BioMath

2. Advanced Excel Workflows

Professional Import and Export with readxl and openxIsx2
Dr. Paul Schmidt

Loading Packages

for (pkg in c("glue", "openxlsx2", "readxl", "tidyverse")) {
if (!require (pkg, character.only = TRUE)) {
install.packages (pkg, dependencies = TRUE)
}
library (pkg, character.only = TRUE)
}

ILade notiges Paket: glue
ILade notiges Paket: openxlsx2

ILade notiges Paket: readxl

Attache Paket: 'readxl'

Das folgende Objekt ist maskiert 'package:openxlsx2':

read xlsx

Lade notiges Paket: tidyverse

— Attaching core tidyverse packages tidyverse 2.0.0 —
/ dplyr 1.1.4 / readr 2.1:5

v/ forcats 1.0.0 / stringr 1.5.2

v/ ggplot2 4.0.2 / tibble 3.3.0

/ lubridate 1.9.4 / tidyr 1.3.1

/ purrr 1.1.0

— Conflicts tidyverse conflicts() —
)(dplyr::filter () masks stats::filter ()

)(dplyr::lag() masks stats::lag()

)(readxl::read xlsx() masks openxlsx2::read xlsx()

i Use the conflicted package (<http://conflicted.r-1lib.org/>) to force all conflicts

to become errors

Create output directo

if (!dir.exists ("output")) {
dir.create ("output")

Preparing the Example Excel File

For the import examples, we use an Excel file that comes bundled with the openxlsx2

package. It contains two sheets and various data types, making it ideal for our
demonstrations. We copy it to our output directory so we can work with it throughout the
chapter:

117

Locate example file from openxlsx2 package
example file <- system.file("extdata", "openxlsx2 example.xlsx", package =
"openxlsx2")

Copy to output folder
file.copy(
from = example file,
to = "output/example.xlsx",
overwrite = TRUE

)

I [1] TRUE

1. Import: Beyond the Basics

In earlier chapters, we learned how to use readxl::read excel() to read single Excel files.

In practice, however, we often encounter more complex situations: files with multiple
worksheets, messy structures with headers and footnotes, or specific cell ranges that we
want to read selectively. Here we expand our knowledge to cover these common special
cases.

1.1 Importing Multiple Sheets

Excel files often contain multiple worksheets that belong together thematically - for example,
different measurement timepoints from an experiment or different datasets from a study.

Instead of loading each sheet individually and manually, we can use excel_sheets() to read

all available sheet names and then systematically import them in a loop. We store the result
in a named list so we can access the respective datasets directly via the sheet names.

Our example file

file path <- "output/example.xlsx"
List a sheet names

sheet names <- excel sheets(file path)
sheet names

[1] "Sheetl" "Sheet2"

Import all sheets into a named list

all data <- map (sheet names, \ (sheet) read excel (file path, sheet = sheet))
New names:

New names:

o T > ", ..3"

names (all data) <- sheet names

Access individual sheet
all dataS$Sheetl

A tibble: 10 x 9

Varl Var2 ...3 Var3 Var4 Varb Var6 Var7
<lgl> <dbl> <1lgl> <dbl> <chr> <dttm> <chr> <dbl>
1 TRUE 1 NA 1 a 2023-05-29 00:00:00 3209324 This NA
2 TRUE NA NA NA b 2023-05-23 00:00:00 <NA> 0
3 TRUE 2 NA 1.34 ¢ 2023-02-01 00:00:00 <NA> NA
4 FALSE 2 NA NA <NA> NA <NA> 2
5 FALSE 3 NA 1.56 e NA <NA> NA
6 FALSE 1 NA 1.7 £ 2023-03-02 00:00:00 <NA> 2.7
7 NA NA NA NA <NA> NA <NA> NA
2

BioMath

2117

BioMath

8 FALSE 2 NA 23 h 2023-12-24 00:00:00 <NA> 25
9 FALSE 3 NA 67.3 1 2023-12-25 00:00:00 <NA> 3
10 NA 1 NA 123 <NA> 2023-07-31 00:00:00 <NA> 122

i 1 more variable: Var8 <dttm>

Alternatively, we can use a classic for loop if we don’t want to use purrr or prefer more
explicit logic:

all data <- list()
for (sheet in sheet names) {

all data[[sheet]] <- read excel (file path, sheet = sheet)
}

New names:
New names:
e T > .3

1.2 Precise Reading: Ranges & Skip

In the real working world, Excel files are rarely as tidy as in textbooks. We often find
descriptive text above the actual data, footnotes below, empty rows as separators, or the

actual data only starts at row 10 and column C. For such situations, readxl offers several
useful options that let us precisely control which parts of the file we want to read.

With the range option, we can specify an exact cell range in Excel notation (e.g., "B5:G620")

to read only that range. The skip option skips a certain number of rows at the beginning of

the file - practical when the data only starts after several header rows. If the column names
themselves are chaotic or unusable, we can disable automatic header reading with

col names = FALSE . And finally, we can use na to specify which character strings should be
interpreted as missing values - since not everyone uses “NA” for missing values.

df <- read excel ("output/example.xlsx", range = "B3:G1l0")

New names:
o 1% =» “l,.02°

| as

A tibble: 7 x 6

"TRUE" "1...2° ...3 '1...4° a ©45075°

<lgl> <dbl> <1lgl> <dbl> <chr> <dttm>
1 TRUE NA NA NA b 2023-05-23 00:00:00
2 TRUE 2 NA 1.34 ¢ 2023-02-01 00:00:00
3 FALSE 2 NA NA <NA> NA
4 FALSE 3 NA 1.56 e NA
5 FALSE 1 NA 1.7 £ 2023-03-02 00:00:00
6 NA NA NA NA <NA> NA
7 FALSE 2 NA 23 h 2023-12-24 00:00:00

df <- read excel ("output/example.xlsx", skip = 2)

New names:
e "1 => "1...2°
N e h

3/17

BioMath

df

A tibble: 9 x 9

"TRUE" "1...2° ...3 '1...4° a *45075° 3209324 This® ...8
<lgl> <dbl> <lgl> <dbl> <chr> <dttm> <lgl> <dbl>
1 TRUE NA NA NA b 2023-05-23 00:00:00 NA 0
2 TRUE 2 NA 1.34 ¢ 2023-02-01 00:00:00 NA NA
3 FALSE 2 NA NA <NA> NA NA 2
4 FALSE 3 NA 1.56 e NA NA NA
5 FALSE 1 NA 1.7 £ 2023-03-02 00:00:00 NA 2.7
6 NA NA NA NA <NA> NA NA NA
7 FALSE 2 NA 23 h 2023-12-24 00:00:00 NA 25
8 FALSE 3 NA 67.3 1 2023-12-25 00:00:00 NA 3
9 NA 1 NA 123 <NA> 2023-07-31 00:00:00 NA 122
i 1 more variable: '6.0590277777777778E-2" <dttm>

No automatic column names (when header is chaotic)
df <- read excel ("output/example.xlsx", col names = FALSE)

New names:

¢« T > .10
o T > .20
. -> ..30
. -> ..4°
. -> ..5°
. —> ..6°
. -> .10
. -> ..8°
. -> ..o
df

A tibble: 11 x 9

1 .02 L0033 L..4 L0.5 LL.6 LT ...8 ...9
<chr> <chr> <1lgl> <chr> <chr> <chr> <chr> <chr> <chr>
1 Varl Var2 NA Var3 Vard4 Var5 Var6 Var7 Var8
2 TRUE 1 NA 1 a 45075 3209324 This <NA> 6.0590277777777778E-2
3 TRUE <NA> NA <NA> Db 45069 <NA> 0 0.58538194444444447
4 TRUE 2 NA 1.34 ¢ 44958 <NA> <NA> 0.959050925925926
5 FALSE 2 NA <NA> <NA> <NA> <NA> 2 0.72561342592592604
6 FALSE 3 NA 1.56 e <NA> <NA> <NA> <NA>
7 FALSE 1 NA 1.7 f 44987 <NA> 2.7 0.36525462962962968
8 <NA> <NA> NA <NA> <NA> <NA> <NA> <NA> <NA>
9 FALSE 2 NA 23 h 45284 <NA> 25 <NA>
10 FALSE 3 NA 67.3 i 45285 <NA> 3 <NA>
11 <NA> 1 NA 123 <NA> 45138 <NA> 122 <NA>
Define custom NA values

df <- read excel (
"output/example.x1lsx",
na = C("", HNAH, ll#NUM!H, ll#DIv/O[ll)

New names:
o T =% ",..3°

df

A tibble: 10 x 9

Varl Var2 ...3 Var3 Var4 Varb Var6 Var7
<lgl> <dbl> <1lgl> <dbl> <chr> <dttm> <chr> <dbl>
1 TRUE 1 NA 1 a 2023-05-29 00:00:00 3209324 This NA
4

417

2 TRUE NA NA
3 TRUE 2 NA
4 FALSE 2 NA
5 FALSE 3 NA
6 FALSE 1 NA
7 NA NA NA
8 FALSE 2 NA
9 FALSE 3 NA
10 NA 1 NA

i 1 more variable:

Combination of mul

df <- read excel/(

NA b
1.34 ¢
NA <NA>
1.56 e
1.7 £
NA <NA>
23 h
67.3 1
123 <NA>

Var8 <dttm>

tiple options

"output/example.xlsx",

sheet = "Sheetl",
range = "B2:F8",
col names = TRUE

)

New names:
e T > . ..3"

df

A tibble: 6 x 5

Varl Var2 ...3 Var3 Var4
<lgl> <dbl> <1lgl> <dbl> <chr>
1 TRUE 1 NA 1 a
2 TRUE NA NA NA b
3 TRUE 2 NA 1.34 ¢
4 FALSE 2 NA NA <NA>
5 FALSE 3 NA 1.56 e
6 FALSE 1 NA 1.7 £

2023-05-23
2023-02-01
NA
NA
2023-03-02
NA
2023-12-24
2023-12-25
2023-07-31

00:
00:

00:

00:

00:
00:

00:
00:

00:

00:

00:
00:

00
00

00

00

00
00

<NA>
<NA>
<NA>
<NA>
<NA>
<NA>
<NA>
<NA>
<NA>

NA

NA

NA
25

122

1 Range Syntax

The range option accepts Excel notation (e.g., "B3:F20") or just starting points (e.g.,

"B3" reads from B3 to the end).

2. Export: Professional Formatting

Exporting with openx1sx2 goes far beyond simply writing data. While base R and many other

packages merely write the bare numbers and text to an Excel file, openxlsx2 enables us to

create professionally formatted Excel files that are immediately presentation-ready. We can
adjust column widths, highlight headers, apply conditional formatting, and much more - all

programmatically and reproducibly.

BioMath

5/17

© Opening Excel Files Directly from R

After creating an Excel file, we can open it directly from R to check the result:

Windows

shell.exec ("output/trial table.xlsx")

macOS/Linux
system2 ("open", "output/trial table.xlsx") # macOS
system2 ("xdg-open", "output/trial table.xlsx") # Linux

Creating Example Data

For all the following examples, we use a small, consistent dataset from a clinical trial. It
contains patient IDs, treatment groups, timepoints, outcome values, and visit dates. This
allows us to demonstrate the various formatting options using a consistent example
throughout:

set.seed (42)
trial data <- tibble(

patient id = glue("P{str pad(l:12, width = 3, pad = '0")}"),

treatment = rep(c("Drug A", "Drug B", "Control"), each = 4),

timepoint = rep(c("Baseline", "Week 4", "Week 8"), times = 4),

outcome = round(rnorm(l2, mean = 50, sd = 10), 1),

visit date = seq.Date(from = as.Date("2024-01-15"), by = "week", length.out = 12)

)

trial data

A tibble: 12 x 5
patient id treatment timepoint outcome visit date

<glue> <chr> <chr> <dbl> <date>
1 POO1 Drug A Baseline 63.7 2024-01-15
2 P002 Drug A Week 4 44.4 2024-01-22
3 P003 Drug A Week 8 53.6 2024-01-29
4 P004 Drug A Baseline 56.3 2024-02-05
5 P005 Drug B Week 4 54 2024-02-12
6 P006 Drug B Week 8 48.9 2024-02-19
7 PO07 Drug B Baseline 65.1 2024-02-26
8 P008 Drug B Week 4 49.1 2024-03-04
9 P009 Control Week 8 70.2 2024-03-11
10 PO10 Control Baseline 49.4 2024-03-18
11 PO1l1 Control Week 4 63 2024-03-25
12 PO12 Control Week 8 72.9 2024-04-01

2.1 Basics Review (Very Brief)

As a reminder: the basic creation of an Excel file always follows the same pattern. We create
a workbook object, add one or more worksheets, write data to them, and save the workbook

as an .xlsx file. This workflow forms the basis for all further formatting:

Create workbook

wb <- wb workbook ()

Add worksheet
wb <- wb |> wb add worksheet ("Trial Data")

Write data
wb <- wb |> wb add data(x = trial data)

BioMath

6/17

BioMath

Save

wb save (wb, "output/trialibasic.xlsx", overwrite = TRUE)

2.2 Column Widths

One of the first things we notice when opening a freshly exported Excel file are often
columns that are too narrow or too wide. Long texts get cut off, numbers display as ### ,

while other columns waste unnecessary space. With wb_set_col_widths () we can elegantly

solve this problem: the option widths = "auto" automatically calculates the optimal width

based on each column’s content. This ensures all data is displayed completely and clearly
without requiring manual adjustments in Excel.

wb <- wb workbook () |[>
wb add worksheet ("Trial Data") |[>
wb_add data(x = trial data) [>
Automatic width for a columns
wb set col widths(cols = 1l:ncol(trial data), widths = "auto")

wb_save (wb, "output/trial colwidths.xlsx", overwrite = TRUE)

Q Tip

Alternatively, we can set specific widths in Excel units, for example when we know
exactly how wide certain columns should be:

Iwbiseticoliwidths(cols = 1:3, widths = c (15, 20, 12))

2.3 Header Styling

The header row is the most important visual orientation point in a table. In professional Excel
files, column names are therefore typically bold and highlighted with color - usually with a
subtle gray background. This formatting makes the table immediately more readable and

gives it a professional appearance. With wb_add_font () we make the text bold, with

wb_add_fill() we add the background color. We apply both functions specifically to the first
row (the header):

wb <- wb workbook() [>
wb add worksheet ("Trial Data") [>
wb add data(x = trial data) |[>
wb set col widths(cols = l:ncol(trial data), widths = "auto") [>
Header bold + gray background
wb add font (dims = "Al:E1", bold = TRUE, size = 11) [>
wb add fill (dims = "Al:El1", color = wb color (hex = "FFD3D3D3"))

wb save (wb, "output/trial header.xlsx", overwrite = TRUE)

2.4 Excel Tables (Filterable)

While wb_add data() simply writes cell values, wb_add_data_table () creates a proper

Excel table with built-in functionality. Excel tables automatically provide filter buttons in the
header row, structured references for formulas, and a consistent design. This is especially
practical when we later share the file with colleagues who want to filter or sort within it. The

various table_style options offer predefined designs that we can apply directly:

7
717

BioMath

wb <- wb workbook() |[>
wb add worksheet ("Trial Data") [>
wb add data table() instead of wb add data (

wb add data table(
x = trial data,

table style = "TableStyleMedium2"
) 1>
wb set col widths(cols = l:ncol(trial data), widths = "auto")

wb_save (wb, "output/trial table.xlsx", overwrite = TRUE)

1 Available Table Styles

Excel offers many predefined styles: "TablestyleLightl" through

"TableStyleLight21" , "TableStyleMediuml" through "TablestyleMedium28" , etc. Best

to just try different ones to find the right style!

2.5 Turning Off Gridlines

By default, Excel shows gridlines across the entire worksheet, even in empty areas. This can
be distracting for smaller, focused tables. If we prefer a clean layout where only the cells with

data are highlighted by borders, we can disable the gridlines with grid_lines = FALSE when

creating the worksheet. Combined with an Excel table (which has its own borders), this gives
us a very tidy, professional appearance:

wb <- wb workbook() |[>
wb add worksheet ("Trial Data", grid lines = FALSE) |[>
wb add data table(x = trial data) |[>
wb set col widths(cols = l:ncol(trial data), widths = "auto")

wb_ save (wb, "output/trialinogrid.xlsx", overwrite = TRUE)

2.6 Conditional Formatting

Conditional formatting is one of the most powerful features in Excel and is particularly useful
for highlighting patterns in data. Instead of manually scrolling through columns and
comparing values, we can automatically color cells based on their value, add bars, or mark
them with icons. The following examples show three common use cases.

Color Scales

With color scales, each cell is colored based on its value - low values might be red, medium
yellow, high green. This provides an immediate visual overview of the value distribution.
Particularly useful for outcome variables, scores, or any measurements where magnitude is
relevant:

wb <- wb workbook () |[>

wb add worksheet ("Trial Data") |[>
wb add data table(x = trial data) |[>
wb set col widths(cols = 1l:ncol(trial data), widths = "auto") [>
Color Scale for outcome column (Column D = 4)
wb_add conditional formatting(
dims = "D2:D13", # without header
type = "colorScale",

style = c("red", "yellow", "green"),
rule = c(0, 50, 100)

817

)

wb save (wb, "output/trial colorscale.xlsx", overwrite = TRUE)

Data Bars

Data bars show a horizontal bar in each cell whose length corresponds to the value. This

works like a mini bar chart directly in the table and makes size differences visible at a glance.

The numbers remain visible so we can see both the exact value and the visual proportion:

wb <- wb workbook () |[>

wb add worksheet ("Trial Data") |[>

wb add data table(x = trial data) [|>

wb set col widths(cols = 1l:ncol(trial data), widths = "auto") [>
Data Bars for outcome column

wb_add conditional formatting/(

dims = "D2:D13",

type = "dataBar",

style = c("#4472C4"), # Blue

params = list (showValue = TRUE, gradient = TRUE)
)

wb save (wb, "output/trial databars.xlsx", overwrite = TRUE)

Rule-based Formatting
Sometimes we don’t want to color all values, just those that meet a certain criterion - for
example, all outcome values above a threshold. With rule-based formatting, we define a
condition (e.g., ">55") and a style (font color, background color) that is applied to the
corresponding cells. This is ideal for highlighting critical values:
Custom style for values > 55
high style <- create dxfs style(

font color = wb color (hex = "FF006100"),

bg fill = wb color (hex = "FFC6EFCE")
)

wb <- wb workbook () |[>

wb add worksheet ("Trial Data") |[>
wb add data table(x = trial data) |[>
wb set col widths(cols = l:ncol(trial data), widths = "auto")

Add style to workbook
wbSstyles mgr$add(high style, "high values")

Apply conditional formatting
wb <- wb |>
wb add conditional formatting(

dims = "D2:D13",
type = "expression",
rule = ">55",
style = "high values"
)
wb save (wb, "output/trial rules.xlsx", overwrite = TRUE)

BioMath

917

I More Conditional Formatting Options

There are many more types like "topN" (the top N highest values), "bottomn"

"duplicatedvalues" (mark duplicates), "iconset" (traffic light icons), etc. For details,
see the Conditional Formatting Vignette.

2.7 Freeze Panes

With longer tables, we quickly lose track of which column contains which data when scrolling
down - because the header row disappears from view. With freeze panes, we can fix the first

row (or also the first column) so that it always remains visible when scrolling. This is one of
the most-used features in Excel and makes working with larger datasets considerably more
comfortable:

wb <- wb workbook () |[>
wb add worksheet ("Trial Data") |[>
wb add data table(x = trial data) [>
wb set col widths(cols = 1l:ncol(trial data), widths = "auto") [>
Fix first row
wb freeze pane(first row = TRUE)

wb save (wb, "output/trialifreeze.xlsx", overwrite = TRUE)

O Tip
We can also freeze the first column (useful for wide tables with many columns):
Iwb_freeze_pane(first_col = TRUE)

Or even both at the same time:

Iwbifreezeipane(first_row = TRUE, first col = TRUE)

2.8 Hyperlinks

Hyperlinks make Excel files interactive and connect different pieces of information. We can
embed external URLs (e.g., to protocols or documentation) or create internal links to other
sheets. This is especially practical for tables of contents or when we want to navigate

between different worksheets. In openxlsx2 | there are two different approaches: external
links use wb_add hyperlink() , while internal sheet links are created via

create_hyperlink() and wb add formula () :

wb <- wb workbook() |[>
wb add worksheet ("Overview") [>
wb add data(x = tibble(
Description = c("Study Protocol", "Raw Data", "Analysis")

))

wb <- wb |>
wb add worksheet ("Trial Data") |[>
wb add data table(x = trial data) |[>
wb set col widths(cols = 1l:ncol(trial data), widths = "auto")

External URL as hyperlink

10

BioMath

10117

https://janmarvin.github.io/openxlsx2/articles/conditional-formatting.html

wb <- wb |>
wb add data(

sheet = "Overview",
dims = "B2",
x = "Protocol Document"

) 1>

wb add hyperlink(
sheet = "Overview",
dims = "B2",
target = "https://example.com/protocol",
tooltip = "Link to study protocol"

)

Internal link to another sheet (with Li]i‘fiatfiihyp(i]flillk + wb _add formula)

internal link <- create hyperlink(

sheet = "Trial Data",

row = 1,

col = 1,

text = "Go to Trial Data"

wb <- wb |>
wb add formula (
sheet = "Overview",
dims = "B3",
x = internal link

)

wb_save (wb, "output/trial hyperlinks.xlsx", overwrite = TRUE)

1 External vs. Internal Links

* External URLs: wb add hyperlink() with target =

* Internal sheet links: create hyperlink() + wb_add formula ()

2.9 Date/Number Formats

Excel often interprets numbers and dates differently than we expect - dates appear as
numbers, decimal places are missing, or currencies appear without symbols. With number
formats, we can specify exactly how values should be displayed. This only changes the
presentation, not the underlying value. This is especially important for reports that we share
with others, so the data appears in the desired form immediately:

wb <- wb workbook () |[>

wb add worksheet ("Trial Data") |[>

wb add data table(x = trial data) [|>

wb set col widths(cols = 1l:ncol(trial data), widths = "auto") [>
Outcome as number with 1 decimal place

wb add numfmt (dims = "D2:D13", numfmt = "0.0") [>

Date as dd.mm.yyyy

wb add numfmt (dims = "E2:E13", numfmt = "dd.mm.yyyy")

wb save (wb, "output/trialiformats.xlsx", overwrite = TRUE)

11

BioMath

1117

BioMath

1 Common Number Formats

"0.00" -two decimal places
"0.00%" - percentage

"#,##0.00" -thousands separator
* "#,##0.00 €" - currency
"dd.mm.yyyy" - date German style
* "yyyy-mm-dd" - date ISO

"[h]:mm:ss" -time over 24h

For custom formats with text: see openxisx2 Styling Manual

2.10 Advanced Examples from ox2-book

The ox2-book is the comprehensive handbook for openxlsx2 and contains numerous

advanced examples and techniques. Below we show some highlights from the chapters on
styling, conditional formatting, and formulas. These examples only scratch the surface of
what’s possible - for deeper applications, it's worth looking at the respective chapters.

Text Rotation (Ch. 5: Styling)

Rotating text by 45° is particularly useful for tables with many columns and long header texts.
The rotated text saves horizontal space and makes the table more compact without
compromising readability. Combined with bold text and a background color, this creates a
very professional look:

wb <- wb workbook () |[>
wb add worksheet ("Trial Data") |[>
wb add data(x = trial data) [>
wb set col widths(cols = 1l:ncol(trial data), widths = 12) [|>
Text rotation styling B
wb add cell style(
dims = "Al:E1",
horizontal = "center",
text rotation = 45
) 1>
wb add font(dims = "Al:E1", bold = TRUE, size = 10) |[>
wb add fill (dims = "Al:E1", color = wb color (hex = "FF4472C4"))

wb save (wb, "output/trial rotation.xlsx", overwrite = TRUE)

More styling options: Chapter 5 - Styling of worksheets

Icon Sets (Ch. 7: Conditional Formatting)

Icon sets are an elegant variant of conditional formatting: instead of coloring cells, we add
small icons (e.g., traffic light symbols) that show at a glance whether values are good,
medium, or poor. This is especially useful for dashboards and reports since the icons are
also clearly visible when printed:

wb <- wb workbook () |[>
wb add worksheet ("Trial Data") |[>
wb add data table(x = trial data) |[>
wb set col widths(cols = l:ncol(trial data), widths = "auto") |[>

12
12117

https://janmarvin.github.io/openxlsx2/articles/openxlsx2_style_manual.html
https://janmarvin.github.io/ox2-book/
https://janmarvin.github.io/ox2-book/chapters/openxlsx2_style_manual.html

BioMath

Icon Set: 3 traffic light colors
wb add conditional formatting(
dims = "D2:D13",
type = "iconSet",
params = list(
iconSet = "3Symbols", # Traffic light: red/yellow/green
showValue = TRUE

)

wb save (wb, "output/trialiicons.xlsx", overwrite = TRUE)
More icon sets: "3Arrows" , "4Rating", "SQuarters" , etc. See Conditional Formatting
Vignette.

Excel Formulas (Ch. 8: Formulas)

Excel formulas are the heart of dynamic spreadsheets. With openxlsx2 ; we can write
formulas directly into cells that are then automatically calculated when the file is opened in
Excel. This is practical for sums, averages, or more complex calculations. Important: the
formulas are only evaluated in Excel, notin R:

Example with SUM formula
wb <- wb workbook() [>
wb add worksheet ("Trial Data") [>
wb add data(x = trial data) [>
wb set col widths(cols = l:ncol(trial data), widths = "auto") [>
SUM formula for total
wb add formula(dims = "D14", x = "SUM(D2:D13)") [>
AVERAGE formula
wb add formula(dims = "D15", x = "AVERAGE (D2:D13)") |[>
Add labels
wb add data(dims = "C14", x = "Total") |[>
wb add data(dims = "C15", x = "Average")

wb save (wb, "output/trial formulas.xlsx", overwrite = TRUE)

More formula examples: Chapter 8 - Spreadsheet formulas

Pivot Tables (Ch. 9: Brief Mention)

openxlsx2 can also create pivot tables, although this is an advanced and complex topic.
Pivot tables are powerful tools for data analysis and summarization directly in Excel.
However, creating them is considerably more involved than the other features shown here.
For details and complete examples, see Chapter 9 - Pivot tables.

3. Template Workflow: Populating Existing
Excel Files

So far, we have always created Excel files from scratch. In practice, however, there is often a
different use case: we have a pre-formatted Excel template with complex layout, corporate
design, formulas, or pivot tables, and we just want to populate it with current data. Manually
recreating such templates in R would be extremely time-consuming — instead, we simply load
the existing file and write only the data into it.

13
13117

https://janmarvin.github.io/openxlsx2/articles/conditional-formatting.html
https://janmarvin.github.io/openxlsx2/articles/conditional-formatting.html
https://janmarvin.github.io/ox2-book/chapters/openxlsx2_formulas_manual.html
https://janmarvin.github.io/ox2-book/chapters/openxlsx2_pivot_tables.html

When is the Template Workflow Useful?

The template workflow is particularly useful when:

» The Excel file has a complex, fixed layout (e.g., report templates with logos, borders,
multiple areas)

» The corporate design is already implemented in the template

The file contains Excel formulas that should reference the inserted data

* Recurring reports are created regularly (e.g., monthly evaluations)

Multiple people use the same template and only the data varies

Basic Principle
The workflow consists of three steps:

1. Copy template — The original template remains unchanged
2. Load copy — We open the copy with wb_load ()

3. Insert data — We write to the correct positions with wb_add_data ()

1. Copy template (original remains intact)
file.copy(
from = "templates/Monthly Report Template.xlsx",
to = "output/Monthly Report January.xlsx",
overwrite = TRUE

2. Load copy
wb <- wb_load("output/Monthly Report January.xlsx")

3. Write data to the correct positions
wb <- wb |>

wb add data(sheet = "Data", x = my data, start row = 5, start col = 2)
4. Save

wb save (wb, "output/Monthly Report January.xlsx", overwrite = TRUE)

Practical Example: Populating an Analysis Table

Imagine we have an Excel template with three worksheets for different analyses. The
template already contains headers, formatting, and sum formulas — we just need to insert the
data.

Prepare example data

set.seed (123)

result 1 <- tibble(
Category = c("A", "B", "C"),
Count = c (45, 32, 28),
Proportion = c(0.43, 0.30, 0.27)

)

result 2 <- tibble(
Region = c("North", "South", "East", "West"),
Revenue = c (12500, 18300, 9800, 15200)

)

For this example, we create a "template"

(in practice, this would be an existing file)
template wb <- wb workbook() |[>
wb add worksheet ("Overview") |[>
wb add data(x = "Monthly Report", dims = "Al") |[>
wb add font (dims = "Al", bold = TRUE, size = 16) [>
14

BioMath

14/17

—-—— TEMPLATE WORKFLOW ---
1. Copy template
file.copy (
from = "output/template.xlsx",
to = "output/report current.xlsx",

overwrite = TRUE

)

I [1] TRUE

2. Load copy
wb <- wbiload("output/reporticurrent.xlsx")

wb <- wb |>
wb_ add data (
sheet = "Categories",
x = result 1,

start row = 2, # Row 1 is header

x = result 2,
start row = 2,
col names = FALSE

)

4. Save

wb add worksheet ("Categories") |[>

wb add data(x = tibble (Category = character(), Count = numeric(), Proportion
numeric())) |>

wb add font(dims = "Al:Cl", bold = TRUE) |>

wb add fill(dims = "Al:Cl", color = wb color (hex = "FFD3D3D3")) |[>

wb add worksheet ("Regions") [>

wb add data(x = tibble (Region = character (), Revenue = numeric())) |[>

wb add font(dims = "Al:B1", bold = TRUE) |>

wb add fill(dims = "Al:Bl", color = wb color (hex = "FFD3D3D3"))

wb_save (template wb, "output/template.xlsx", overwrite = TRUE)

3. Insert data (WITHOUT headers, as they're already in template)

col names = FALSE # Don't write column names
) 1>
wb add data(

sheet = "Regions",

wb_ save (wb, "output/report_current.Xlsx", overwrite = TRUE)

Important Arguments for wb_add_data()

When populating templates, the following arguments are particularly relevant:

Argument Description Typical Value

sheet Name or index of the "Data" or 1
worksheet

% The data to insert my data
(data.frameltibble)

Starting row for the data

start row

start_col Starting column for the data

col names Write column names?

15

2 (if row 1 = header)
1 or "B"

FALSE (header in template)

BioMath

15117

BioMath

Argument Description Typical Value
na.strings How should NA values be " (empty cell)
displayed?

© Tip: Document Positions in the Template

If the template is complex, it's helpful to document the insertion positions:

Warning: Existing Data Will Be Overwritten

wb_add data() overwrites the target range without warning. If the template already

contains data (e.g., example values), they will be replaced. Formulas that reference these
cells will automatically calculate with the new values.

Summary

In this chapter, we learned how to create professional, presentation-ready Excel files with R.
We saw how to precisely handle multiple sheets and messy data during import, and during
export we learned a variety of formatting options that transform our Excel files from simple
data dumps into appealing, user-friendly reports.

Import: - Systematically read multiple sheets with excel sheets() and map() - Precise
ranges and custom NA values for messy files

Export: - Automatic column width for optimal display - Professional header styling with bold
text and background color - Filterable Excel tables instead of simple cell ranges - Conditional
formatting (color scales, data bars, rules) for visual emphasis - Freeze panes for better
navigation in large tables - Hyperlinks for connections to URLs and other sheets - Custom
date/number formats for correct display - Advanced features from the ox2-book for special
requirements

Template Workflow: - Load existing Excel templates with wb_load () instead of creating
from scratch - Write data to specific positions with start_row, start_col

col names = FALSE - |deal for recurring reports with fixed layout and corporate design

Further Resources:

» openxIsx2 Documentation
* 0x2-book - The openxlsx2 book
* readxl Documentation

Date: 2026-02-08

16
16/17

https://janmarvin.github.io/openxlsx2/
https://janmarvin.github.io/ox2-book/
https://readxl.tidyverse.org/

Bibliography

17

	Loading Packages
	Preparing the Example Excel File

	1. Import: Beyond the Basics
	1.1 Importing Multiple Sheets
	1.2 Precise Reading: Ranges & Skip

	2. Export: Professional Formatting
	Creating Example Data
	2.1 Basics Review (Very Brief)
	2.2 Column Widths
	2.3 Header Styling
	2.4 Excel Tables (Filterable)
	2.5 Turning Off Gridlines
	2.6 Conditional Formatting
	Color Scales
	Data Bars
	Rule-based Formatting

	2.7 Freeze Panes
	2.8 Hyperlinks
	2.9 Date/Number Formats
	2.10 Advanced Examples from ox2-book
	Text Rotation (Ch. 5: Styling)
	Icon Sets (Ch. 7: Conditional Formatting)
	Excel Formulas (Ch. 8: Formulas)
	Pivot Tables (Ch. 9: Brief Mention)

	3. Template Workflow: Populating Existing Excel Files
	When is the Template Workflow Useful?
	Basic Principle
	Practical Example: Populating an Analysis Table
	Important Arguments for wb_add_data()

	Summary
	Bibliography

