
BioMath

1/19

3. Frequency Tables

Counting and Tabulating with janitor::tabyl()
Dr. Paul Schmidt

To install and load all packages used in this chapter, run the following code:

for (pkg in c("janitor", "scales", "tidyverse")) {
 if (!require(pkg, character.only = TRUE)) install.packages(pkg)
}

library(janitor)
library(scales)
library(tidyverse)

Introduction
Frequency tables are one of the most fundamental tools in data analysis. How often does
each category occur? How are values distributed across different groups? We constantly ask
such questions – whether in quality control, survey analysis, or simply to get an initial
overview of the data.

R offers several ways to create frequency tables. In this chapter, we start with the basics
(table() and count()) to then understand why janitor::tabyl() is the more elegant and
practical solution in most cases.

Example Data
For this chapter, we use the starwars dataset from the {dplyr} package. It contains
information about 87 characters from the Star Wars universe:

glimpse(starwars)

Rows: 87
Columns: 14
$ name <chr> "Luke Skywalker", "C-3PO", "R2-D2", "Darth Vader", "Leia Or…
$ height <int> 172, 167, 96, 202, 150, 178, 165, 97, 183, 182, 188, 180, 2…
$ mass <dbl> 77.0, 75.0, 32.0, 136.0, 49.0, 120.0, 75.0, 32.0, 84.0, 77.…
$ hair_color <chr> "blond", NA, NA, "none", "brown", "brown, grey", "brown", N…
$ skin_color <chr> "fair", "gold", "white, blue", "white", "light", "light", "…
$ eye_color <chr> "blue", "yellow", "red", "yellow", "brown", "blue", "blue",…
$ birth_year <dbl> 19.0, 112.0, 33.0, 41.9, 19.0, 52.0, 47.0, NA, 24.0, 57.0, …
$ sex <chr> "male", "none", "none", "male", "female", "male", "female",…
$ gender <chr> "masculine", "masculine", "masculine", "masculine", "femini…
$ homeworld <chr> "Tatooine", "Tatooine", "Naboo", "Tatooine", "Alderaan", "T…
$ species <chr> "Human", "Droid", "Droid", "Human", "Human", "Human", "Huma…
$ films <list> <"A New Hope", "The Empire Strikes Back", "Return of the J…
$ vehicles <list> <"Snowspeeder", "Imperial Speeder Bike">, <>, <>, <>, "Imp…
$ starships <list> <"X-wing", "Imperial shuttle">, <>, <>, "TIE Advanced x1",…

The dataset has both categorical variables (like species , sex , homeworld) and numerical

variables (like height , mass). For most examples, we filter to humans

(species == "Human") to keep the outputs manageable:

1

BioMath

2/19

humans <- starwars %>%
 filter(species == "Human")

humans

A tibble: 35 × 14
 name height mass hair_color skin_color eye_color birth_year sex gender
 <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
 1 Luke Sk… 172 77 blond fair blue 19 male mascu…
 2 Darth V… 202 136 none white yellow 41.9 male mascu…
 3 Leia Or… 150 49 brown light brown 19 fema… femin…
 4 Owen La… 178 120 brown, gr… light blue 52 male mascu…
 5 Beru Wh… 165 75 brown light blue 47 fema… femin…
 6 Biggs D… 183 84 black light brown 24 male mascu…
 7 Obi-Wan… 182 77 auburn, w… fair blue-gray 57 male mascu…
 8 Anakin … 188 84 blond fair blue 41.9 male mascu…
 9 Wilhuff… 180 NA auburn, g… fair blue 64 male mascu…
10 Han Solo 180 80 brown fair brown 29 male mascu…
ℹ 25 more rows
ℹ 5 more variables: homeworld <chr>, species <chr>, films <list>,
vehicles <list>, starships <list>

2

BioMath

3/19

The Classic Way: table()
The table() function is built into base R and creates simple frequency tables:

table(humans$eye_color)

 blue blue-gray brown dark hazel unknown yellow
 12 1 16 1 2 1 2

This works, but has several disadvantages:

1. Not a data.frame: The result is a table object, not a tibble/data.frame. It cannot be
directly processed with tidyverse functions.

2. No percentages: We only get absolute counts, no relative frequencies.

3. Awkward syntax: With multiple variables, it quickly becomes unwieldy.

You can convert the result to a data.frame, but it’s cumbersome:

table(humans$eye_color) %>%
 as.data.frame()

 Var1 Freq
1 blue 12
2 blue-gray 1
3 brown 16
4 dark 1
5 hazel 2
6 unknown 1
7 yellow 2

The column names are not intuitive (Var1 , Freq), and we have to calculate percentages
ourselves.

The Tidyverse Way: count() + mutate()
With dplyr::count() , we get a tibble directly:

humans %>%
 count(eye_color)

A tibble: 7 × 2
 eye_color n
 <chr> <int>
1 blue 12
2 blue-gray 1
3 brown 16
4 dark 1
5 hazel 2
6 unknown 1
7 yellow 2

That’s already better! If we want percentages, we add them with mutate() :

humans %>%
 count(eye_color) %>%
 mutate(
 percent = n / sum(n),

3

BioMath

4/19

 percent_formatted = percent(percent, accuracy = 0.1)
)

A tibble: 7 × 4
 eye_color n percent percent_formatted
 <chr> <int> <dbl> <chr>
1 blue 12 0.343 34.3%
2 blue-gray 1 0.0286 2.9%
3 brown 16 0.457 45.7%
4 dark 1 0.0286 2.9%
5 hazel 2 0.0571 5.7%
6 unknown 1 0.0286 2.9%
7 yellow 2 0.0571 5.7%

And if we want a total row, we have to calculate it separately and then append it:

Step 1: Calculate frequencies per category
per_eye_color <- humans %>%
 count(eye_color) %>%
 mutate(percent = n / sum(n))

per_eye_color

A tibble: 7 × 3
 eye_color n percent
 <chr> <int> <dbl>
1 blue 12 0.343
2 blue-gray 1 0.0286
3 brown 16 0.457
4 dark 1 0.0286
5 hazel 2 0.0571
6 unknown 1 0.0286
7 yellow 2 0.0571

Step 2: Create total row separately
total <- tibble(
 eye_color = "Total",
 n = sum(per_eye_color$n),
 percent = 1
)

total

A tibble: 1 × 3
 eye_color n percent
 <chr> <int> <dbl>
1 Total 35 1

Step 3: Combine
bind_rows(per_eye_color, total)

A tibble: 8 × 3
 eye_color n percent
 <chr> <int> <dbl>
1 blue 12 0.343
2 blue-gray 1 0.0286
3 brown 16 0.457
4 dark 1 0.0286
5 hazel 2 0.0571
6 unknown 1 0.0286
7 yellow 2 0.0571
8 Total 35 1

This works, but it’s a lot of typing for such a common task. This is where tabyl() comes in.

4

BioMath

5/19

janitor::tabyl() – The Elegant Solution
The tabyl() function from the {janitor} package was designed exactly for this use case. It

combines the best features of table() and count() and adds additional useful features.

One-Way Table (Single Variable)
humans %>%
 tabyl(eye_color)

 eye_color n percent
 blue 12 0.34285714
 blue-gray 1 0.02857143
 brown 16 0.45714286
 dark 1 0.02857143
 hazel 2 0.05714286
 unknown 1 0.02857143
 yellow 2 0.05714286

With a single function call, we get:

• n: The absolute frequency
• percent: The relative proportion (as a decimal)

The result is a tibble that we can process directly.

Controlling NA Values
Let’s look at a variable with missing values – homeworld has several NA entries:

humans %>%
 tabyl(homeworld)

 homeworld n percent valid_percent
 Alderaan 3 0.08571429 0.10344828
 Bespin 1 0.02857143 0.03448276
 Chandrila 1 0.02857143 0.03448276
 Concord Dawn 1 0.02857143 0.03448276
 Corellia 2 0.05714286 0.06896552
 Coruscant 2 0.05714286 0.06896552
 Eriadu 1 0.02857143 0.03448276
 Haruun Kal 1 0.02857143 0.03448276
 Kamino 1 0.02857143 0.03448276
 Naboo 5 0.14285714 0.17241379
 Serenno 1 0.02857143 0.03448276
 Socorro 1 0.02857143 0.03448276
 Stewjon 1 0.02857143 0.03448276
 Tatooine 8 0.22857143 0.27586207
 <NA> 6 0.17142857 NA

By default, tabyl() shows NA values as a separate category. Note the two percent
columns:

• percent: Proportion based on all rows (including NA)
• valid_percent: Proportion based on valid values (excluding NA)

With show_na = FALSE , we can hide NA values:

humans %>%
 tabyl(homeworld, show_na = FALSE)

5

BioMath

6/19

 homeworld n percent
 Alderaan 3 0.10344828
 Bespin 1 0.03448276
 Chandrila 1 0.03448276
 Concord Dawn 1 0.03448276
 Corellia 2 0.06896552
 Coruscant 2 0.06896552
 Eriadu 1 0.03448276
 Haruun Kal 1 0.03448276
 Kamino 1 0.03448276
 Naboo 5 0.17241379
 Serenno 1 0.03448276
 Socorro 1 0.03448276
 Stewjon 1 0.03448276
 Tatooine 8 0.27586207

When we set show_na = FALSE , there’s only one percent column since both values would be
identical.

Showing Empty Categories
If a variable is defined as a factor, there may be levels that don’t appear in the dataset. With
show_missing_levels = TRUE , these are still displayed:

Example: Factor with a level that doesn't occur
humans_factor <- humans %>%
 mutate(eye_color = factor(eye_color,
 levels = c("blue", "brown", "hazel", "dark", "green",
"blue-gray")))

humans_factor %>%
 tabyl(eye_color, show_missing_levels = TRUE)

 eye_color n percent valid_percent
 blue 12 0.34285714 0.37500
 brown 16 0.45714286 0.50000
 hazel 2 0.05714286 0.06250
 dark 1 0.02857143 0.03125
 green 0 0.00000000 0.00000
 blue-gray 1 0.02857143 0.03125
 <NA> 3 0.08571429 NA

The level “green” doesn’t occur in humans, but is still shown with n=0. This is particularly
useful for survey data where certain response categories may not have been chosen by
anyone, but should still appear in the report.

 Exercise: One-Way Tables

Create the following tables using the humans dataset:

a) A frequency table for the variable gender .

b) A frequency table for homeworld with NA values hidden.

6

BioMath

7/19

 Solution

a) Gender distribution
humans %>%
 tabyl(gender)

 gender n percent
 feminine 9 0.2571429
 masculine 26 0.7428571

b) Homeworlds without NA
humans %>%
 tabyl(homeworld, show_na = FALSE)

 homeworld n percent
 Alderaan 3 0.10344828
 Bespin 1 0.03448276
 Chandrila 1 0.03448276
 Concord Dawn 1 0.03448276
 Corellia 2 0.06896552
 Coruscant 2 0.06896552
 Eriadu 1 0.03448276
 Haruun Kal 1 0.03448276
 Kamino 1 0.03448276
 Naboo 5 0.17241379
 Serenno 1 0.03448276
 Socorro 1 0.03448276
 Stewjon 1 0.03448276
 Tatooine 8 0.27586207

7

BioMath

8/19

Two-Way Tables (Cross-Tabulations)
With two variables, tabyl() automatically creates a cross-tabulation:

humans %>%
 tabyl(eye_color, gender)

 eye_color feminine masculine
 blue 3 9
 blue-gray 0 1
 brown 4 12
 dark 0 1
 hazel 1 1
 unknown 1 0
 yellow 0 2

The first variable (eye_color) defines the rows, the second (gender) the columns. The
result shows the absolute frequencies for each combination.

Three-Way Tables
With three variables, tabyl() creates a list of cross-tabulations – one for each level of the
third variable:

humans %>%
 tabyl(eye_color, gender, hair_color)

$auburn
 eye_color feminine masculine
 blue 1 0
 blue-gray 0 0
 brown 0 0
 dark 0 0
 hazel 0 0
 unknown 0 0
 yellow 0 0

$`auburn, grey`
 eye_color feminine masculine
 blue 0 1
 blue-gray 0 0
 brown 0 0
 dark 0 0
 hazel 0 0
 unknown 0 0
 yellow 0 0

$`auburn, white`
 eye_color feminine masculine
 blue 0 0
 blue-gray 0 1
 brown 0 0
 dark 0 0
 hazel 0 0
 unknown 0 0
 yellow 0 0

$black
 eye_color feminine masculine
 blue 0 0
 blue-gray 0 0
 brown 1 6
 dark 0 1

8

BioMath

9/19

 hazel 0 0
 unknown 0 0
 yellow 0 0

$blond
 eye_color feminine masculine
 blue 0 3
 blue-gray 0 0
 brown 0 0
 dark 0 0
 hazel 0 0
 unknown 0 0
 yellow 0 0

$brown
 eye_color feminine masculine
 blue 1 3
 blue-gray 0 0
 brown 3 4
 dark 0 0
 hazel 1 1
 unknown 0 0
 yellow 0 0

$`brown, grey`
 eye_color feminine masculine
 blue 0 1
 blue-gray 0 0
 brown 0 0
 dark 0 0
 hazel 0 0
 unknown 0 0
 yellow 0 0

$grey
 eye_color feminine masculine
 blue 0 0
 blue-gray 0 0
 brown 0 0
 dark 0 0
 hazel 0 0
 unknown 0 0
 yellow 0 1

$none
 eye_color feminine masculine
 blue 0 1
 blue-gray 0 0
 brown 0 1
 dark 0 0
 hazel 0 0
 unknown 1 0
 yellow 0 1

$white
 eye_color feminine masculine
 blue 1 0
 blue-gray 0 0
 brown 0 1
 dark 0 0
 hazel 0 0
 unknown 0 0
 yellow 0 0

For more complex analyses, however, this is often less practical than grouped analyses with
group_by() .

9

BioMath

10/19

The adorn_*() Family
The true power of tabyl() shows itself in combination with the adorn_*() functions. These
“adorn” the table with additional information and formatting.

adorn_totals() – Total Rows and Columns
humans %>%
 tabyl(eye_color) %>%
 adorn_totals("row")

 eye_color n percent
 blue 12 0.34285714
 blue-gray 1 0.02857143
 brown 16 0.45714286
 dark 1 0.02857143
 hazel 2 0.05714286
 unknown 1 0.02857143
 yellow 2 0.05714286
 Total 35 1.00000000

With the name argument, we can customize the name of the total row:

humans %>%
 tabyl(eye_color) %>%
 adorn_totals("row", name = "Total")

 eye_color n percent
 blue 12 0.34285714
 blue-gray 1 0.02857143
 brown 16 0.45714286
 dark 1 0.02857143
 hazel 2 0.05714286
 unknown 1 0.02857143
 yellow 2 0.05714286
 Total 35 1.00000000

For cross-tabulations, we can add rows, columns, or both:

humans %>%
 tabyl(eye_color, gender) %>%
 adorn_totals(c("row", "col"))

 eye_color feminine masculine Total
 blue 3 9 12
 blue-gray 0 1 1
 brown 4 12 16
 dark 0 1 1
 hazel 1 1 2
 unknown 1 0 1
 yellow 0 2 2
 Total 9 26 35

adorn_percentages() – Calculate Percentages
This function replaces absolute counts with percentage proportions:

humans %>%
 tabyl(eye_color, gender) %>%
 adorn_percentages("row") # Row percentages

10

BioMath

11/19

 eye_color feminine masculine
 blue 0.25 0.75
 blue-gray 0.00 1.00
 brown 0.25 0.75
 dark 0.00 1.00
 hazel 0.50 0.50
 unknown 1.00 0.00
 yellow 0.00 1.00

The denominator argument determines what the percentages are based on:

• "row" : Row percentages (each row sums to 100%)
• "col" : Column percentages (each column sums to 100%)
• "all" : Overall percentages (the entire table sums to 100%)

humans %>%
 tabyl(eye_color, gender) %>%
 adorn_percentages("col") # Column percentages

 eye_color feminine masculine
 blue 0.3333333 0.34615385
 blue-gray 0.0000000 0.03846154
 brown 0.4444444 0.46153846
 dark 0.0000000 0.03846154
 hazel 0.1111111 0.03846154
 unknown 0.1111111 0.00000000
 yellow 0.0000000 0.07692308

adorn_pct_formatting() – Format Percentages
After adorn_percentages() , the values are still decimals. With adorn_pct_formatting() ,
they are nicely formatted:

humans %>%
 tabyl(eye_color, gender) %>%
 adorn_percentages("row") %>%
 adorn_pct_formatting(digits = 1)

 eye_color feminine masculine
 blue 25.0% 75.0%
 blue-gray 0.0% 100.0%
 brown 25.0% 75.0%
 dark 0.0% 100.0%
 hazel 50.0% 50.0%
 unknown 100.0% 0.0%
 yellow 0.0% 100.0%

The affix_sign argument controls whether the percent sign is appended:

humans %>%
 tabyl(eye_color, gender) %>%
 adorn_percentages("row") %>%
 adorn_pct_formatting(digits = 1, affix_sign = FALSE)

 eye_color feminine masculine
 blue 25.0 75.0
 blue-gray 0.0 100.0
 brown 25.0 75.0
 dark 0.0 100.0
 hazel 50.0 50.0

11

BioMath

12/19

 unknown 100.0 0.0
 yellow 0.0 100.0

adorn_ns() – Add Case Counts to Percentages
Often we want to see both percentages and absolute numbers. adorn_ns() adds the case
counts in parentheses:

humans %>%
 tabyl(eye_color, gender) %>%
 adorn_percentages("row") %>%
 adorn_pct_formatting(digits = 0) %>%
 adorn_ns(position = "front") # n before percent

 eye_color feminine masculine
 blue 3 (25%) 9 (75%)
 blue-gray 0 (0%) 1 (100%)
 brown 4 (25%) 12 (75%)
 dark 0 (0%) 1 (100%)
 hazel 1 (50%) 1 (50%)
 unknown 1 (100%) 0 (0%)
 yellow 0 (0%) 2 (100%)

With position = "rear" , the case counts appear after the percentages:

humans %>%
 tabyl(eye_color, gender) %>%
 adorn_percentages("row") %>%
 adorn_pct_formatting(digits = 0) %>%
 adorn_ns(position = "rear") # n after percent

 eye_color feminine masculine
 blue 25% (3) 75% (9)
 blue-gray 0% (0) 100% (1)
 brown 25% (4) 75% (12)
 dark 0% (0) 100% (1)
 hazel 50% (1) 50% (1)
 unknown 100% (1) 0% (0)
 yellow 0% (0) 100% (2)

adorn_title() – Add Table Titles
For complete labeling, we can add titles for rows and columns:

humans %>%
 tabyl(eye_color, gender) %>%
 adorn_title(
 row_name = "Eye Color",
 col_name = "Gender"
)

 Gender
 Eye Color feminine masculine
 blue 3 9
 blue-gray 0 1
 brown 4 12
 dark 0 1
 hazel 1 1
 unknown 1 0
 yellow 0 2

12

BioMath

13/19

Combined Pipelines
The adorn_*() functions can be combined as needed. A typical pipeline looks like this:

humans %>%
 tabyl(eye_color, gender) %>%
 adorn_totals(c("row", "col")) %>%
 adorn_percentages("row") %>%
 adorn_pct_formatting(digits = 1) %>%
 adorn_ns() %>%
 adorn_title(row_name = "Eye Color", col_name = "Gender")

 Gender
 Eye Color feminine masculine Total
 blue 25.0% (3) 75.0% (9) 100.0% (12)
 blue-gray 0.0% (0) 100.0% (1) 100.0% (1)
 brown 25.0% (4) 75.0% (12) 100.0% (16)
 dark 0.0% (0) 100.0% (1) 100.0% (1)
 hazel 50.0% (1) 50.0% (1) 100.0% (2)
 unknown 100.0% (1) 0.0% (0) 100.0% (1)
 yellow 0.0% (0) 100.0% (2) 100.0% (2)
 Total 25.7% (9) 74.3% (26) 100.0% (35)

 Exercise: Cross-Tabulations and adorn_*()

Work with the humans dataset:

a) Create a cross-tabulation of gender (rows) and eye_color (columns) with a total row.

b) Extend the table from a) with column percentages (each column = 100%), formatted
with one decimal place.

c) Additionally add the absolute case counts (position: after the percentages).

13

BioMath

14/19

 Solution

a) Cross-tabulation with total row
humans %>%
 tabyl(gender, eye_color) %>%
 adorn_totals("row")

 gender blue blue-gray brown dark hazel unknown yellow
 feminine 3 0 4 0 1 1 0
 masculine 9 1 12 1 1 0 2
 Total 12 1 16 1 2 1 2

b) With column percentages
humans %>%
 tabyl(gender, eye_color) %>%
 adorn_totals("row") %>%
 adorn_percentages("col") %>%
 adorn_pct_formatting(digits = 1)

 gender blue blue-gray brown dark hazel unknown yellow
 feminine 25.0% 0.0% 25.0% 0.0% 50.0% 100.0% 0.0%
 masculine 75.0% 100.0% 75.0% 100.0% 50.0% 0.0% 100.0%
 Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

c) With case counts
humans %>%
 tabyl(gender, eye_color) %>%
 adorn_totals("row") %>%
 adorn_percentages("col") %>%
 adorn_pct_formatting(digits = 1) %>%
 adorn_ns(position = "rear")

 gender blue blue-gray brown dark hazel unknown
 feminine 25.0% (3) 0.0% (0) 25.0% (4) 0.0% (0) 50.0% (1) 100.0% (1)
 masculine 75.0% (9) 100.0% (1) 75.0% (12) 100.0% (1) 50.0% (1) 0.0% (0)
 Total 100.0% (12) 100.0% (1) 100.0% (16) 100.0% (1) 100.0% (2) 100.0% (1)
 yellow
 0.0% (0)
 100.0% (2)
 100.0% (2)

14

BioMath

15/19

Advanced: Practical Tips
Named Vectors for Recoding
When variables have cryptic codes (e.g., var1 , var2 , …), we often want to label them with

understandable names. Instead of a long case_when() , a named vector is recommended:

Define named vector (reusable!)
eye_labels <- c(
 "blue" = "Blue",
 "brown" = "Brown",
 "hazel" = "Hazel",
 "dark" = "Dark",
 "blue-gray" = "Blue-Gray"
)

Application
humans %>%
 mutate(eye_color_label = eye_labels[eye_color]) %>%
 tabyl(eye_color_label, show_na = FALSE)

 eye_color_label n percent
 Blue 12 0.37500
 Blue-Gray 1 0.03125
 Brown 16 0.50000
 Dark 1 0.03125
 Hazel 2 0.06250

This approach is:

• Reusable: The vector can be used in multiple analyses
• Centrally maintainable: Changes in one place affect everywhere
• Clear: No long case_when() blocks in the code

 Tip: Labels in Separate File

With many variables, it’s worthwhile to store all label vectors in a separate R file (e.g.,
labels.R) and load it at the beginning of the script:

source("labels.R")

Warning: Mean of Means
When applying adorn_totals() to tables that already contain aggregated values, caution is
required. This particularly applies to means:

Example: Average height by gender
height_by_gender <- humans %>%
 group_by(gender) %>%
 summarise(
 n = n(),
 mean_height = mean(height, na.rm = TRUE)
)

height_by_gender

A tibble: 2 × 3
 gender n mean_height

15

BioMath

16/19

 <chr> <int> <dbl>
1 feminine 9 164.
2 masculine 26 182.

WRONG: adorn_totals() also sums the mean!
height_by_gender %>%
 adorn_totals("row")

 gender n mean_height
 feminine 9 163.5714
 masculine 26 182.3913
 Total 35 345.9627

The problem: adorn_totals() simply adds the rows. For the n column, this is correct, but

for mean_height , the sum makes no sense!

! The Mean of Means Is Not the Overall Mean!

When groups have different sizes, the simple average of group means leads to bias. The
correct overall mean must be calculated as a weighted average.

Here’s an example for illustration:

Group A: 100 people, average 20
Group B: 10 people, average 30

Wrong "overall mean": (20 + 30) / 2 = 25

Correct overall mean:
(100 * 20 + 10 * 30) / (100 + 10) = 2300 / 110 ≈ 20.9

tibble(
 Group = c("A", "B"),
 n = c(100, 10),
 Mean = c(20, 30)
) %>%
 adorn_totals("row") # Shows 25 instead of 20.9!

 Group n Mean
 A 100 20
 B 10 30
 Total 110 50

Solution: Calculate the total row for means separately and correctly:

Step 1: Grouped means
height_by_gender <- humans %>%
 group_by(gender) %>%
 summarise(
 n = n(),
 mean_height = mean(height, na.rm = TRUE)
)

Step 2: Calculate total row separately
total <- humans %>%
 summarise(
 gender = "Total",
 n = n(),
 mean_height = mean(height, na.rm = TRUE)
)

16

BioMath

17/19

Step 3: Combine
bind_rows(height_by_gender, total)

A tibble: 3 × 3
 gender n mean_height
 <chr> <int> <dbl>
1 feminine 9 164.
2 masculine 26 182.
3 Total 35 178

 Exercise: Practical Application

Use the complete starwars dataset (not just humans):

a) Create a frequency table for species , but show only the 5 most common species. All

others should be combined under “Other”. Tip: Use fct_lump_n() from the {forcats}
package.

b) Add a total row named “Total” and format the percentages with one decimal place.

 Solution

a) + b) Frequency table of top 5 species
starwars %>%
 mutate(species = fct_lump_n(species, n = 5, other_level = "Other")) %>%
 tabyl(species, show_na = FALSE) %>%
 adorn_totals("row", name = "Total") %>%
 adorn_pct_formatting(digits = 1)

 species n percent
 Droid 6 7.2%
 Gungan 3 3.6%
 Human 35 42.2%
 Kaminoan 2 2.4%
 Mirialan 2 2.4%
 Twi'lek 2 2.4%
 Wookiee 2 2.4%
 Zabrak 2 2.4%
 Other 29 34.9%
 Total 83 100.0%

17

BioMath

18/19

Summary
In this chapter, we learned three ways to create frequency tables in R and saw why
janitor::tabyl() is the best choice in most cases.

 Key Takeaways

Comparison of Methods:

Aspect table() count() tabyl()

Return type table object tibble tibble

Percentages No Manual Automatic

NA handling Limited Manual show_na

Total row Manual Manual adorn_totals()

Cross-tabulations Yes Awkward Yes

Further processing Awkward Good Very good

Key tabyl() Features:

• tabyl(df, var) : One-way table with n, percent, valid_percent
• tabyl(df, var1, var2) : Cross-tabulation
• show_na = FALSE : Hide NA values
• show_missing_levels = TRUE : Show empty factor levels

The adorn_*() Family:

• adorn_totals() : Add total row/column
• adorn_percentages() : Calculate percentages (row/col/all)
• adorn_pct_formatting() : Format percentages
• adorn_ns() : Add case counts to percentages
• adorn_title() : Set row/column titles

Practical Tips:

• Named vectors for recoding instead of long case_when()
• Caution with adorn_totals() and means – the mean of means is not the overall mean!
• Typical pipeline:

tabyl() %>% adorn_totals() %>% adorn_percentages() %>% adorn_pct_formatting()
%>% adorn_ns()

Further Resources:

• janitor Package Documentation
• tabyl Vignette

18

https://sfirke.github.io/janitor/
https://sfirke.github.io/janitor/articles/tabyls.html

BioMath

19/19

Bibliography

19

	Introduction
	Example Data
	The Classic Way: table()
	The Tidyverse Way: count() + mutate()
	janitor::tabyl() – The Elegant Solution
	One-Way Table (Single Variable)
	Controlling NA Values
	Showing Empty Categories

	Two-Way Tables (Cross-Tabulations)
	Three-Way Tables

	The adorn_*() Family
	adorn_totals() – Total Rows and Columns
	adorn_percentages() – Calculate Percentages
	adorn_pct_formatting() – Format Percentages
	adorn_ns() – Add Case Counts to Percentages
	adorn_title() – Add Table Titles
	Combined Pipelines

	Advanced: Practical Tips
	Named Vectors for Recoding
	Warning: Mean of Means

	Summary
	Bibliography

