One table has "city", the other "stadt" (German)
cities_german <- tibble(
 stadt = c("Berlin", "Hamburg", "Munich"),
 population = c(3.8, 1.9, 1.5)
)

cities_rent %>%
 left_join(cities_german, by = c("city" = "stadt"))

A tibble: 10 × 3
 city rent_sqm population
 <chr> <dbl> <dbl>
 1 Berlin 18.3 3.8
 2 Hamburg 17.2 1.9
 3 Munich 22.6 1.5
 4 Frankfurt 19.6 NA
 5 Cologne 15.2 NA
 6 Duesseldorf 16.0 NA
 7 Stuttgart 17.3 NA
 8 Leipzig 11.4 NA
 9 Dresden 7.33 NA
10 Nuremberg 9.65 NA

The syntax by = c("city" = "stadt") means: “Link the city column from the left table

with the stadt column from the right table.”

16

BioMath

17/30

Filtering Joins
Unlike mutating joins, filtering joins do not add new columns. They only filter the rows of the
left table based on whether there is a partner in the right table.

semi_join()
The semi_join() keeps all rows from the left table that have a partner in the right table.

cities_europe %>%
 semi_join(cities_rent, by = "city")

A tibble: 3 × 2
 city population_mio
 <chr> <dbl>
1 Berlin 3.9
2 Hamburg 1.9
3 Munich 1.5

The result contains only Berlin, Hamburg, and Munich - the European cities for which we
have rental data. But: no columns from cities_rent were added! The result only has the

columns from cities_europe .

The semi_join() answers the question: “Which rows from table A have a partner in table
B?”

anti_join()
The anti_join() is the opposite: it keeps all rows from the left table that have no partner in
the right table.

17

BioMath

18/30

cities_europe %>%
 anti_join(cities_rent, by = "city")

A tibble: 3 × 2
 city population_mio
 <chr> <dbl>
1 Copenhagen 0.7
2 Amsterdam 0.9
3 London 9

Copenhagen, Amsterdam, and London - the European cities for which we have no rental
data.

The anti_join() is very useful for data quality checks: “Which records are missing?” or
“Which IDs from system A don’t exist in system B?”

18

BioMath

19/30

Set Operations
Set operations treat tables as mathematical sets. They only work when both tables have
exactly the same columns. They then compare entire rows (not individual key columns).

For the examples, we create two small tables with identical columns:

set_a <- tibble(
 city = c("Berlin", "Hamburg", "Munich"),
 country = c("Germany", "Germany", "Germany")
)

set_b <- tibble(
 city = c("Hamburg", "Munich", "Frankfurt"),
 country = c("Germany", "Germany", "Germany")
)

union()
union() returns all unique rows from both tables - the union set.

union(set_a, set_b)

A tibble: 4 × 2
 city country
 <chr> <chr>
1 Berlin Germany
2 Hamburg Germany
3 Munich Germany
4 Frankfurt Germany

Hamburg and Munich appear in both tables but appear only once in the result.

19

BioMath

20/30

intersect()
intersect() returns only the rows that appear in both tables - the intersection.

intersect(set_a, set_b)

A tibble: 2 × 2
 city country
 <chr> <chr>
1 Hamburg Germany
2 Munich Germany

Only Hamburg and Munich are in both tables.

setdiff()
setdiff() returns the rows that are in the first but not in the second table - the difference
set.

20

BioMath

21/30

setdiff(set_a, set_b)

A tibble: 1 × 2
 city country
 <chr> <chr>
1 Berlin Germany

Berlin is only in set_a .

 Note

With setdiff() , order matters! setdiff(a, b) and setdiff(b, a) return different
results:

setdiff(set_b, set_a)

A tibble: 1 × 2
 city country
 <chr> <chr>
1 Frankfurt Germany

Frankfurt is only in set_b .

21

BioMath

22/30

Reshaping Data (Wide ↔ Long)
Often we need to transform data between two formats:

• Wide format: Each variable has its own column
• Long format: Variable names become values in a column

Which format is “correct” depends on the use case. For many tidyverse functions and
ggplot2, the long format is better suited, while the wide format is often more readable for
humans.

22

BioMath

23/30

pivot_longer()
pivot_longer() transforms data from wide to long format - it makes the table “longer” (more
rows, fewer columns).

Let’s look at cities_stats :

cities_stats

A tibble: 10 × 3
 city area_km2 green_space_pct
 <chr> <dbl> <dbl>
 1 Berlin 892 14.4
 2 Hamburg 755 16.8
 3 Munich 310 11.9
 4 Frankfurt 248 21.5
 5 Cologne 405 17.2
 6 Duesseldorf 217 18.9
 7 Stuttgart 207 24
 8 Leipzig 297 14.8
 9 Dresden 328 12.3
10 Nuremberg 186 19.1

This is a typical wide format: each metric (area, green space) has its own column. For some
analyses or visualizations, we want to convert this to long format:

cities_stats %>%
 pivot_longer(
 cols = c(area_km2, green_space_pct),
 names_to = "metric",
 values_to = "value"
)

A tibble: 20 × 3
 city metric value
 <chr> <chr> <dbl>
 1 Berlin area_km2 892
 2 Berlin green_space_pct 14.4
 3 Hamburg area_km2 755
 4 Hamburg green_space_pct 16.8
 5 Munich area_km2 310
 6 Munich green_space_pct 11.9
 7 Frankfurt area_km2 248
 8 Frankfurt green_space_pct 21.5
 9 Cologne area_km2 405
10 Cologne green_space_pct 17.2
11 Duesseldorf area_km2 217
12 Duesseldorf green_space_pct 18.9
13 Stuttgart area_km2 207
14 Stuttgart green_space_pct 24
15 Leipzig area_km2 297
16 Leipzig green_space_pct 14.8
17 Dresden area_km2 328
18 Dresden green_space_pct 12.3
19 Nuremberg area_km2 186
20 Nuremberg green_space_pct 19.1

The key arguments:

• cols : Which columns should be “collapsed”?
• names_to : What should the new column be called that contains the old column names?
• values_to : What should the new column be called that contains the values?

23

BioMath

24/30

Now each city has two rows - one per metric. This is ideal for ggplot2 when you want to
display both metrics in a faceted plot, for example.

Column Selection with Helper Functions
Instead of listing columns individually, you can use helper functions:

All columns except "city"
cities_stats %>%
 pivot_longer(
 cols = -city,
 names_to = "metric",
 values_to = "value"
)

A tibble: 20 × 3
 city metric value
 <chr> <chr> <dbl>
 1 Berlin area_km2 892
 2 Berlin green_space_pct 14.4
 3 Hamburg area_km2 755
 4 Hamburg green_space_pct 16.8
 5 Munich area_km2 310
 6 Munich green_space_pct 11.9
 7 Frankfurt area_km2 248
 8 Frankfurt green_space_pct 21.5
 9 Cologne area_km2 405
10 Cologne green_space_pct 17.2
11 Duesseldorf area_km2 217
12 Duesseldorf green_space_pct 18.9
13 Stuttgart area_km2 207
14 Stuttgart green_space_pct 24
15 Leipzig area_km2 297
16 Leipzig green_space_pct 14.8
17 Dresden area_km2 328
18 Dresden green_space_pct 12.3
19 Nuremberg area_km2 186
20 Nuremberg green_space_pct 19.1

All numeric columns
cities_stats %>%
 pivot_longer(
 cols = where(is.numeric),
 names_to = "metric",
 values_to = "value"
)

A tibble: 20 × 3
 city metric value
 <chr> <chr> <dbl>
 1 Berlin area_km2 892
 2 Berlin green_space_pct 14.4
 3 Hamburg area_km2 755
 4 Hamburg green_space_pct 16.8
 5 Munich area_km2 310
 6 Munich green_space_pct 11.9
 7 Frankfurt area_km2 248
 8 Frankfurt green_space_pct 21.5
 9 Cologne area_km2 405
10 Cologne green_space_pct 17.2
11 Duesseldorf area_km2 217
12 Duesseldorf green_space_pct 18.9
13 Stuttgart area_km2 207
14 Stuttgart green_space_pct 24
15 Leipzig area_km2 297
16 Leipzig green_space_pct 14.8

24

BioMath

25/30

17 Dresden area_km2 328
18 Dresden green_space_pct 12.3
19 Nuremberg area_km2 186
20 Nuremberg green_space_pct 19.1

25

BioMath

26/30

pivot_wider()
pivot_wider() is the inverse function: it transforms from long to wide format - the table
becomes “wider” (fewer rows, more columns).

First, let’s create a long-format table:

cities_long <- cities_stats %>%
 pivot_longer(
 cols = -city,
 names_to = "metric",
 values_to = "value"
)

cities_long

A tibble: 20 × 3
 city metric value
 <chr> <chr> <dbl>
 1 Berlin area_km2 892
 2 Berlin green_space_pct 14.4
 3 Hamburg area_km2 755
 4 Hamburg green_space_pct 16.8
 5 Munich area_km2 310
 6 Munich green_space_pct 11.9
 7 Frankfurt area_km2 248
 8 Frankfurt green_space_pct 21.5
 9 Cologne area_km2 405
10 Cologne green_space_pct 17.2
11 Duesseldorf area_km2 217
12 Duesseldorf green_space_pct 18.9
13 Stuttgart area_km2 207
14 Stuttgart green_space_pct 24
15 Leipzig area_km2 297
16 Leipzig green_space_pct 14.8
17 Dresden area_km2 328
18 Dresden green_space_pct 12.3
19 Nuremberg area_km2 186
20 Nuremberg green_space_pct 19.1

Now we transform back to wide format:

cities_long %>%
 pivot_wider(
 names_from = metric,
 values_from = value
)

A tibble: 10 × 3
 city area_km2 green_space_pct
 <chr> <dbl> <dbl>
 1 Berlin 892 14.4
 2 Hamburg 755 16.8
 3 Munich 310 11.9
 4 Frankfurt 248 21.5
 5 Cologne 405 17.2
 6 Duesseldorf 217 18.9
 7 Stuttgart 207 24
 8 Leipzig 297 14.8
 9 Dresden 328 12.3
10 Nuremberg 186 19.1

The key arguments:

• names_from : Which column contains the future column names?

26

BioMath

27/30

• values_from : Which column contains the values?

 Alternative Function Names in Other Packages

You may have already used other functions in this context. Here are some alternatives,
some of which are now deprecated:

• melt() & dcast() from {data.table}
• fold() & unfold() from {databases}
• melt() & cast() from {reshape}
• melt() & dcast() from {reshape2}
• unpivot() & pivot() from {spreadsheets}
• gather() & spread() from {tidyr} < v1.0.0

Typical Use Case: Cross Tables
pivot_wider() is also useful for creating cross tables. Suppose we have sales data:

sales <- tibble(
 product = c("Apple", "Apple", "Pear", "Pear"),
 quarter = c("Q1", "Q2", "Q1", "Q2"),
 revenue = c(100, 120, 80, 90)
)

sales

A tibble: 4 × 3
 product quarter revenue
 <chr> <chr> <dbl>
1 Apple Q1 100
2 Apple Q2 120
3 Pear Q1 80
4 Pear Q2 90

sales %>%
 pivot_wider(
 names_from = quarter,
 values_from = revenue
)

A tibble: 2 × 3
 product Q1 Q2
 <chr> <dbl> <dbl>
1 Apple 100 120
2 Pear 80 90

Now we have a clear cross table with products in rows and quarters in columns.

Exercise: Pivoting Workflow
First prepare a dataset in long format:

Simulate PlantGrowth with multiple measurements
set.seed(42)
plants_long <- PlantGrowth %>%
 mutate(
 plant_id = 1:n(),

27

BioMath

28/30

 height_cm = weight * 5 + rnorm(n(), mean = 0, sd = 2)
) %>%
 pivot_longer(
 cols = c(weight, height_cm),
 names_to = "measurement",
 values_to = "value"
) %>%
 select(plant_id, group, measurement, value)

plants_long

A tibble: 60 × 4
 plant_id group measurement value
 <int> <fct> <chr> <dbl>
 1 1 ctrl weight 4.17
 2 1 ctrl height_cm 23.6
 3 2 ctrl weight 5.58
 4 2 ctrl height_cm 26.8
 5 3 ctrl weight 5.18
 6 3 ctrl height_cm 26.6
 7 4 ctrl weight 6.11
 8 4 ctrl height_cm 31.8
 9 5 ctrl weight 4.5
10 5 ctrl height_cm 23.3
ℹ 50 more rows

 Exercise

Perform the following transformations:

a) Transform plants_long to wide format so that weight and height_cm each have
their own columns.

b) Add a new column bmi (Body Mass Index for plants) that calculates the ratio
weight / height_cm .

c) Transform the dataset back to long format so that all three variables (weight ,
height_cm , and bmi) appear in the measurement column.

28

BioMath

29/30

 Solution

a) Create wide format
plants_wide <- plants_long %>%
 pivot_wider(
 names_from = measurement,
 values_from = value
)

plants_wide

A tibble: 30 × 4
 plant_id group weight height_cm
 <int> <fct> <dbl> <dbl>
 1 1 ctrl 4.17 23.6
 2 2 ctrl 5.58 26.8
 3 3 ctrl 5.18 26.6
 4 4 ctrl 6.11 31.8
 5 5 ctrl 4.5 23.3
 6 6 ctrl 4.61 22.8
 7 7 ctrl 5.17 28.9
 8 8 ctrl 4.53 22.5
 9 9 ctrl 5.33 30.7
10 10 ctrl 5.14 25.6
ℹ 20 more rows

b) Add new column
plants_wide <- plants_wide %>%
 mutate(bmi = weight / height_cm)

plants_wide

A tibble: 30 × 5
 plant_id group weight height_cm bmi
 <int> <fct> <dbl> <dbl> <dbl>
 1 1 ctrl 4.17 23.6 0.177
 2 2 ctrl 5.58 26.8 0.208
 3 3 ctrl 5.18 26.6 0.195
 4 4 ctrl 6.11 31.8 0.192
 5 5 ctrl 4.5 23.3 0.193
 6 6 ctrl 4.61 22.8 0.202
 7 7 ctrl 5.17 28.9 0.179
 8 8 ctrl 4.53 22.5 0.202
 9 9 ctrl 5.33 30.7 0.174
10 10 ctrl 5.14 25.6 0.201
ℹ 20 more rows

c) Back to long format (all three variables)
plants_final_long <- plants_wide %>%
 pivot_longer(
 cols = c(weight, height_cm, bmi),
 names_to = "measurement",
 values_to = "value"
)

plants_final_long

A tibble: 90 × 4
 plant_id group measurement value
 <int> <fct> <chr> <dbl>
 1 1 ctrl weight 4.17
 2 1 ctrl height_cm 23.6
 3 1 ctrl bmi 0.177
 4 2 ctrl weight 5.58
 5 2 ctrl height_cm 26.8
 6 2 ctrl bmi 0.208
 7 3 ctrl weight 5.18
 8 3 ctrl height_cm 26.6
 9 3 ctrl bmi 0.195
10 4 ctrl weight 6.11
ℹ 80 more rows

29

BioMath

30/30

Summary
Well done! You now master the most important techniques for combining and reshaping
tables in R.

 Key Takeaways

1. Stacking Tables:
• bind_rows() : Stack rows vertically - works even with different columns (missing

ones are filled with NA)
• bind_cols() : Glue columns horizontally - Caution: no intelligent linking, order must

match!
2. Mutating Joins (add columns):

• left_join() : Keep all rows from the left table - the default case
• right_join() : Keep all rows from the right table
• inner_join() : Only rows with a partner in both tables
• full_join() : All rows from both tables

3. Filtering Joins (only filter, no new columns):
• semi_join() : Rows from x that have a partner in y
• anti_join() : Rows from x that have no partner in y - ideal for “What’s missing?”

questions
4. Set Operations (tables as sets, require identical columns):

• union() : All unique rows from both
• intersect() : Only rows that appear in both
• setdiff() : Rows from x that are not in y

5. Pivoting (change data format):
• pivot_longer() : Wide → Long (more rows, fewer columns)
• pivot_wider() : Long → Wide (fewer rows, more columns)

6. Best Practices:
• For different column names: by = c("name_left" = "name_right")
• When in doubt, use left_join() instead of bind_cols()
• Use anti_join() for data quality checks

Bibliography

30

	Introduction
	Stacking Tables
	Example Data
	bind_rows()
	Different Columns
	Tracking Origin with .id
	Combining All Three Tables

	bind_cols()
	When is bind_cols() Dangerous?
	When Should You Use bind_cols()?

	Joining Tables
	Example Data
	The Concept: Key Columns
	Mutating Joins
	left_join()
	right_join()
	inner_join()
	full_join()

	Exercise: Joins with Plant Data
	Different Column Names

	Filtering Joins
	semi_join()
	anti_join()

	Set Operations
	union()
	intersect()
	setdiff()

	Reshaping Data (Wide ↔ Long)
	pivot_longer()
	Column Selection with Helper Functions

	pivot_wider()
	Typical Use Case: Cross Tables

	Exercise: Pivoting Workflow

	Summary
	Bibliography

