BioMath

3. Frequency Tables

Counting and Tabulating with janitor::tabyl()
Dr. Paul Schmidt

To install and load all packages used in this chapter, run the following code:

for (pkg in c("janitor", "scales", "tidyverse")) {
if (!require (pkg, character.only = TRUE)) install.packages (pkqg)
}

library (janitor)
library (scales)
library (tidyverse)

Introduction

Frequency tables are one of the most fundamental tools in data analysis. How often does
each category occur? How are values distributed across different groups? We constantly ask
such questions — whether in quality control, survey analysis, or simply to get an initial
overview of the data.

R offers several ways to create frequency tables. In this chapter, we start with the basics
(table() and count())to then understand why janitor::tabyl() isthe more elegant and
practical solution in most cases.

Example Data

For this chapter, we use the starwars dataset from the {dplyr} package. It contains

information about 87 characters from the Star Wars universe:

Iglimpse(starwars)

Rows: 87

Columns: 14

$ name <chr> "Luke Skywalker", "C-3PO", "R2-D2", "Darth Vader", "Leia Or..
$ height <int> 172, 167, 96, 202, 150, 178, 165, 97, 183, 182, 188, 180, 2..
$ mass <dbl> 77.0, 75.0, 32.0, 136.0, 49.0, 120.0, 75.0, 32.0, 84.0, 77...
$ hair color <chr> "blond", NA, NA, "none", "brown", "brown, grey", "brown", N..
$ skin color <chr> "fair", "gold", "white, blue", "white", "light", "light", "..
$ eye color <chr> "blue", "yellow", "red", "yellow", "brown", "blue", "blue",..
$ birth year <dbl> 19.0, 112.0, 33.0, 41.9, 19.0, 52.0, 47.0, NA, 24.0, 57.0,

S sex <chr> "male", "none", "none", "male", "female", "male", "female",..
$ gender <chr> "masculine", "masculine", "masculine", "masculine", "femini..
$ homeworld <chr> "Tatooine", "Tatooine", "Naboo", "Tatooine", "Alderaan", "T..
$ species <chr> "Human", "Droid", "Droid", "Human", "Human", "Human", "Huma..
$ films <list> <"A New Hope", "The Empire Strikes Back", "Return of the J..
$ vehicles <list> <"Snowspeeder", "Imperial Speeder Bike">, <>, <>, <>, "Imp..
$ starships <list> <"X-wing", "Imperial shuttle">, <>, <>, "TIE Advanced x1",..

The dataset has both categorical variables (like species, sex, homeworld) and numerical
variables (like height , mass). For most examples, we filter to humans

(species == "Human") to keep the outputs manageable:

119

humans <- starwars %>%
filter (species == "Human")

humans

The Classic Way: table()

The table () function is built into base R and creates simple frequency tables:

Itable(humans$eye7color)

blue blue-gray brown dark hazel unknown yellow
12 1 16 1 2 1 2

This works, but has several disadvantages:

1. Not a data.frame: The resultis a table object, not a tibble/data.frame. It cannot be
directly processed with tidyverse functions.

2. No percentages: We only get absolute counts, no relative frequencies.
3. Awkward syntax: With multiple variables, it quickly becomes unwieldy.

You can convert the result to a data.frame, but it's cumbersome:

table (humans$eye color) %>%
as.data.frame ()
Varl Freq
1 blue 12
2 blue-gray 1
3 brown 16
4 dark 1
5 hazel 2
6 unknown 1
7 yellow 2

The column names are not intuitive (varl , Freq), and we have to calculate percentages

ourselves.

The Tidyverse Way: count() + mutate()

With dplyr::count () , we get a tibble directly:

humans $>%
count (eye color)
A tibble: 7 x 2
eye color n
<chr> <int>
1 blue 12
2 blue-gray 1
3 brown 16
4 dark 1
5 hazel 2
6 unknown 1
7 yellow 2

That’s already better! If we want percentages, we add them with mutate () :

humans $>%

count (eye color) $>%
mutate (
percent = n / sum(n),

BioMath

3/19

percent formatted = percent (percent, accuracy = 0.1)

)

A tibble: 7 x 4

eye color n percent percent formatted
<chr> <int> <dbl> <chr>

1 blue 12 0.343 34.3%

2 blue-gray 1 0.0286 2.9%

3 brown 16 0.457 45.7%

4 dark 1 0.0286 2.9%

5 hazel 2 0.0571 5.7%

6 unknown 1 0.0286 2.9%

7 yellow 2 0.0571 5.7%

And if we want a total row, we have to calculate it separately and then append it:

Step 1: Calculate frequencies per category
per eye color <- humans $>%

count (eye color) %>%

mutate (percent = n / sum(n))

per_eye color

A tibble: 7 x 3

eye color n percent
<chr> <int> <dbl>
1 blue 12 0.343
2 blue-gray 1 0.0286
3 brown 16 0.457
4 dark 1 0.0286
5 hazel 2 0.0571
6 unknown 1 0.0286
7 yellow 2 0.0571
Step 2: Create total row separately
total <- tibble(
eye color = "Total",
n = sum(per eye colors$n),
percent = 1
)
total

A tibble: 1 x 3

eye color n percent

<chr> <int> <dbl>
1 Total 35 1
Step 3: Combine

bind rows (per eye color, total)

A tibble: 8 x 3

eye color n percent

<chr> <int> <dbl>
1 blue 12 0.343
2 blue-gray 1 0.0286
3 brown 16 0.457
4 dark 1 0.0286
5 hazel 2 0.0571
6 unknown 1 0.0286
7 yellow 2 0.0571
8 Total 35 1

This works, but it's a lot of typing for such a common task. This is where tabyl () comes in.

BioMath

4/19

BioMath

janitor::tabyl() — The Elegant Solution

The tabyl () function from the {janitor} package was designed exactly for this use case. It

combines the best features of table() and count () and adds additional useful features.

One-Way Table (Single Variable)

humans $>%
tabyl (eye color)

eye color n percent
blue 12 0.34285714
blue-gray 1 0.02857143
brown 16 0.45714286
dark 1 0.02857143
hazel 2 0.05714286
unknown 1 0.02857143
yellow 2 0.05714286

With a single function call, we get:

* n: The absolute frequency
» percent: The relative proportion (as a decimal)

The result is a tibble that we can process directly.

Controlling NA Values

Let’s look at a variable with missing values — homeworld has several NA entries:

humans $>%

tabyl (homeworld)
homeworld n percent valid percent
Alderaan 3 0.08571429 0.10344828
Bespin 1 0.02857143 0.03448276
Chandrila 1 0.02857143 0.03448276
Concord Dawn 1 0.02857143 0.03448276
Corellia 2 0.05714286 0.06896552
Coruscant 2 0.05714286 0.06896552
Eriadu 1 0.02857143 0.03448276
Haruun Kal 1 0.02857143 0.03448276
Kamino 1 0.02857143 0.03448276
Naboo 5 0.14285714 0.17241379
Serenno 1 0.02857143 0.03448276
Socorro 1 0.02857143 0.03448276
Stewjon 1 0.02857143 0.03448276
Tatooine 8 0.22857143 0.27586207
<NA> 6 0.17142857 NA

By default, tabyl () shows NA values as a separate category. Note the two percent
columns:

» percent: Proportion based on all rows (including NA)
+ valid_percent: Proportion based on valid values (excluding NA)

With show_na = FALSE , we can hide NA values:

humans %>%
tabyl (homeworld, show na = FALSE)

5/19

homeworld n percent
Alderaan 3 0.10344828
Bespin 1 0.03448276
Chandrila 1 0.03448276
Concord Dawn 1 0.03448276
Corellia 2 0.06896552
Coruscant 2 0.06896552
Eriadu 1 0.03448276
Haruun Kal 1 0.03448276
Kamino 1 0.03448276
Naboo 5 0.17241379
Serenno 1 0.03448276
Socorro 1 0.03448276
Stewjon 1 0.03448276
Tatooine 8 0.27586207

When we set show_na = FALSE , there’s only one percent column since both values would be
identical.

Showing Empty Categories

If a variable is defined as a factor, there may be levels that don’t appear in the dataset. With
show_missing_levels = TRUE , these are still displayed:

Example: Factor with a level that doesn't occur
humans factor <- humans %>%
mutate (eye color = factor (eye color,
levels = c("blue", "brown", "hazel", "dark", "green",
"blue-gray")))

humans factor %>%
tabyl (eye color, show missing levels = TRUE)

eye color n percent valid percent
blue 12 0.34285714 0.37500
brown 16 0.45714286 0.50000
hazel 2 0.05714286 0.06250
dark 1 0.02857143 0.03125
green 0 0.00000000 0.00000
blue-gray 1 0.02857143 0.03125
<NA> 3 0.08571429 NA

The level “green” doesn’t occur in humans, but is still shown with n=0. This is particularly
useful for survey data where certain response categories may not have been chosen by
anyone, but should still appear in the report.

O Exercise: One-Way Tables

Create the following tables using the humans dataset:
a) A frequency table for the variable gender .

b) A frequency table for homeworid with NA values hidden.

BioMath

6/19

a) Gender distribution
humans %>%
tabyl (gender)

b) Homeworlds without NA
humans %>%
tabyl (homeworld, show na = FALSE)

Two-Way Tables (Cross-Tabulations)

With two variables, tabyl () automatically creates a cross-tabulation:

humans %>%
tabyl (eye color, gender)

eye color feminine masculine
blue 3 9
blue-gray 0 1
brown
dark
hazel
unknown
yellow

O P P O B
N O BN

The first variable (eye_color) defines the rows, the second (gender) the columns. The
result shows the absolute frequencies for each combination.

Three-Way Tables

With three variables, tabyl() creates a list of cross-tabulations — one for each level of the
third variable:

humans %>%
tabyl (eye color, gender, hair color)

Sauburn
eye color feminine masculine
blue 1
blue-gray
brown
dark

hazel
unknown
yellow

O O O O O o
O O O O O O o

$auburn, grey’
eye color feminine masculine
blue 0
blue-gray
brown
dark
hazel
unknown
yellow

O O O O O o
O O O O O O

$ auburn, white®
eye color feminine masculine
blue 0
blue-gray
brown
dark

hazel
unknown
yellow

O O O O O o
O O O O O+ O

Sblack
eye color feminine masculine
blue 0 0
blue-gray 0 0
brown 1 6
dark 0 1

BioMath

8/19

For more complex analyses, however, this is often less practical than grouped analyses with

group_by () .

The adorn_*() Family

The true power of tabyl () shows itself in combination with the adorn_* () functions. These

“adorn” the table with additional information and formatting.

adorn_totals() — Total Rows and Columns

humans $>%
tabyl (eye color) $>%
adorn_totals ("row")
eye color n percent
blue 12 0.34285714
blue-gray 1 0.02857143
brown 16 0.45714286
dark 1 0.02857143
hazel 2 0.05714286
unknown 1 0.02857143
yellow 2 0.05714286
Total 35 1.00000000

With the name argument, we can customize the name of the total row:

humans $>%
tabyl (eye color) $>%
adorn totals("row", name = "Total")
eye color n percent
blue 12 0.34285714
blue-gray 1 0.02857143
brown 16 0.45714286
dark 1 0.02857143
hazel 2 0.05714286
unknown 1 0.02857143
yellow 2 0.05714286
Total 35 1.00000000

For cross-tabulations, we can add rows, columns, or both:
humans %>%
tabyl (eye color, gender) %>%

adorn_totals(c("row", "col"))

eye color feminine masculine Total

blue 3 9 12
blue-gray 0 1 1
brown 4 12 16
dark 0 1 1
hazel 1 1 2
unknown 1 0 1
yellow 0 2 2
Total 9 26 35

adorn_percentages() — Calculate Percentages
This function replaces absolute counts with percentage proportions:
humans %>%

tabyl (eye color, gender) %>%
adorn percentages ("row") # Row percentages

10

BioMath

10/19

BioMath

eye color feminine masculine

blue 0.25 0.75
blue-gray 0.00 1.00
brown 0.25 0.75
dark 0.00 1.00
hazel 0.50 0.50
unknown 1.00 0.00
yellow 0.00 1.00

The denominator argument determines what the percentages are based on:

* "row" : Row percentages (each row sums to 100%)
* "col" : Column percentages (each column sums to 100%)

* m"all": Overall percentages (the entire table sums to 100%)

humans %>%
tabyl (eye color, gender) %>%

adorn percentages ("col") “olumn percentages

eye color feminine masculine

blue 0.3333333 0.34615385
blue-gray 0.0000000 0.03846154
brown 0.4444444 0.46153846
dark 0.0000000 0.03846154
hazel 0.1111111 0.03846154
unknown 0.1111111 0.00000000
yellow 0.0000000 0.07692308

adorn_pct_formatting() — Format Percentages

After adorn_percentages () , the values are still decimals. With adorn pct formatting() ,
they are nicely formatted:

humans %>%
tabyl (eye color, gender) %>%
adorn percentages ("row") %>%

adorn pct formatting(digits = 1)

eye color feminine masculine

blue 25.0% 75.0%
blue-gray 0.0% 100.0%
brown 25.0% 75.0%
dark 0.0% 100.0%
hazel 50.0% 50.0%
unknown 100.0% 0.0%
yellow 0.0% 100.0%

The affix_sign argument controls whether the percent sign is appended:

humans %>%
tabyl (eye color, gender) %>%
adorn percentages ("row") %>%

adorn pct formatting(digits = 1, affix sign = FALSE)

eye color feminine masculine

blue 25.0 75.0
blue-gray 0.0 100.0
brown 25.0 75.0
dark 0.0 100.0
hazel 50.0 50.0

11
11/19

BioMath

unknown 100.0 0.0
yellow 0.0 100.0

adorn_ns() — Add Case Counts to Percentages

Often we want to see both percentages and absolute numbers. adorn _ns() adds the case
counts in parentheses:

humans %>%
tabyl (eye color, gender) 3%>%
adorn percentages ("row") 3%>%
adorn pct formatting(digits = 0) %>%
adorn ns(position = "front") # n before percent

eye color feminine masculine

blue 3 (25%) 9 (75%)
blue-gray 0 (0%) 1 (100%)
brown 4 (25%) 12 (75%)
dark 0 (0%) 1 (100%)
hazel 1 (50%) 1 (50%)
unknown 1 (100%) 0 (0%)
yellow O (0%) 2 (100%)

With position = "rear" , the case counts appear after the percentages:

humans %>%
tabyl (eye color, gender) %
adorn percentages ("row") 3%
adorn pct formatting(digits = 0) $>%
adorn ns(position = "rear") # n after percent

eye color feminine masculine
blue 25% (3) 75% (9)
blue-gray 0% (0) 100% (1)
brown 25% (4) 75% (12)
dark 0% (0) 100% (1)
hazel 50% (1) 50%

(

(

(1)
unknown 100% (1) 0% (0)
yellow 0% (0) 100% (2)

adorn_title() — Add Table Titles
For complete labeling, we can add titles for rows and columns:
humans %>%

tabyl (eye color, gender) %>%
adorn_ title(

row_name = "Eye Color",
col name = "Gender"
)
Gender
Eye Color feminine masculine
blue 3 9
blue-gray 0 1
brown 4 12
dark 0 1
hazel 1 1
unknown 1 0
yellow 0 2

12
12/19

BioMath

Combined Pipelines
The adorn_*() functions can be combined as needed. A typical pipeline looks like this:

humans %>%
tabyl (eye color, gender) %>%
adorn totals(c("row", "col")) 3%>%
adorn percentages ("row") %>%
adorn pct formatting(digits = 1) $>%
adorn ns () %>%

adorn title(row _name = "Eye Color", col name = "Gender")
Gender

Eye Color feminine masculine Total
blue 25.0% (3) 75.0% (9) 100.0% (12)
blue-gray 0.0% (0) 100.0% (1) 100.0% (1)
brown 25.0% (4) 75.0% (12) 100.0% (1l6)
dark 0.0% (0) 100.0% (1) 100.0% (1)
hazel 50.0% (1) 50.0% (1) 100.0% (2)
unknown 100.0% (1) 0.0% (0) 100.0% (1)
yellow 0.0% (0) 100.0% (2) 100.0% (2)
Total 25.7% (9) 74.3% (26) 100.0% (35)

© Exercise: Cross-Tabulations and adorn_*()

Work with the humans dataset:

a) Create a cross-tabulation of gender (rows)and eye_color (columns) with a total row.

b) Extend the table from a) with column percentages (each column = 100%), formatted
with one decimal place.

¢) Additionally add the absolute case counts (position: after the percentages).

13
13/19

1 Solution

Cross-tabulation with total row

o o
3>%

a)
humans

>%

tabyl (gender, eye color)
adorn totals ("row")

b) With column percentages
humans %>%
tabyl (gender, eye color)
adorn_totals("row") $%>%
adorn percentages ("col") 3%>%
adorn pct formatting(digits

$>

oe

1)

c) With case counts
humans %>%
tabyl (gender, eye color)
adorn totals("row") $%>%
adorn percentages("col") %>%
adorn pct formatting(digits
adorn ns(position = "rear")

oe

$>

BioMath

Advanced: Practical Tips

Named Vectors for Recoding

When variables have cryptic codes (e.g., varl, var2, ...), we often want to label them with

understandable names. Instead of a long case_when () , a named vector is recommended:

Define named vector (reusable!)

eye labels <- c(

"blue" = "Blue",
"brown" = "Brown",
"hazel" = "Hazel",
"dark" = "Dark",
"blue-gray" = "Blue-Gray"
)
Application
humans $>%
mutate (eye color label = eye labels[eye color]) %>%

tabyl (eye color label, show na = FALSE)

eye color label n percent
Blue 12 0.37500

0
Blue-Gray 1 0.03125
Brown 16 0.50000
Dark 1 0.03125
Hazel 2 0.06250

This approach is:

* Reusable: The vector can be used in multiple analyses
» Centrally maintainable: Changes in one place affect everywhere

* Clear: No long case_when() blocks in the code

© Tip: Labels in Separate File

With many variables, it's worthwhile to store all label vectors in a separate R file (e.g.,
labels.R) and load it at the beginning of the script:

Isource("labels.R")

Warning: Mean of Means

When applying adorn_totals () to tables that already contain aggregated values, caution is
required. This particularly applies to means:

Example: Average height by gender
height by gender <- humans %>%
group by (gender) %>%
summarise (
n=n(),
mean _height = mean (height, na.rm = TRUE)
)

height by gender

A tibble: 2 x 3
gender n mean_ height

15
15/19

<chr> <int> <dbl>
1 feminine 9 164.
2 masculine 26 182.
WRONG: adorn_ totals() also sums the mean!

height by gender %>%
adorn_totals ("row")

gender n mean_ height
feminine 9 163.5714
masculine 26 182.3913
Total 35 345.9627

The problem: adorn_totals() simply adds the rows. Forthe n column, this is correct, but

for mean height , the sum makes no sense!

| The Mean of Means Is Not the Overall Mean!

When groups have different sizes, the simple average of group means leads to bias. The
correct overall mean must be calculated as a weighted average.

Here’s an example for illustration:

Group 2

Group B:

tibble (
Group = c("A", "B"),
n = c (100, 10),
Mean = c (20, 30)
) %>%
adorn_ totals ("row") # Shows 25 instead of 20.9!

Group n Mean
A 100 20
B 10 30
Total 110 50

Solution: Calculate the total row for means separately and correctly:

Step 1: Grouped means
height by gender <- humans %>%
group by (gender) $>%
summarise (
n=n(),
mean height = mean (height, na.rm = TRUE)
)

Step 2: Calcula W separately

total <- humans %
summarise (
gender = "Total",
n=n(),
mean height = mean (height, na.rm = TRUE)
)

16

BioMath

16/19

Step 3: Combine
bind rows (height by gender, total)

A tibble: 3 x 3

gender n mean height

<chr> <int> <dbl>
1 feminine 9 164.
2 masculine 26 182.
3 Total 35 178

@ Exercise: Practical Application

Use the complete starwars dataset (not just humans):

a) Create a frequency table for species , but show only the 5 most common species. All

others should be combined under “Other”. Tip: Use fct_lump n() from the {forcats}
package.

b) Add a total row named “Total” and format the percentages with one decimal place.

1 Solution
a) + b) Frequency table of top 5 species
starwars %>%
mutate (species = fct lump n(species, n = 5, other level = "Other")) %>%
tabyl (species, show na = FALSE) %>%
adorn_ totals("row", name = "Total") %>%

adorn pct formatting(digits

1)

species n percent

Droid 6 7.2%
Gungan 3 3.6%
Human 35 42.2%
Kaminoan 2 2.4%
Mirialan 2 2.4%
Twi'lek 2 2.4%
Wookiee 2 2.4%
Zabrak 2 2.4%
Other 29 34.9%
Total 83 100.0%

17

BioMath

17119

BioMath

Summary

In this chapter, we learned three ways to create frequency tables in R and saw why

janitor::tabyl() is the best choice in most cases.

1 Key Takeaways

Comparison of Methods:

Aspect table () count () tabyl ()

Return type table object tibble tibble
Percentages No Manual Automatic

NA handling Limited Manual show_na

Total row Manual Manual adorn_totals ()
Cross-tabulations Yes Awkward Yes

Further processing Awkward Good Very good

Key tabyl() Features:

* tabyl(df, var) : One-way table with n, percent, valid_percent
* tabyl (df, varl, var2) : Cross-tabulation
* show na = FALSE : Hide NA values

show_missing levels = TRUE : Show empty factor levels
The adorn_*() Family:

* adorn_totals() : Add total row/column

* adorn_percentages () : Calculate percentages (row/col/all)
* adorn_pct formatting() : Format percentages
* adorn_ns() : Add case counts to percentages

* adorn_title() : Set row/column titles
Practical Tips:

* Named vectors for recoding instead of long case_when ()
* Caution with adorn totals() and means — the mean of means is not the overall mean!
» Typical pipeline:

tabyl() %$>% adorn totals() %>% adorn percentages () %>% adorn pct formatting()
%>% adorn_ns ()

Further Resources:

* janitor Package Documentation
+ tabyl Vignette

18
18/19

https://sfirke.github.io/janitor/
https://sfirke.github.io/janitor/articles/tabyls.html

Bibliography

19

	Introduction
	Example Data
	The Classic Way: table()
	The Tidyverse Way: count() + mutate()
	janitor::tabyl() – The Elegant Solution
	One-Way Table (Single Variable)
	Controlling NA Values
	Showing Empty Categories

	Two-Way Tables (Cross-Tabulations)
	Three-Way Tables

	The adorn_*() Family
	adorn_totals() – Total Rows and Columns
	adorn_percentages() – Calculate Percentages
	adorn_pct_formatting() – Format Percentages
	adorn_ns() – Add Case Counts to Percentages
	adorn_title() – Add Table Titles
	Combined Pipelines

	Advanced: Practical Tips
	Named Vectors for Recoding
	Warning: Mean of Means

	Summary
	Bibliography

