BioMath

1. Combining Tables

bind_rows, bind\ cols, Joins and Pivoting with dplyr and tidyr
Dr. Paul Schmidt

To install and load all packages used in this chapter, run the following code:

for (pkg in c("tidyverse")) {
if (!require (pkg, character.only = TRUE)) install.packages (pkqg)

}

library (tidyverse)

Introduction

In practice, data rarely comes in a single, perfectly prepared table. Instead, we often have
multiple data sources that need to be combined: measurements from different laboratories,
master data and transaction data, or simply data spread across multiple Excel sheets. This
chapter shows how to combine tables in R using various approaches.

We distinguish three fundamental approaches:

1. Stacking: Simply placing tables below each other (bind_rows ()) or next to each other

(bind_cols ())
2. Joining: Intelligently linking tables based on common key columns
3. Reshaping: Transforming data between “wide” and “long” formats

1/30

Stacking Tables

The simplest way to combine tables is “stacking” - placing tables either below or next to each
other. For this purpose, we have bind rows () and bind_cols() .

Example Data

For this section, we create three small tibbles with fruit data:

)

)

price = c(1.20

fruit 1 <- tibble (
variety = c("Apple",

, 1.50)

fruit 2 <- tibble (

variety = c("Orange",

price = ¢ (0.80

variety = c("C
price = ¢ (3.50
origin = c("Ge
)
Ifruit_l

#

A tibble: 2 x
variety price
<chr> <dbl>

1 Apple 1.2

2 Pear 1.5
Ifruit_2

A tibble: 2 x

variety price
<chr> <dbl>

1 Orange 0.8

2 Banana 1.1
Ifruit_3

A tibble: 2 x

Note that fruit_1 and fruit_2 have the same columns (variety and price), while

fruit_3 has an additional column origin .

variety price

<chr> <dbl>
Cherry 3.5
Plum 2.2

bind_rows|()

The function bind rows () stacks tables vertically - it adds rows. This is useful when you
have data from different time periods or different sources that share the same structure.

; L.10)

fruit 3 <- tibble(

herry",
p 2.20)
rmany",

2

3
origin
<chr>
Germany
Spain

”Pear"),

"Banana"),

"Plum"),

"Spain")

Ibindirows(fruit_l, fruit_Z)

BioMath

2/30

A tibble: 4 x 2
variety price
<chr> <dbl>

1 Apple 1.2
2 Pear 1.5
3 Orange 0.8
4 Banana 1.1

This works as expected: the rows are simply stacked on top of each other.

Different Columns

The big advantage of bind rows () over the base R function rbind() becomes apparent
when the tables have different columns. While rbind () throws an error in this case,
bind_rows () combines the tables anyway and fills missing values with Na :

| bind_rows (fruit_1, fruit 3

A tibble: 4 x 3

variety price origin
<chr> <dbl> <chr>

1 Apple 1.2 <NA>

2 Pear 1.5 <NA>

3 Cherry 3.5 Germany
4 Plum 2.2 Spain

As we can see, fruit 1 had no origin column, so these values are filled with N2 . This is

very convenient when combining data from different sources that don’t have exactly the
same columns.

Tracking Origin with .id
When combining multiple tables, we often want to know which original table each row came
from. For this, there’s the .id argument:

bind rows (

"Store A" = fruit 1,
"Store B" = fruit 2,
.id = "source"

A tibble: 4 x 3
source variety price
<chr> <chr> <dbl>

1 Store A Apple 1.2
2 Store A Pear 1.5
3 Store B Orange 0.8
4 Store B Banana 1.1

Here we gave names to the tables (“Store_A”, “Store_B”) and created a new column with
.id = "source" that contains these names.

Combining All Three Tables

We can also stack more than two tables at once:

Ibindirows(fruit_l, fruit 2, fruit 3)

BioMath

3/30

The origin column only exists for the last two rows (from fruit_3), all others get na .

BioMath

bind_cols()

The function bind cols() combines tables horizontally - it glues columns together.

Caution

With bind cols () there is no intelligent linking via key columns! The tables are simply

“pblindly” glued together side by side. This means: the rows must be in exactly the same
order, and the tables must have the same number of rows.

An example:

names df <- tibble (
first name = c("Anna", "Ben", "Clara"),
last name = c("Mueller", "Schmidt", "Weber")

)

age df <- tibble(

age = c (28, 34, 22),

profession = c("Physician", "Engineer", "Student")
)

bind cols(names df, age df)

A tibble: 3 x 4
first name last name age profession

<chr> <chr> <dbl> <chr>
1 Anna Mueller 28 Physician
2 Ben Schmidt 34 Engineer
3 Clara Weber 22 Student

This works because both tibbles have three rows and we know that row 1 in both tibbles
belongs to the same person.

When is bind_cols() Dangerous?

bind cols () can lead to incorrect results if the row order doesn’t match:

WRONG: Different order!
names sorted <- names df $>% arrange(first_name)
age original <- age df

bind cols(names sorted, age original)

A tibble: 3 x 4

first name last_name age profession
<chr> <chr> <dbl> <chr>
1 Anna Mueller 28 Physician
2 Ben Schmidt 34 Engineer
3 Clara Weber 22 Student

Here the names were sorted alphabetically, but the age data was not - Anna now gets age 28
assigned, which happened to be correct before sorting (and is coincidentally still correct), but
Ben and Clara are swapped! This is a common mistake!

When Should You Use bind_cols()?
bind_cols () is safe when:

* The data comes from the same source and is guaranteed to have the same order

5
5/30

* You just performed multiple calculations on the same data yourself
* You verify correctness after combining

In most other cases, a join is the better choice because it links via a key column.

BioMath

Joining Tables

Joins are the most powerful method for combining tables. They link tables intelligently via
one or more common columns (the “keys”). This means it doesn’t matter what order the rows
are in - R automatically finds the matching rows.

Example Data

For the joins, we use a different dataset: city data. We create three tibbles with different
information about cities:

Tibble 1: Six major cities in Central Europe with population

cities europe <- tibble(
city = c("Berlin", "Hamburg", "Munich", "Copenhagen", "Amsterdam", "London"),
population mio = ¢(3.9, 1.9, 1.5, 0.7, 0.9, 9.0)

)

Tibble 2: Ten German cities with rental prices (Euro per square meter)
cities rent <- tibble(
city = c("Berlin", "Hamburg", "Munich", "Frankfurt", "Cologne",
"Duesseldorf", "Stuttgart", "Leipzig", "Dresden", "Nuremberg"),
rent sgm = c(18.29, 17.18, 22.64, 19.62, 15.21,
16.04, 17.26, 11.38, 7.33, 9.65)

Tibble 3: The same ten German cities with additional statistics
cities stats <- tibble(
city = c("Berlin", "Hamburg", "Munich", "Frankfurt", "Cologne",
"Duesseldorf", "Stuttgart", "Leipzig", "Dresden", "Nuremberg"),
area km2 = c(892, 755, 310, 248, 405, 217, 207, 297, 328, 186),
green space pct = c(14.4, 16.8, 11.9, 21.5, 17.2, 18.9, 24.0, 14.8, 12.3, 19.1)

)

cities europe

A tibble: 6 x 2
city population mio
<chr> <dbl>
Berlin 3.
Hamburg
Munich
Copenhagen
Amsterdam
London

O J U1 W O

o U1 W N

o o O~ =

Icities_rent

A tibble: 10 x 2
city rent sgm
<chr> <dbl>
1 Berlin 18.3
2 Hamburg 17.2
3 Munich 22.6
4 Frankfurt 19.6
5 Cologne 15.2
6 Duesseldorf 16.0
7 Stuttgart 17.3
8 Leipzig 11.4
9 Dresden 7.33
10 Nuremberg 9.65

Icities_stats

7/30

BioMath

A tibble: 10 x 3

city area km2 green space pct
<chr> <dbl> <dbl>
1 Berlin 892 14.4
2 Hamburg 755 16.8
3 Munich 310 11.9
4 Frankfurt 248 21.5
5 Cologne 405 17.2
6 Duesseldorf 217 18.9
7 Stuttgart 207 24
8 Leipzig 297 14.8
9 Dresden 328 12.3
10 Nuremberg 186 19.1

Note that cities_europe contains three German cities (Berlin, Hamburg, Munich) that also
appear in the other two tibbles, plus three non-German cities. The tibbles cities rent and

cities_stats have exactly the same ten German cities but different columns.

The Concept: Key Columns

In a join, you specify which column(s) should be used as “keys”. R then searches for
matching values in this column and combines the corresponding rows.

In our example data, city is the obvious key column - it appears in all three tibbles and
uniquely identifies each row.
Mutating Joins

“Mutating joins” add columns from one table to another - they “mutate” the source table by
extending it with new columns. There are four variants that differ in which rows are included
in the result.

left_join()
The left join() keeps all rows from the left table and adds matching columns from the

right table. If there is no matching partner in the right table, the new columns are filled with
NA |

8/30

BioMath

left_join(x, vy)

1 Source of Visualizations

The animated graphics in this chapter come from Garrick Aden-Buie. He has created a
fantastic collection of visualizations there that illustrate the different join types and other
tidyverse operations. Worth a visit!

cities europe %>%
left join(cities rent, by = "city")

A tibble: 6 x 3

city population mio rent sgm
<chr> <dbl> <dbl>
1 Berlin 3.9 18.3
2 Hamburg 1.9 17.2
3 Munich 1.5 22.6
4 Copenhagen 0.7 NA
5 Amsterdam 0.9 NA
6 London 9 NA
We can see:

* All 6 cities from cities_europe are in the result
* Berlin, Hamburg, and Munich have received rental prices
* Copenhagen, Amsterdam, and London have Na for rent_sam because they don't appear

in cities rent

The left_join() is the most commonly used join because you often have a “main table”
that you want to extend with additional information without losing rows.

9/30

https://www.garrickadenbuie.com/project/tidyexplain/

right_join()

The right_join() is the mirror image of left join() : it keeps all rows from the right

table.

cities europe 3%>%

Now we have:

right_join(x, vy)

right join(cities rent, by = "city")
A tibble: 10 x 3
city population mio rent sgm
<chr> <dbl> <dbl>
1 Berlin 3.9 18.3
2 Hamburg 1.9 17.2
3 Munich 1.5 22.6
4 Frankfurt NA 19,6
5 Cologne NA 15.2
6 Duesseldorf NA 16.0
7 Stuttgart NA 17.3
8 Leipzig NA 11.4
9 Dresden NA 7.33
10 Nuremberg NA 9.65

* All 10 German cities from cities_rent

* Berlin, Hamburg, and Munich have population figures

* The 7 other German cities have NA for population mio

10

BioMath

10/30

BioMath

Q Tip

In practice, instead of right_join(a, b) you can simply write left join(b, a) -the
result is the same (only the column order differs). Many R users therefore use almost
exclusively left_join() .

inner_join()
The inner join() keeps only rows that appear in both tables. Rows without a partner
are completely excluded.

inner_join(x, vy)

cities europe %>%
inner join(cities rent, by = "city")

A tibble: 3 x 3

city population mio rent sgm
<chr> <dbl> <dbl>
1 Berlin 3.9 18.3
2 Hamburg 1.9 17.2
3 Munich 1.5 22.6

Only Berlin, Hamburg, and Munich remain - the only cities that appear in both tables. There
are no NA values in the result.

full_join()

The full join() keeps all rows from both tables. This is the most “generous” variant.

11
11/30

full _join(x, vy)

cities europe %>%
full join(cities rent, by = "city")

A tibble: 13 x 3

city population mio rent sgm
<chr> <dbl> <dbl>
1 Berlin 3.9 18.3
2 Hamburg 1.9 17.2
3 Munich 1.5 22.6
4 Copenhagen 0.7 NA
5 Amsterdam 0.9 NA
6 London 9 NA
7 Frankfurt NA 19.6
8 Cologne NA 15.2
9 Duesseldorf NA 16.0
10 Stuttgart NA 17.3
11 Leipzig NA 11.4
12 Dresden NA 7.33
13 Nuremberg NA 9.65

The result has 13 rows: 3 German cities with complete data, 3 non-German cities (population
only), and 7 additional German cities (rent only).

Exercise: Joins with Plant Data
First prepare the data:

Load and extend PlantGrowth dataset
data (PlantGrowth)

Dataset 1: Weight measurements with unique ID
plants weight <- PlantGrowth %>%

mutate (plant id = 1:n()) %>%

select (plant id, group, weight)

12

BioMath

12/30

Dataset 2: Height measurements (only available for some plants!)
set.seed (123)
plants height <- tibble (
plant dd-="e (1, 3, 5,7, 9, 14, 3, 15, 7, S0, = 208,523,025, 25, 29)),
height ecm = round(rnorm(1l5, mean = 26, sd = 3), 1)
)

View the datasets
plants weight

Iplants_height

O Exercise

Answer the following questions using the appropriate join functions:

a) Add the height measurements to all plants. Plants without height measurement should
get Na . How many plants have a height measurement?

b) Create a dataset with only the plants for which both weight and height were
measured.

¢) Which plants (plant_id) have no height measurement? Use a filtering join.

d) For the plants with both measurements, calculate the ratio weight / height_cm and

store it in a new column ratio .

14

BioMath

14/30

1 Solution

4

plants_complete <- plants weight %>%
left join(plants height, by = "plant id")

plants complete

plant id group weight height cm

1 ctrl 4.17 24.3
2 2 ctrl 5.58 NA
3 3 ctrl 5.18 25.3
4 4 ctrl 6.11 NA
5 5 ctrl 4.50 30.7
6 6 ctrl 4.61 NA
7 7 ctrl 5.17 26.2
8 8 «ctrl 4.53 NA
& 9 ctrl 533 26.4
10 10 ctrl 5.14 NA
11 11 trtl 4.81 31.1
12 12 trtl 4.17 NA
13 13 trtl 4.41 27.4
14 14 trtl 3.59 NA
15 15 trtl 5.87 22.2
16 16 trtl 3.83 NA
17 17 trtl 6.03 23.9
18 18 trtl 4.89 NA
19 19 trtl 4.32 24.7
20 20 trtl 4.69 NA
21 21 trt2 6.31 29,7
22 22 trt2 5,12 NA
23 23 trt2 5.54 27.1
24 24 trt2 5.50 NA
25 25 trt2 5.37 27.2
26 26 trt2 5.29 NA
27 27 trt2 4.92 26.3
28 28 trt2 6.15 NA
29 29 trt2 5.80 24.3
30 30 trt2 5.26 NA
Number of plants with height measurement
plants complete %>%
filter(!is.na(height cm)) %>%
nrow ()
I[l] 15
b) inner join: Only plants with both measur
plants both <- plants welght %>%
inner join(plants height, by = "plant id")

plants both

plant id group weight height cm

a) left join: Keep all plants, add height where

available

1 1 ctrl 4.17 24.3

2 3 ctrl 5.18 25.3

3 5 ctrl 4.50 30.7

4 7 ctrl 5.17 26.2

5 9 ctrl 5.33 26.4

6 11 trtl 4.81 31.1

7 13 trtl 4.41 27.4

8 15 trtl 5.87 22.2

9 17 trtl 6.03 23.9

10 19 trtl 4.32 24.7

11 21 trt?2 6.31 29.7
%3dp1ant;géag§§§gﬁw5g§§§ihemgh§§é§gnf nratioement
?%ants beg@htg%g%ant% @gth 3>3§ .3 0. 17 gp
%5mntat@¢§§tp@§§§wemghg§t hbyg§§"§m§m£04 4

3 6 ctrl 4.560 30.7 0.1465798

plants botB ctrl .53 26.2 0.1973282

BioMath

15/30

Different Column Names

Sometimes the key column has different names in the two tables. You can specify this in the
by argument:

Example: One table has "city", the other "stadt" (German)
cities german <- tibble (

stadt = c("Berlin", "Hamburg", "Munich"),

population = ¢ (3.8, 1.9, 1.5)
)

cities rent $>%
left join(cities german, by = c("city" = "stadt"))

The syntax by = c("city" = "stadt") means: “Link the city column from the left table

with the stadt column from the right table.”

16

Filtering Joins

Unlike mutating joins, filtering joins do not add new columns. They only filter the rows of the
left table based on whether there is a partner in the right table.

semi_join()

The semi_join() keeps all rows from the left table that have a partner in the right table.

semi_join(x, vy)

cities europe %>%
semi join(cities rent, by = "city")

A tibble: 3 x 2

city population mio
<chr> <dbl>
1 Berlin 3.9
2 Hamburg 1.9
3 Munich 1.5

The result contains only Berlin, Hamburg, and Munich - the European cities for which we
have rental data. But: no columns from cities rent were added! The result only has the

columns from cities europe .

The semi_join() answers the question: “Which rows from table A have a partner in table
B?”

anti_join()
The anti_join() is the opposite: it keeps all rows from the left table that have no partner in
the right table.

17

BioMath

17/30

BioMath

anti_join(x, vy)

cities europe %>%
anti join(cities rent, by = "city")

A tibble: 3 x 2

city population mio

<chr> <dbl>
1 Copenhagen 0.7
2 Amsterdam 0.9
3 London ©

Copenhagen, Amsterdam, and London - the European cities for which we have no rental
data.

The anti_join() is very useful for data quality checks: “Which records are missing?” or
“Which IDs from system A don’t exist in system B?”

18
18/30

BioMath

Set Operations

Set operations treat tables as mathematical sets. They only work when both tables have
exactly the same columns. They then compare entire rows (not individual key columns).

For the examples, we create two small tables with identical columns:

set a <- tibble(
city = c("Berlin", "Hamburg", "Munich"),
country = c("Germany", "Germany", "Germany")

)

set b <- tibble (
city = c("Hamburg", "Munich", "Frankfurt"),
country = c("Germany", "Germany", "Germany")

union()

union () returns all unique rows from both tables - the union set.

union(x, v)

M

Iunion(set_a, set_D)

A tibble: 4 x 2
city country
<chr> <chr>

1 Berlin Germany

2 Hamburg Germany

3 Munich Germany

4 Frankfurt Germany

Hamburg and Munich appear in both tables but appear only once in the result.

19
19/30

intersect()

intersect () returns only the rows that appear in both tables - the intersection.

Iintersect(set_a, set D)

#

1
2

A tibble: 2 x 2
city country
<chr> <chr>

Hamburg Germany
Munich Germany

intersect(x, vy)

Only Hamburg and Munich are in both tables.

setdiff()

setdiff () returns the rows that are in the first but not in the second table - the difference

set.

20

BioMath

20/30

BioMath

setdiff(x, vy)

M
Ml HD
HE

Isetdiff(set_a, set_D)

A tibble: 1 x 2
city country
<chr> <chr>

1 Berlin Germany

Berlinis only in set_a .

1 Note
With setdiff () , order matters! setdiff(a, b) and setdiff (b, a) return different
results:
Isetdiff(set_b, set a)
A tibble: 1 x 2
city country

<chr> <chr>
1 Frankfurt Germany

Frankfurt is only in set b.

21
21/30

Reshaping Data (Wide < Long)

Often we need to transform data between two formats:

* Wide format: Each variable has its own column
* Long format: Variable names become values in a column

Which format is “correct” depends on the use case. For many tidyverse functions and
ggplot2, the long format is better suited, while the wide format is often more readable for

humans.

wide

id X ' V4

C

2 (b

BioMath

22/30

BioMath

pivot_longer()

pivot_longer () transforms data from wide to long format - it makes the table “longer” (more
rows, fewer columns).

Let's look at cities stats:

Icities_stats

A tibble: 10 x 3
city area km2 green space pct
<chr> <dbl> <dbl>
1 Berlin 892 14.4
2 Hamburg 755 16.8
3 Munich 310 11.9
4 Frankfurt 248 21.5
5 Cologne 405 17.2
6 Duesseldorf 217 18.9
7 Stuttgart 207 24
8 Leipzig 297 14.8
9 Dresden 328 12.3
10 Nuremberg 186 19,1

This is a typical wide format: each metric (area, green space) has its own column. For some
analyses or visualizations, we want to convert this to long format:

cities stats %>%
pivot longer (
cols = c(area km2, green space pct),
names_to = "metric",
values to = "value"
)
A tibble: 20 x 3
city metric value
<chr> <chr> <dbl>
1 Berlin area km2 892
2 Berlin green space pct 14.4
3 Hamburg area km2 755
4 Hamburg green space pct 16.8
5 Munich area km2 310
6 Munich green space pct 11.9
7 Frankfurt area km2 248
8 Frankfurt green space pct 21.5
9 Cologne area km2 405
10 Cologne green space pct 17.2
11 Duesseldorf area km2 217
12 Duesseldorf green space pct 18.9
13 Stuttgart area km2 207
14 Stuttgart green space pct 24
15 Leipzig area km2 297
16 Leipzig green space pct 14.8
17 Dresden area km2 328
18 Dresden green space pct 12.3
19 Nuremberg area km2 186
20 Nuremberg green space pct 19.1

The key arguments:

* cols : Which columns should be “collapsed”?
* names_to : What should the new column be called that contains the old column names?

values_to : What should the new column be called that contains the values?

23
23/30

Now each city has two rows - one per metric. This is ideal for ggplot2 when you want to
display both metrics in a faceted plot, for example.

Column Selection with Helper Functions

Instead of listing columns individually, you can use helper functions:

All columns
cities stats
pivot longer (

names to =

A tibble: 20
city

<chr>
Berlin
Berlin
Hamburg
Hamburg
Munich
Munich
Frankfurt
Frankfurt
Cologne
Cologne
Duesseldorf
Duesseldorf
Stuttgart
Stuttgart
Leipzig
Leipzig
Dresden
Dresden
Nuremberg
Nuremberg

O J o Ul WD

I N e e
O LW W I U WN R OV

All numeric
cities stats
pivot longer (

names to =
)

A tibble: 20
city

<chr>
Berlin
Berlin
Hamburg
Hamburg
Munich
Munich
Frankfurt
Frankfurt
Cologne
Cologne
Duesseldorf
Duesseldorf
Stuttgart
Stuttgart
Leipzig
Leipzig

O ~J o) Ul WD

e el el el
o Ul W N O W

values to =

cols = -city,

"metric",

values to = "value"

x 3

metric

<chr>

area km2

green_ space pct
area_km?2

green space pct
area km2

green space pct
area_km2

green space pct
area km2

green_ space pct
area_ km2

green space pct
area km2
green_space pct
area_ km2

green space pct
area km2

green space pct
area km2

green space pct

cols = where (is.numeric),

"metric",
"value"

x 3

metric

<chr>

area_ km2

green_ space pct
area km2

green_ space pct
area_ km2

green_ space pct
area km2

green space pct
area km2

green_ space pct
area_km2

green space pct
area km2

green space pct
area_km2

green space pct

value
<dbl>
892
14.4
755
16.8
310
11.9
248
21.5
405
17.2
217
18.9
207
24
297
14.8
328
12.3
186
19.1

value
<dbl>
892
14.4
755
16.8
310
11.9
248
21.5
405
17.2
217
18.9
207
24
297
14.8

24

BioMath

24/30

pivot_wider()

pivot_wider () is the inverse function: it transforms from long to wide format - the table

becomes “wider” (fewer rows, more columns).

First, let’s create a long-format table:

pivot longer (

cities long <- cities stats %>%

cols = -city,
names_to = "metric",
values to = "value"
)
cities long
A tibble: 20 x 3
city metric
<chr> <chr>
1 Berlin area km2
2 Berlin green_ space pct
3 Hamburg area_ km2
4 Hamburg green space pct
5 Munich area km2
6 Munich green space pct
7 Frankfurt area km2
8 Frankfurt green space pct
9 Cologne area km2
10 Cologne green space pct
11 Duesseldorf area km2
12 Duesseldorf green space pct
13 Stuttgart area_km?2
14 Stuttgart green_ space pct
15 Leipzig area km2
16 Leipzig green space pct
17 Dresden area km2
18 Dresden green space pct
19 Nuremberg area km2
20 Nuremberg green space pct

value
<dbl>
892
14.4
755
16.8
310
11.9
248
21.5
405
17.2
217
18.9
207
24
297
14.8
328
12.3
186
19.1

Now we transform back to wide format:

O W 0 Jo U d WN -

=

cities long %>%

pivot wider (

)

names_from

= metric,

values from = value

A tibble: 10

city
<chr>
Berlin
Hamburg
Munich
Frankfurt
Cologne
Duesseldorf
Stuttgart
Leipzig
Dresden
Nuremberg

x 3

area km2 green space pct
<dbl>

<dbl>
892
755
310
248
405
217
207
297
328
186

The key arguments:

names_from : Which column contains the future column names?

14.
16.
11,
21.
17.
18.

24

14.
12,
19,

O N Ul O O

w

26

BioMath

26/30

values_from ; Which column contains the values?

1 Alternative Function Names in Other Packages

You may have already used other functions in this context. Here are some alternatives,

some of which are now deprecated:

* melt() & dcast() from {data.table}

* fold()

®* melt ()

& unfold() from {databases}
* melt() & cast() from {reshape}
&

decast () from {reshape2}

* unpivot () & pivot() from {spreadsheets}

* gather() & spread() from {tidyr} <v1.0.0

Typical Use Case: Cross Tables

pivot_wider () is also useful for creating cross tables. Suppose we have sales data:

sales <- tibble(
product = c("Apple",

)

sales

A tibble: 4 x 3

pivot wider (

)

A tibble: 2 x 3

product 01 02
<chr> <dbl> <dbl>
1 Apple 100 120
2 Pear 80 90

Now we have a clear cross table with products in rows and quarters in columns.

quarter = c("Ql", "Q2",
revenue = c (100, 120,

"Apple", "Pear", "Pear"),

product quarter revenue

<chr> <chr> <dbl>
1 Apple Q1 100
2 Apple Q2 120
3 Pear 01 80
4 Pear Q2 90
sales %>%

names from = quarter,
values from = revenue

HQlll, "QZ"),
80,

90)

Exercise: Pivoting Workflow

First prepare a dataset in long format:

Simulate PlantGrowth

set.seed (42)

with

multiple measurements

plants long <- PlantGrowth %$>%

mutate (
plant id = 1:n¢(),

27

BioMath

27/30

height cm = weight * 5 + rnorm(n(), mean = 0, sd = 2)
) $>%
pivot longer (

cols = c(weight, height cm),
names_to = "measurement",
values_to = "value"

) $>%

select (plant id, group, measurement, value)

plants_ long

A tibble: 60 x 4
plant id group measurement value

<int> <fct> <chr> <dbl>

1 1 ctrl weight 4.17
2 1 ctrl height cm 23.6
3 2 ctrl weight 5.58
4 2 ctrl height cm 26.8
5 3 ctrl weight 5.18
6 3 ctrl height cm 26.6
7 4 ctrl weight 6.11
8 4 ctrl height cm 31.8
9 5 ctrl weight 4.5
10 5 ctrl height cm 233

i 50 more rows

© Exercise

Perform the following transformations:

a) Transform plants_long to wide format so that weight and height cm each have
their own columns.

b) Add a new column bni (Body Mass Index for plants) that calculates the ratio

weight / height cm .

C) Transform the dataset back to long format so that all three variables (weight |,

height cm, and bmi)appearinthe measurement column.

28

BioMath

28/30

1 Solution

a) Create wide format
plants wide <- plants long %>%
pivot wider (
names from = measurement,
values from = value

)

plants wide

A tibble: 30 x 4
plant id group weight height cm

<int> <fct> <dbl> <dbl>
1 1 ctrl 4.17 23.6
2 2 ctrl 5.58 26.8
3 3 ctrl 5.18 26.6
4 4 ctrl 6.11 31.8
5 5 ctrl 4.5 23.3
6 6 ctrl 4.61 22.8
7 7 ctrl 5.17 28.9
8 8 ctrl 4.53 22.5
9 9 ctrl 5.33 30.7
10 10 ctrl 5.14 25.6

i 20 more rows

b) Add new column

plants wide <- plants wide %>%
mutate (bmi = weight / height cm)

plants wide

A tibble: 30 x 5

=

2T QN MmMATA AT

plant id group weight height cm bmi
<int> <fct> <dbl> <dbl> <dbl>
1 1 ctrl 4.17 23.6 0.177
2 2 ctrl 5.58 26.8 0.208
3 3 ctrl 5.18 26.6 0.195
4 4 ctrl 6.11 31.8 0.192
5 5 ctrl 4.5 23.3 0.193
6 6 ctrl 4.61 22.8 0.202
7 7 ctrl 5.17 28.9 0.179
8 8 ctrl 4.53 22.5 0.202
9 9 ctrl 5.33 30.7 0.174
10 10 ctrl 5.14 25.6 0.201
i 20 more rows
c) Back to long format (all three variables)
plants final long <- plants wide %>%
pivot longer (
cols = c(weight, height cm, bmi),
names to = "measurement",
values to = "value"
)
plants final long
A tibble: 90 x 4
plant id group measurement value
<int> <fct> <chr> <dbl>
1 1 ctrl weight 4.17
2 1 ctrl height cm 23.6
3 1 ctrl bmi 0.177
4 2 ctrl weight 5.58
5 2 ctrl height cm 26.8
6 ctri—bmt 0-208
7 3 ctrl weight 5.18
8 3 ctrl height cm 26.6 29
9 3 ctrl bmi 0.195
0 4 ctrl weight 6.11

BioMath

29/30

Summary

Well done! You now master the most important techniques for combining and reshaping
tables in R.

1 Key Takeaways

1. Stacking Tables:
* bind_rows () : Stack rows vertically - works even with different columns (missing
ones are filled with NA)
* bind cols () : Glue columns horizontally - Caution: no intelligent linking, order must

match!
2. Mutating Joins (add columns):

* left_join() : Keep all rows from the left table - the default case
* right_join() : Keep all rows from the right table
* inner_join() : Only rows with a partner in both tables
® full join() : All rows from both tables
3. Filtering Joins (only filter, no new columns):
* semi_join() : Rows from x that have a partneriny
* anti_join() : Rows from x that have no partner in y - ideal for “What’s missing?”

questions
4. Set Operations (tables as sets, require identical columns):

* union() : All unique rows from both
* intersect () : Only rows that appear in both
* setdiff () : Rows from x that are notiny
5. Pivoting (change data format):
* pivot_longer () : Wide — Long (more rows, fewer columns)
* pivot_wider () : Long — Wide (fewer rows, more columns)
6. Best Practices:
* For different column names: by = c("name_left" = "name right")
* When in doubt, use left join() instead of bind cols ()

* Use anti_join() for data quality checks

Bibliography

30

BioMath

30/30

	Introduction
	Stacking Tables
	Example Data
	bind_rows()
	Different Columns
	Tracking Origin with .id
	Combining All Three Tables

	bind_cols()
	When is bind_cols() Dangerous?
	When Should You Use bind_cols()?

	Joining Tables
	Example Data
	The Concept: Key Columns
	Mutating Joins
	left_join()
	right_join()
	inner_join()
	full_join()

	Exercise: Joins with Plant Data
	Different Column Names

	Filtering Joins
	semi_join()
	anti_join()

	Set Operations
	union()
	intersect()
	setdiff()

	Reshaping Data (Wide ↔ Long)
	pivot_longer()
	Column Selection with Helper Functions

	pivot_wider()
	Typical Use Case: Cross Tables

	Exercise: Pivoting Workflow

	Summary
	Bibliography

