
BioMath

1/17

2. Advanced Excel Workflows

Professional Import and Export with readxl and openxlsx2
Dr. Paul Schmidt

Loading Packages
for (pkg in c("glue", "openxlsx2", "readxl", "tidyverse")) {
 if (!require(pkg, character.only = TRUE)) {
 install.packages(pkg, dependencies = TRUE)
 }
 library(pkg, character.only = TRUE)
}

Lade nötiges Paket: glue

Lade nötiges Paket: openxlsx2

Lade nötiges Paket: readxl

Attache Paket: 'readxl'

Das folgende Objekt ist maskiert 'package:openxlsx2':

 read_xlsx

Lade nötiges Paket: tidyverse

── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr 1.1.4 ✔ readr 2.1.5
✔ forcats 1.0.0 ✔ stringr 1.5.2
✔ ggplot2 4.0.2 ✔ tibble 3.3.0
✔ lubridate 1.9.4 ✔ tidyr 1.3.1
✔ purrr 1.1.0
── Conflicts ── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
✖ readxl::read_xlsx() masks openxlsx2::read_xlsx()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts
to become errors

Create output directory if it doesn't exist
if (!dir.exists("output")) {
 dir.create("output")
}

Preparing the Example Excel File
For the import examples, we use an Excel file that comes bundled with the openxlsx2
package. It contains two sheets and various data types, making it ideal for our
demonstrations. We copy it to our output directory so we can work with it throughout the
chapter:

1

BioMath

2/17

Locate example file from openxlsx2 package
example_file <- system.file("extdata", "openxlsx2_example.xlsx", package =
"openxlsx2")

Copy to output folder
file.copy(
 from = example_file,
 to = "output/example.xlsx",
 overwrite = TRUE
)

[1] TRUE

1. Import: Beyond the Basics
In earlier chapters, we learned how to use readxl::read_excel() to read single Excel files.
In practice, however, we often encounter more complex situations: files with multiple
worksheets, messy structures with headers and footnotes, or specific cell ranges that we
want to read selectively. Here we expand our knowledge to cover these common special
cases.

1.1 Importing Multiple Sheets
Excel files often contain multiple worksheets that belong together thematically - for example,
different measurement timepoints from an experiment or different datasets from a study.
Instead of loading each sheet individually and manually, we can use excel_sheets() to read
all available sheet names and then systematically import them in a loop. We store the result
in a named list so we can access the respective datasets directly via the sheet names.

Our example file
file_path <- "output/example.xlsx"

List all sheet names
sheet_names <- excel_sheets(file_path)
sheet_names

[1] "Sheet1" "Sheet2"

Import all sheets into a named list
all_data <- map(sheet_names, \(sheet) read_excel(file_path, sheet = sheet))

New names:
New names:
• `` -> `...3`

names(all_data) <- sheet_names

Access individual sheet
all_data$Sheet1

A tibble: 10 × 9
 Var1 Var2 ...3 Var3 Var4 Var5 Var6 Var7
 <lgl> <dbl> <lgl> <dbl> <chr> <dttm> <chr> <dbl>
 1 TRUE 1 NA 1 a 2023-05-29 00:00:00 3209324 This NA
 2 TRUE NA NA NA b 2023-05-23 00:00:00 <NA> 0
 3 TRUE 2 NA 1.34 c 2023-02-01 00:00:00 <NA> NA
 4 FALSE 2 NA NA <NA> NA <NA> 2
 5 FALSE 3 NA 1.56 e NA <NA> NA
 6 FALSE 1 NA 1.7 f 2023-03-02 00:00:00 <NA> 2.7
 7 NA NA NA NA <NA> NA <NA> NA

2

BioMath

3/17

 8 FALSE 2 NA 23 h 2023-12-24 00:00:00 <NA> 25
 9 FALSE 3 NA 67.3 i 2023-12-25 00:00:00 <NA> 3
10 NA 1 NA 123 <NA> 2023-07-31 00:00:00 <NA> 122
ℹ 1 more variable: Var8 <dttm>

Alternatively, we can use a classic for loop if we don’t want to use purrr or prefer more
explicit logic:

all_data <- list()
for (sheet in sheet_names) {
 all_data[[sheet]] <- read_excel(file_path, sheet = sheet)
}

New names:
New names:
• `` -> `...3`

1.2 Precise Reading: Ranges & Skip
In the real working world, Excel files are rarely as tidy as in textbooks. We often find
descriptive text above the actual data, footnotes below, empty rows as separators, or the
actual data only starts at row 10 and column C. For such situations, readxl offers several
useful options that let us precisely control which parts of the file we want to read.

With the range option, we can specify an exact cell range in Excel notation (e.g., "B5:G20")

to read only that range. The skip option skips a certain number of rows at the beginning of
the file - practical when the data only starts after several header rows. If the column names
themselves are chaotic or unusable, we can disable automatic header reading with
col_names = FALSE . And finally, we can use na to specify which character strings should be
interpreted as missing values - since not everyone uses “NA” for missing values.

Read only a specific cell range (example with our file)
df <- read_excel("output/example.xlsx", range = "B3:G10")

New names:
• `1` -> `1...2`
• `` -> `...3`
• `1` -> `1...4`

df

A tibble: 7 × 6
 `TRUE` `1...2` ...3 `1...4` a `45075`
 <lgl> <dbl> <lgl> <dbl> <chr> <dttm>
1 TRUE NA NA NA b 2023-05-23 00:00:00
2 TRUE 2 NA 1.34 c 2023-02-01 00:00:00
3 FALSE 2 NA NA <NA> NA
4 FALSE 3 NA 1.56 e NA
5 FALSE 1 NA 1.7 f 2023-03-02 00:00:00
6 NA NA NA NA <NA> NA
7 FALSE 2 NA 23 h 2023-12-24 00:00:00

Skip first 2 rows
df <- read_excel("output/example.xlsx", skip = 2)

New names:
• `1` -> `1...2`
• `` -> `...3`

3

BioMath

4/17

• `1` -> `1...4`
• `` -> `...8`

df

A tibble: 9 × 9
 `TRUE` `1...2` ...3 `1...4` a `45075` `3209324 This` ...8
 <lgl> <dbl> <lgl> <dbl> <chr> <dttm> <lgl> <dbl>
1 TRUE NA NA NA b 2023-05-23 00:00:00 NA 0
2 TRUE 2 NA 1.34 c 2023-02-01 00:00:00 NA NA
3 FALSE 2 NA NA <NA> NA NA 2
4 FALSE 3 NA 1.56 e NA NA NA
5 FALSE 1 NA 1.7 f 2023-03-02 00:00:00 NA 2.7
6 NA NA NA NA <NA> NA NA NA
7 FALSE 2 NA 23 h 2023-12-24 00:00:00 NA 25
8 FALSE 3 NA 67.3 i 2023-12-25 00:00:00 NA 3
9 NA 1 NA 123 <NA> 2023-07-31 00:00:00 NA 122
ℹ 1 more variable: `6.0590277777777778E-2` <dttm>

No automatic column names (when header is chaotic)
df <- read_excel("output/example.xlsx", col_names = FALSE)

New names:
• `` -> `...1`
• `` -> `...2`
• `` -> `...3`
• `` -> `...4`
• `` -> `...5`
• `` -> `...6`
• `` -> `...7`
• `` -> `...8`
• `` -> `...9`

df

A tibble: 11 × 9
 ...1 ...2 ...3 ...4 ...5 ...6 ...7 ...8 ...9
 <chr> <chr> <lgl> <chr> <chr> <chr> <chr> <chr> <chr>
 1 Var1 Var2 NA Var3 Var4 Var5 Var6 Var7 Var8
 2 TRUE 1 NA 1 a 45075 3209324 This <NA> 6.0590277777777778E-2
 3 TRUE <NA> NA <NA> b 45069 <NA> 0 0.58538194444444447
 4 TRUE 2 NA 1.34 c 44958 <NA> <NA> 0.959050925925926
 5 FALSE 2 NA <NA> <NA> <NA> <NA> 2 0.72561342592592604
 6 FALSE 3 NA 1.56 e <NA> <NA> <NA> <NA>
 7 FALSE 1 NA 1.7 f 44987 <NA> 2.7 0.36525462962962968
 8 <NA> <NA> NA <NA> <NA> <NA> <NA> <NA> <NA>
 9 FALSE 2 NA 23 h 45284 <NA> 25 <NA>
10 FALSE 3 NA 67.3 i 45285 <NA> 3 <NA>
11 <NA> 1 NA 123 <NA> 45138 <NA> 122 <NA>

Define custom NA values
df <- read_excel(
 "output/example.xlsx",
 na = c("", "NA", "#NUM!", "#DIV/0!")
)

New names:
• `` -> `...3`

df

A tibble: 10 × 9
 Var1 Var2 ...3 Var3 Var4 Var5 Var6 Var7
 <lgl> <dbl> <lgl> <dbl> <chr> <dttm> <chr> <dbl>
 1 TRUE 1 NA 1 a 2023-05-29 00:00:00 3209324 This NA

4

BioMath

5/17

 2 TRUE NA NA NA b 2023-05-23 00:00:00 <NA> 0
 3 TRUE 2 NA 1.34 c 2023-02-01 00:00:00 <NA> NA
 4 FALSE 2 NA NA <NA> NA <NA> 2
 5 FALSE 3 NA 1.56 e NA <NA> NA
 6 FALSE 1 NA 1.7 f 2023-03-02 00:00:00 <NA> 2.7
 7 NA NA NA NA <NA> NA <NA> NA
 8 FALSE 2 NA 23 h 2023-12-24 00:00:00 <NA> 25
 9 FALSE 3 NA 67.3 i 2023-12-25 00:00:00 <NA> 3
10 NA 1 NA 123 <NA> 2023-07-31 00:00:00 <NA> 122
ℹ 1 more variable: Var8 <dttm>

Combination of multiple options
df <- read_excel(
 "output/example.xlsx",
 sheet = "Sheet1",
 range = "B2:F8",
 col_names = TRUE
)

New names:
• `` -> `...3`

df

A tibble: 6 × 5
 Var1 Var2 ...3 Var3 Var4
 <lgl> <dbl> <lgl> <dbl> <chr>
1 TRUE 1 NA 1 a
2 TRUE NA NA NA b
3 TRUE 2 NA 1.34 c
4 FALSE 2 NA NA <NA>
5 FALSE 3 NA 1.56 e
6 FALSE 1 NA 1.7 f

 Range Syntax

The range option accepts Excel notation (e.g., "B3:F20") or just starting points (e.g.,
"B3" reads from B3 to the end).

2. Export: Professional Formatting
Exporting with openxlsx2 goes far beyond simply writing data. While base R and many other

packages merely write the bare numbers and text to an Excel file, openxlsx2 enables us to
create professionally formatted Excel files that are immediately presentation-ready. We can
adjust column widths, highlight headers, apply conditional formatting, and much more - all
programmatically and reproducibly.

5

BioMath

6/17

 Opening Excel Files Directly from R

After creating an Excel file, we can open it directly from R to check the result:
Windows
shell.exec("output/trial_table.xlsx")

macOS/Linux
system2("open", "output/trial_table.xlsx") # macOS
system2("xdg-open", "output/trial_table.xlsx") # Linux

Creating Example Data
For all the following examples, we use a small, consistent dataset from a clinical trial. It
contains patient IDs, treatment groups, timepoints, outcome values, and visit dates. This
allows us to demonstrate the various formatting options using a consistent example
throughout:

set.seed(42)
trial_data <- tibble(
 patient_id = glue("P{str_pad(1:12, width = 3, pad = '0')}"),
 treatment = rep(c("Drug A", "Drug B", "Control"), each = 4),
 timepoint = rep(c("Baseline", "Week 4", "Week 8"), times = 4),
 outcome = round(rnorm(12, mean = 50, sd = 10), 1),
 visit_date = seq.Date(from = as.Date("2024-01-15"), by = "week", length.out = 12)
)

trial_data

A tibble: 12 × 5
 patient_id treatment timepoint outcome visit_date
 <glue> <chr> <chr> <dbl> <date>
 1 P001 Drug A Baseline 63.7 2024-01-15
 2 P002 Drug A Week 4 44.4 2024-01-22
 3 P003 Drug A Week 8 53.6 2024-01-29
 4 P004 Drug A Baseline 56.3 2024-02-05
 5 P005 Drug B Week 4 54 2024-02-12
 6 P006 Drug B Week 8 48.9 2024-02-19
 7 P007 Drug B Baseline 65.1 2024-02-26
 8 P008 Drug B Week 4 49.1 2024-03-04
 9 P009 Control Week 8 70.2 2024-03-11
10 P010 Control Baseline 49.4 2024-03-18
11 P011 Control Week 4 63 2024-03-25
12 P012 Control Week 8 72.9 2024-04-01

2.1 Basics Review (Very Brief)
As a reminder: the basic creation of an Excel file always follows the same pattern. We create
a workbook object, add one or more worksheets, write data to them, and save the workbook
as an .xlsx file. This workflow forms the basis for all further formatting:

Create workbook
wb <- wb_workbook()

Add worksheet
wb <- wb |> wb_add_worksheet("Trial Data")

Write data
wb <- wb |> wb_add_data(x = trial_data)

6

BioMath

7/17

Save
wb_save(wb, "output/trial_basic.xlsx", overwrite = TRUE)

2.2 Column Widths
One of the first things we notice when opening a freshly exported Excel file are often
columns that are too narrow or too wide. Long texts get cut off, numbers display as ### ,

while other columns waste unnecessary space. With wb_set_col_widths() we can elegantly

solve this problem: the option widths = "auto" automatically calculates the optimal width
based on each column’s content. This ensures all data is displayed completely and clearly
without requiring manual adjustments in Excel.

wb <- wb_workbook() |>
 wb_add_worksheet("Trial Data") |>
 wb_add_data(x = trial_data) |>
 # Automatic width for all columns
 wb_set_col_widths(cols = 1:ncol(trial_data), widths = "auto")

wb_save(wb, "output/trial_colwidths.xlsx", overwrite = TRUE)

 Tip

Alternatively, we can set specific widths in Excel units, for example when we know
exactly how wide certain columns should be:
wb_set_col_widths(cols = 1:3, widths = c(15, 20, 12))

2.3 Header Styling
The header row is the most important visual orientation point in a table. In professional Excel
files, column names are therefore typically bold and highlighted with color - usually with a
subtle gray background. This formatting makes the table immediately more readable and
gives it a professional appearance. With wb_add_font() we make the text bold, with
wb_add_fill() we add the background color. We apply both functions specifically to the first
row (the header):

wb <- wb_workbook() |>
 wb_add_worksheet("Trial Data") |>
 wb_add_data(x = trial_data) |>
 wb_set_col_widths(cols = 1:ncol(trial_data), widths = "auto") |>
 # Header bold + gray background
 wb_add_font(dims = "A1:E1", bold = TRUE, size = 11) |>
 wb_add_fill(dims = "A1:E1", color = wb_color(hex = "FFD3D3D3"))

wb_save(wb, "output/trial_header.xlsx", overwrite = TRUE)

2.4 Excel Tables (Filterable)
While wb_add_data() simply writes cell values, wb_add_data_table() creates a proper
Excel table with built-in functionality. Excel tables automatically provide filter buttons in the
header row, structured references for formulas, and a consistent design. This is especially
practical when we later share the file with colleagues who want to filter or sort within it. The
various table_style options offer predefined designs that we can apply directly:

7

BioMath

8/17

wb <- wb_workbook() |>
 wb_add_worksheet("Trial Data") |>
 # wb_add_data_table() instead of wb_add_data()
 wb_add_data_table(
 x = trial_data,
 table_style = "TableStyleMedium2"
) |>
 wb_set_col_widths(cols = 1:ncol(trial_data), widths = "auto")

wb_save(wb, "output/trial_table.xlsx", overwrite = TRUE)

 Available Table Styles

Excel offers many predefined styles: "TableStyleLight1" through
"TableStyleLight21" , "TableStyleMedium1" through "TableStyleMedium28" , etc. Best
to just try different ones to find the right style!

2.5 Turning Off Gridlines
By default, Excel shows gridlines across the entire worksheet, even in empty areas. This can
be distracting for smaller, focused tables. If we prefer a clean layout where only the cells with
data are highlighted by borders, we can disable the gridlines with grid_lines = FALSE when
creating the worksheet. Combined with an Excel table (which has its own borders), this gives
us a very tidy, professional appearance:

wb <- wb_workbook() |>
 wb_add_worksheet("Trial Data", grid_lines = FALSE) |>
 wb_add_data_table(x = trial_data) |>
 wb_set_col_widths(cols = 1:ncol(trial_data), widths = "auto")

wb_save(wb, "output/trial_nogrid.xlsx", overwrite = TRUE)

2.6 Conditional Formatting
Conditional formatting is one of the most powerful features in Excel and is particularly useful
for highlighting patterns in data. Instead of manually scrolling through columns and
comparing values, we can automatically color cells based on their value, add bars, or mark
them with icons. The following examples show three common use cases.

Color Scales
With color scales, each cell is colored based on its value - low values might be red, medium
yellow, high green. This provides an immediate visual overview of the value distribution.
Particularly useful for outcome variables, scores, or any measurements where magnitude is
relevant:

wb <- wb_workbook() |>
 wb_add_worksheet("Trial Data") |>
 wb_add_data_table(x = trial_data) |>
 wb_set_col_widths(cols = 1:ncol(trial_data), widths = "auto") |>
 # Color Scale for outcome column (Column D = 4)
 wb_add_conditional_formatting(
 dims = "D2:D13", # without header
 type = "colorScale",
 style = c("red", "yellow", "green"),
 rule = c(0, 50, 100)

8

BioMath

9/17

)

wb_save(wb, "output/trial_colorscale.xlsx", overwrite = TRUE)

Data Bars
Data bars show a horizontal bar in each cell whose length corresponds to the value. This
works like a mini bar chart directly in the table and makes size differences visible at a glance.
The numbers remain visible so we can see both the exact value and the visual proportion:

wb <- wb_workbook() |>
 wb_add_worksheet("Trial Data") |>
 wb_add_data_table(x = trial_data) |>
 wb_set_col_widths(cols = 1:ncol(trial_data), widths = "auto") |>
 # Data Bars for outcome column
 wb_add_conditional_formatting(
 dims = "D2:D13",
 type = "dataBar",
 style = c("#4472C4"), # Blue
 params = list(showValue = TRUE, gradient = TRUE)
)

wb_save(wb, "output/trial_databars.xlsx", overwrite = TRUE)

Rule-based Formatting
Sometimes we don’t want to color all values, just those that meet a certain criterion - for
example, all outcome values above a threshold. With rule-based formatting, we define a
condition (e.g., ">55") and a style (font color, background color) that is applied to the
corresponding cells. This is ideal for highlighting critical values:

Custom style for values > 55
high_style <- create_dxfs_style(
 font_color = wb_color(hex = "FF006100"),
 bg_fill = wb_color(hex = "FFC6EFCE")
)

wb <- wb_workbook() |>
 wb_add_worksheet("Trial Data") |>
 wb_add_data_table(x = trial_data) |>
 wb_set_col_widths(cols = 1:ncol(trial_data), widths = "auto")

Add style to workbook
wb$styles_mgr$add(high_style, "high_values")

Apply conditional formatting
wb <- wb |>
 wb_add_conditional_formatting(
 dims = "D2:D13",
 type = "expression",
 rule = ">55",
 style = "high_values"
)

wb_save(wb, "output/trial_rules.xlsx", overwrite = TRUE)

9

BioMath

10/17

! More Conditional Formatting Options

There are many more types like "topN" (the top N highest values), "bottomN" ,
"duplicatedValues" (mark duplicates), "iconSet" (traffic light icons), etc. For details,
see the Conditional Formatting Vignette.

2.7 Freeze Panes
With longer tables, we quickly lose track of which column contains which data when scrolling
down - because the header row disappears from view. With freeze panes, we can fix the first
row (or also the first column) so that it always remains visible when scrolling. This is one of
the most-used features in Excel and makes working with larger datasets considerably more
comfortable:

wb <- wb_workbook() |>
 wb_add_worksheet("Trial Data") |>
 wb_add_data_table(x = trial_data) |>
 wb_set_col_widths(cols = 1:ncol(trial_data), widths = "auto") |>
 # Fix first row
 wb_freeze_pane(first_row = TRUE)

wb_save(wb, "output/trial_freeze.xlsx", overwrite = TRUE)

 Tip

We can also freeze the first column (useful for wide tables with many columns):
wb_freeze_pane(first_col = TRUE)

Or even both at the same time:
wb_freeze_pane(first_row = TRUE, first_col = TRUE)

2.8 Hyperlinks
Hyperlinks make Excel files interactive and connect different pieces of information. We can
embed external URLs (e.g., to protocols or documentation) or create internal links to other
sheets. This is especially practical for tables of contents or when we want to navigate
between different worksheets. In openxlsx2 , there are two different approaches: external

links use wb_add_hyperlink() , while internal sheet links are created via
create_hyperlink() and wb_add_formula() :

wb <- wb_workbook() |>
 wb_add_worksheet("Overview") |>
 wb_add_data(x = tibble(
 Description = c("Study Protocol", "Raw Data", "Analysis")
))

Add Trial Data sheet
wb <- wb |>
 wb_add_worksheet("Trial Data") |>
 wb_add_data_table(x = trial_data) |>
 wb_set_col_widths(cols = 1:ncol(trial_data), widths = "auto")

External URL as hyperlink

10

https://janmarvin.github.io/openxlsx2/articles/conditional-formatting.html

BioMath

11/17

wb <- wb |>
 wb_add_data(
 sheet = "Overview",
 dims = "B2",
 x = "Protocol Document"
) |>
 wb_add_hyperlink(
 sheet = "Overview",
 dims = "B2",
 target = "https://example.com/protocol",
 tooltip = "Link to study protocol"
)

Internal link to another sheet (with create_hyperlink + wb_add_formula)
internal_link <- create_hyperlink(
 sheet = "Trial Data",
 row = 1,
 col = 1,
 text = "Go to Trial Data"
)

wb <- wb |>
 wb_add_formula(
 sheet = "Overview",
 dims = "B3",
 x = internal_link
)

wb_save(wb, "output/trial_hyperlinks.xlsx", overwrite = TRUE)

 External vs. Internal Links

• External URLs: wb_add_hyperlink() with target =
• Internal sheet links: create_hyperlink() + wb_add_formula()

2.9 Date/Number Formats
Excel often interprets numbers and dates differently than we expect - dates appear as
numbers, decimal places are missing, or currencies appear without symbols. With number
formats, we can specify exactly how values should be displayed. This only changes the
presentation, not the underlying value. This is especially important for reports that we share
with others, so the data appears in the desired form immediately:

wb <- wb_workbook() |>
 wb_add_worksheet("Trial Data") |>
 wb_add_data_table(x = trial_data) |>
 wb_set_col_widths(cols = 1:ncol(trial_data), widths = "auto") |>
 # Outcome as number with 1 decimal place
 wb_add_numfmt(dims = "D2:D13", numfmt = "0.0") |>
 # Date as dd.mm.yyyy
 wb_add_numfmt(dims = "E2:E13", numfmt = "dd.mm.yyyy")

wb_save(wb, "output/trial_formats.xlsx", overwrite = TRUE)

11

BioMath

12/17

 Common Number Formats

• "0.00" - two decimal places
• "0.00%" - percentage
• "#,##0.00" - thousands separator
• "#,##0.00 €" - currency
• "dd.mm.yyyy" - date German style
• "yyyy-mm-dd" - date ISO
• "[h]:mm:ss" - time over 24h

For custom formats with text: see openxlsx2 Styling Manual

2.10 Advanced Examples from ox2-book
The ox2-book is the comprehensive handbook for openxlsx2 and contains numerous
advanced examples and techniques. Below we show some highlights from the chapters on
styling, conditional formatting, and formulas. These examples only scratch the surface of
what’s possible - for deeper applications, it’s worth looking at the respective chapters.

Text Rotation (Ch. 5: Styling)
Rotating text by 45° is particularly useful for tables with many columns and long header texts.
The rotated text saves horizontal space and makes the table more compact without
compromising readability. Combined with bold text and a background color, this creates a
very professional look:

wb <- wb_workbook() |>
 wb_add_worksheet("Trial Data") |>
 wb_add_data(x = trial_data) |>
 wb_set_col_widths(cols = 1:ncol(trial_data), widths = 12) |>
 # Text rotation + styling
 wb_add_cell_style(
 dims = "A1:E1",
 horizontal = "center",
 text_rotation = 45
) |>
 wb_add_font(dims = "A1:E1", bold = TRUE, size = 10) |>
 wb_add_fill(dims = "A1:E1", color = wb_color(hex = "FF4472C4"))

wb_save(wb, "output/trial_rotation.xlsx", overwrite = TRUE)

More styling options: Chapter 5 - Styling of worksheets

Icon Sets (Ch. 7: Conditional Formatting)
Icon sets are an elegant variant of conditional formatting: instead of coloring cells, we add
small icons (e.g., traffic light symbols) that show at a glance whether values are good,
medium, or poor. This is especially useful for dashboards and reports since the icons are
also clearly visible when printed:

wb <- wb_workbook() |>
 wb_add_worksheet("Trial Data") |>
 wb_add_data_table(x = trial_data) |>
 wb_set_col_widths(cols = 1:ncol(trial_data), widths = "auto") |>

12

https://janmarvin.github.io/openxlsx2/articles/openxlsx2_style_manual.html
https://janmarvin.github.io/ox2-book/
https://janmarvin.github.io/ox2-book/chapters/openxlsx2_style_manual.html

BioMath

13/17

 # Icon Set: 3 traffic light colors
 wb_add_conditional_formatting(
 dims = "D2:D13",
 type = "iconSet",
 params = list(
 iconSet = "3Symbols", # Traffic light: red/yellow/green
 showValue = TRUE
)
)

wb_save(wb, "output/trial_icons.xlsx", overwrite = TRUE)

More icon sets: "3Arrows" , "4Rating" , "5Quarters" , etc. See Conditional Formatting
Vignette.

Excel Formulas (Ch. 8: Formulas)
Excel formulas are the heart of dynamic spreadsheets. With openxlsx2 , we can write
formulas directly into cells that are then automatically calculated when the file is opened in
Excel. This is practical for sums, averages, or more complex calculations. Important: the
formulas are only evaluated in Excel, not in R:

Example with SUM formula
wb <- wb_workbook() |>
 wb_add_worksheet("Trial Data") |>
 wb_add_data(x = trial_data) |>
 wb_set_col_widths(cols = 1:ncol(trial_data), widths = "auto") |>
 # SUM formula for total
 wb_add_formula(dims = "D14", x = "SUM(D2:D13)") |>
 # AVERAGE formula
 wb_add_formula(dims = "D15", x = "AVERAGE(D2:D13)") |>
 # Add labels
 wb_add_data(dims = "C14", x = "Total") |>
 wb_add_data(dims = "C15", x = "Average")

wb_save(wb, "output/trial_formulas.xlsx", overwrite = TRUE)

More formula examples: Chapter 8 - Spreadsheet formulas

Pivot Tables (Ch. 9: Brief Mention)
openxlsx2 can also create pivot tables, although this is an advanced and complex topic.
Pivot tables are powerful tools for data analysis and summarization directly in Excel.
However, creating them is considerably more involved than the other features shown here.
For details and complete examples, see Chapter 9 - Pivot tables.

3. Template Workflow: Populating Existing
Excel Files
So far, we have always created Excel files from scratch. In practice, however, there is often a
different use case: we have a pre-formatted Excel template with complex layout, corporate
design, formulas, or pivot tables, and we just want to populate it with current data. Manually
recreating such templates in R would be extremely time-consuming – instead, we simply load
the existing file and write only the data into it.

13

https://janmarvin.github.io/openxlsx2/articles/conditional-formatting.html
https://janmarvin.github.io/openxlsx2/articles/conditional-formatting.html
https://janmarvin.github.io/ox2-book/chapters/openxlsx2_formulas_manual.html
https://janmarvin.github.io/ox2-book/chapters/openxlsx2_pivot_tables.html

BioMath

14/17

When is the Template Workflow Useful?
The template workflow is particularly useful when:

• The Excel file has a complex, fixed layout (e.g., report templates with logos, borders,
multiple areas)

• The corporate design is already implemented in the template
• The file contains Excel formulas that should reference the inserted data
• Recurring reports are created regularly (e.g., monthly evaluations)
• Multiple people use the same template and only the data varies

Basic Principle
The workflow consists of three steps:

1. Copy template – The original template remains unchanged
2. Load copy – We open the copy with wb_load()
3. Insert data – We write to the correct positions with wb_add_data()

1. Copy template (original remains intact)
file.copy(
 from = "templates/Monthly_Report_Template.xlsx",
 to = "output/Monthly_Report_January.xlsx",
 overwrite = TRUE
)

2. Load copy
wb <- wb_load("output/Monthly_Report_January.xlsx")

3. Write data to the correct positions
wb <- wb |>
 wb_add_data(sheet = "Data", x = my_data, start_row = 5, start_col = 2)

4. Save
wb_save(wb, "output/Monthly_Report_January.xlsx", overwrite = TRUE)

Practical Example: Populating an Analysis Table
Imagine we have an Excel template with three worksheets for different analyses. The
template already contains headers, formatting, and sum formulas – we just need to insert the
data.

Prepare example data
set.seed(123)
result_1 <- tibble(
 Category = c("A", "B", "C"),
 Count = c(45, 32, 28),
 Proportion = c(0.43, 0.30, 0.27)
)

result_2 <- tibble(
 Region = c("North", "South", "East", "West"),
 Revenue = c(12500, 18300, 9800, 15200)
)

For this example, we create a "template"
(in practice, this would be an existing file)
template_wb <- wb_workbook() |>
 wb_add_worksheet("Overview") |>
 wb_add_data(x = "Monthly Report", dims = "A1") |>
 wb_add_font(dims = "A1", bold = TRUE, size = 16) |>

14

BioMath

15/17

 wb_add_worksheet("Categories") |>
 wb_add_data(x = tibble(Category = character(), Count = numeric(), Proportion =
numeric())) |>
 wb_add_font(dims = "A1:C1", bold = TRUE) |>
 wb_add_fill(dims = "A1:C1", color = wb_color(hex = "FFD3D3D3")) |>
 wb_add_worksheet("Regions") |>
 wb_add_data(x = tibble(Region = character(), Revenue = numeric())) |>
 wb_add_font(dims = "A1:B1", bold = TRUE) |>
 wb_add_fill(dims = "A1:B1", color = wb_color(hex = "FFD3D3D3"))

wb_save(template_wb, "output/template.xlsx", overwrite = TRUE)

--- TEMPLATE WORKFLOW ---

1. Copy template
file.copy(
 from = "output/template.xlsx",
 to = "output/report_current.xlsx",
 overwrite = TRUE
)

[1] TRUE

2. Load copy
wb <- wb_load("output/report_current.xlsx")

3. Insert data (WITHOUT headers, as they're already in template)
wb <- wb |>
 wb_add_data(
 sheet = "Categories",
 x = result_1,
 start_row = 2, # Row 1 is header
 col_names = FALSE # Don't write column names
) |>
 wb_add_data(
 sheet = "Regions",
 x = result_2,
 start_row = 2,
 col_names = FALSE
)

4. Save
wb_save(wb, "output/report_current.xlsx", overwrite = TRUE)

Important Arguments for wb_add_data()
When populating templates, the following arguments are particularly relevant:

Argument Description Typical Value

sheet Name or index of the
worksheet

"Data" or 1

x The data to insert
(data.frame/tibble)

my_data

start_row Starting row for the data 2 (if row 1 = header)

start_col Starting column for the data 1 or "B"

col_names Write column names? FALSE (header in template)

15

BioMath

16/17

Argument Description Typical Value

na.strings How should NA values be
displayed?

"" (empty cell)

 Tip: Document Positions in the Template

If the template is complex, it’s helpful to document the insertion positions:
Positions in template "Report_Template.xlsx":
- Sheet "Frequencies": Data from row 2, column A
- Sheet "CrossTab": Data from row 5, column B
- Sheet "Summary": Data from row 3, column A

 Warning: Existing Data Will Be Overwritten

wb_add_data() overwrites the target range without warning. If the template already
contains data (e.g., example values), they will be replaced. Formulas that reference these
cells will automatically calculate with the new values.

Summary
In this chapter, we learned how to create professional, presentation-ready Excel files with R.
We saw how to precisely handle multiple sheets and messy data during import, and during
export we learned a variety of formatting options that transform our Excel files from simple
data dumps into appealing, user-friendly reports.

Import: - Systematically read multiple sheets with excel_sheets() and map() - Precise
ranges and custom NA values for messy files

Export: - Automatic column width for optimal display - Professional header styling with bold
text and background color - Filterable Excel tables instead of simple cell ranges - Conditional
formatting (color scales, data bars, rules) for visual emphasis - Freeze panes for better
navigation in large tables - Hyperlinks for connections to URLs and other sheets - Custom
date/number formats for correct display - Advanced features from the ox2-book for special
requirements

Template Workflow: - Load existing Excel templates with wb_load() instead of creating

from scratch - Write data to specific positions with start_row , start_col ,
col_names = FALSE - Ideal for recurring reports with fixed layout and corporate design

Further Resources:

• openxlsx2 Documentation
• ox2-book - The openxlsx2 book
• readxl Documentation

Date: 2026-02-08

16

https://janmarvin.github.io/openxlsx2/
https://janmarvin.github.io/ox2-book/
https://readxl.tidyverse.org/

BioMath

17/17

Bibliography

17

	Loading Packages
	Preparing the Example Excel File

	1. Import: Beyond the Basics
	1.1 Importing Multiple Sheets
	1.2 Precise Reading: Ranges & Skip

	2. Export: Professional Formatting
	Creating Example Data
	2.1 Basics Review (Very Brief)
	2.2 Column Widths
	2.3 Header Styling
	2.4 Excel Tables (Filterable)
	2.5 Turning Off Gridlines
	2.6 Conditional Formatting
	Color Scales
	Data Bars
	Rule-based Formatting

	2.7 Freeze Panes
	2.8 Hyperlinks
	2.9 Date/Number Formats
	2.10 Advanced Examples from ox2-book
	Text Rotation (Ch. 5: Styling)
	Icon Sets (Ch. 7: Conditional Formatting)
	Excel Formulas (Ch. 8: Formulas)
	Pivot Tables (Ch. 9: Brief Mention)

	3. Template Workflow: Populating Existing Excel Files
	When is the Template Workflow Useful?
	Basic Principle
	Practical Example: Populating an Analysis Table
	Important Arguments for wb_add_data()

	Summary
	Bibliography

