BioMath

4. Strings and Text

Text Manipulation with paste, glue, stringr, and Number Formatting
Dr. Paul Schmidt

To install and load all packages used in this chapter, run the following code:

for (pkg in c("glue", "scales", "stringr", "tidyverse")) {
if (!require (pkg, character.only = TRUE)) install.packages (pkqg)
}

library (glue)
library (scales)
library (stringr)
library (tidyverse)

Introduction

In data analysis, we constantly work with text: assembling file names, cleaning column
names, standardizing categories, creating labels for graphics. Formatting numbers for
reports and tables is also part of this — percentages, thousands separators, p-values.

R offers various tools for this — from the built-in functions paste () and paste0() , to the

elegant {glue} package, to the powerful manipulation functions from {stringr}, and specialized
formatting functions from {scales}.

This chapter shows the most important techniques for typical data cleaning tasks and value
formatting for reports.

Example Data

For this chapter, we create a small dataset with typical “dirty” strings, as they commonly
occur in practice:

survey <- tibble (

id = 1:8,
response = c("Yes", " Yes", "yes ", " YES ", "No", "no", "NO ", "maybe"),
comment = c(

"All good",

" Leading whitespace",

"Trailing whitespace vy

@ Both @,

"Too many spaces",

NA,

"Contains number: 42"

),

category = c("Cat_A", "Cat B", "Cat A", "CAT C", "cat a", "Cat-B", "Cat A",
"Cat C")
)

survey

A tibble: 8 x 4

id response comment category
<int> <chr> <chr> <chr>

118

We can see typical problems: inconsistent capitalization, leading/trailing whitespace, different
spellings of the same category.

BioMath

Base R: paste() and paste0()

The functions paste() and paste0() are built into R and serve to concatenate strings.

Basic Principle

paste() Joins with space (default)
paste ("Hello", "World")

I[l] "Hello World"

pastel () joins without separator
pastel ("Hello", "World")

I[l] "HelloWorld"

With variables

name <- "Anna"
age <- 28
paste ("Name:", name, "- Age:", age)

I[l] "Name: Anna - Age: 28"

The sep Argument

With sep , we can specify the separator between elements:
Ipaste("2024", "o1", "15", sep = "-")

I [1] "2024-01-15"

Ipaste("A", "B", "C", sep = " ")

| [1] "a B C"

Ipaste("One", "Two", "Three", sep =" | ")

I[l] "One | Two | Three"

The collapse Argument
When we want to combine a vector into a single string:
cities <- c("Berlin", "Hamburg", "Munich")

Without collapse: vector with 3 elements
paste ("City:", cities)

I[l] "City: Berlin" "City: Hamburg" "City: Munich"

With collapse: a single string
paste(cities, collapse =", ")

I[l] "Berlin, Hamburg, Munich"
Ipaste(cities, collapse = " and ")

I[l] "Berlin and Hamburg and Munich"

3/18

Limitation
With more complex strings, paste () quickly becomes unwieldy:

abbrev <- "Ei"
date <- "2024-01-15"
version <- 2

Hard to read
pastel ("Report ", abbrev, " ", date, " v", version, ".xlsx")

I[l] "Report Ei 2024-01-15 v2.xlsx"

This is where glue () offers a more elegant solution.

O Exercise: paste() and paste0()
a) Create the string "R-Workshop-2024" from the three parts “R”, “Workshop”, and “2024”
using paste() .

b) Given the vector months <- c("Jan", "Feb", "Mar") . Create the string

"Jan, Feb, Mar" fromit.

1 Solution

a) With hyphen as separator
paste ("R", "Workshop", "2024", sep = "-")

I[l] "R-Workshop-2024"

b) Combine vector with collapse
months <- c¢("Jan'", "Feb", "Mar'")
paste (months, collapse = ", ")

I[l] "Jan, Feb, Mar"

BioMath

4/18

BioMath

glue: Elegant String Interpolation

The {glue} package allows embedding variables directly in strings — with curly braces {} .

Basic Principle

name <- "Anna"
age <- 28

glue ("My name is {name} and I am {age} years old.")

IMy name is Anna and I am 28 years old.
The code is much more readable than the corresponding paste () version.

Practical Example: Creating File Names
A common use case is creating file names:

abbrev <- "Ei"
date <- Sys.Date ()
version <- 2

Elegant and readable
filename <- glue ("Report {abbrev} {date} v{version}.xlsx")
filename

| Report Ei 2026-02-08_v2.x1sx

Expressions in glue

You can also use R expressions directly within the braces:

x <- 10
glue ("The double of {x} is {x * 2}.")

IThe double of 10 is 20.
I glue ("Today is {format (Sys.Date(), '$Y-%m-%d')}.")

IToday is 2026-02-08.

glue_data() for Tibbles

With glue data() , we can access columns of a tibble row by row:

people <- tibble (
first name = c("Anna", "Ben", "Clara"),
last name = c("Miller", "Smith", "Weber"),
points = c (85, 92, 78)

)

people %>%
mutate (description = glue data(., "{first name} {last name}: {points} points"))

A tibble: 3 x 4
first name last name points description
<chr> <chr> <dbl> <glue>
1 Anna Miller 85 Anna Miller: 85 points

5/18

2 Ben Smith 92 Ben Smith: 92 points
3 Clara Weber 78 Clara Weber: 78 points

Comparison: paste0() vs glue()

pastel: Variables interrupt the string
pastel ("Result ", name, " ", date, " final.csv")

glue: Flows smoothly
glue ("Result {name} {date} final.csv")

Both produce the same result, but glue () is much clearer with complex strings.

© Exercise: glue()

Given the variables:

project <- "Analysis"
year <- 2024
month <- "March"

a) Create the string "Project: Analysis (March 2024)" using glue() .

b) Create the filename "analysis 2024 March report.pdf" .

1 Solution

a) Description text
glue ("Project: {project} ({month} {year})")

IProject: Analysis (March 2024)

b) Filename
glue ("{project} {year} {month} report.pdf")

IAnalysis_2024_March_report.pdf

BioMath

6/18

stringr: Manipulating Strings

The {stringr} package (part of the tidyverse) provides consistent functions for string
manipulation. All functions start with str_ , which makes autocomplete easier.

Removing Whitespace

str trim: Remove whitespace at start/end
str trim(" Hello World ")

I[l] "Hello World"

Istritrim(" Hello World ", side = "left") # Only left
I[l] "Hello World "

Istritrim(” Hello World ", side = "right") # Only right
I[l] " Hello World"

str squish: Additionally reduce multiple spaces within text
str squish (" Too many spaces ")

I[l] "Too many spaces"

Application to our dataset:

survey 3%>%
mutate (
response clean = str trim(response),
comment clean = str squish (comment)
) $>%
select (response, response clean, comment, comment clean)

A tibble: 8 x 4

response response_clean comment comment clean

<chr> <chr> <chr> <chr>
1 "Yes" Yes "All good" "All good"
2 " Yes" Yes " Leading whitespace" "Leading whitespace"
3 "yes " yes "Trailing whitespace " "Trailing whitespace"
4 " YES " YES " Both " "Both"
5 "No" No "Too many spaces" "Too many spaces"
6 "no" no <NA> <NA>
7 "NO " NO " "
8

"maybe" maybe

Changing Case

text <- "HelLLo WoRLD"

"Contains number: 42"

str to lower (text) # all lowercase

I[l] "hello world"

Istritoiupper(text) # ALL

I[l] "HELLO WORLD"

Istritoititle(text)

I[l] "Hello World"

UPPERCASE

"Contains number: 42"

First Letter Of Each Word Uppercase

BioMath

7118

str to sentence(text) # Only first letter of sentence uppercase

Application: Standardizing responses:

survey $>%
mutate (response standard = str to lower(str trim(response))) 3%>%
select (response, response_ standard)

Searching with str_detect()

str_detect () checks if a pattern occurs in a string (returns TRUE/FALSE):

Single strings
str detect("Hello World", "World")

str detect ("Hello World", "world") # Case-sensitive!

Apply to vector/column
survey %>%
filter (str detect (comment, "whitespace"))

Replacing with str_replace()

Replace first occurrence
str replace("Cat A and Cat B", " ", "-")

Replace all occurrences
str replace all("Cat A and Cat B", " ", "-")

Application: Standardizing categories:

survey %>%
mutate (

category clean = category $>%

str_to_lower() $>% # All lowercase
str replace all("-", " ") %>% # Hyphens to underscores
str replace all(" ", " ") # Spaces to underscores

) $>%

select (category, category clean)

Extracting with str_extract()

Extract first occurrence
str extract ("Contains number: 42 and 99", "\\d+")

Extract all occurrences
str extract all("Contains number: 42 and 99", "\\d+")

Substrings with str_sub()

text <- "ABCDEFGH"

str sub (text, 1, 3) # Characters 1-3

str sub(text, -3, -1) # Last 3 characters

str sub (text, 3) # From character 3 to end

Other Useful Functions

Length of a string
str length("Hello")

Concatenate strings (alternative to paste)
str C(HA"’ "B"’ "C"’ sep = "_")

(o

Pad with zeros (e.g., for IDs)
str pad(l:5, width = 3, pad = "0")

[1] "001"™ "002"™ "003"™ "Q04" "Q0O5"

Split string

str split("a,B,C", ",")

[[11]
[1] npm o mpn o nweon

© Exercise: stringr

Use the survey dataset:

a) Clean the response column: Remove whitespace and convert everything to

lowercase. Save the result as a new column response clean .
b) Count how many rows in comment contain the word “whitespace”.

c) Create a new column id_formatted from the id column in the format “ID-001”

“ID-002", etc.

10

BioMath

10/18

a) Clean responses

survey $%$>%
mutate (response clean = str to lower(str trim(response))) %>%
select (response, response clean)

b) Count rows with "whitespace"

survey $%$>%
filter(str detect (comment, "whitespace"))
nrow ()

oe

>

oe

c) Format IDs

survey %$>%
mutate (id formatted = glue("ID-{str pad(id, width = 3, pad = '0")}")) %>%
select (id, id formatted)

11

BioMath

Formatting Numbers

When creating reports and tables, numbers often need to be formatted attractively:
percentages with % signs, thousands separators, rounded decimal places, or correctly
formatted p-values. R offers various tools for this.

Base R: round() vs. format()
A common stumbling block is the difference between round() and format() :

numbers <- c (1.5, 2.0, 3.456, 10.1)

round(): Rounds mathematically, but removes trailing zeros
round (numbers, 2)

|[1] 1.50 2.00 3.46 10.10

format (): Keeps trailing zeros, but returns strings
format (round (numbers, 2), nsmall = 2)

I[l] " 1.50" " 2.00" " 3.46" "10.10"

round () returns numbers (1.5 becomes 1.5, not 1.50), while format () produces strings
with a constant number of decimal places.

scales: Formatting for Reports

The {scales} package offers specialized functions for common formatting tasks:

Percentages
proportions <- c¢(0.1, 0.255, 0.5, 1)

Simple percentage formatting
percent (proportions)

I [l] "Iog" n"oeen n"50g" "100%"

With precision
percent (proportions, accuracy = 0.1)

I[l] "10.0%" "25.5%" "50.0%" "100.0%"

European decimal separator
percent (proportions, accuracy = 0.1, decimal.mark = ",")

| t11 "10,08" r25,58" vs0,08" 100, 0%"

Thousands Separators
large numbers <- c (1234, 56789, 1234567)

English (comma as thousands separator)
comma (large numbers)

I[l] "1,234" "56,789" "1,234,567"

European (period as thousands separator)
number (large numbers, big.mark = ".")

12
12/18

Warning in prettyNum(.Internal (format (x, trim, digits, nsmall, width, 3L,
'big.mark' und 'decimal.mark' sind beide '.', was verwirrend sein konnte

I[l] "1.234" "56.789" "1.234.567"

General Number Formatting
values <- c(1.2345, 67.891, 0.0052)

Fixed decimal places
number (values, accuracy = 0.01)

I[l] "1.23" "e67.89" "0.01"

With prefix/suffix
number (values, accuracy = 0.01, suffix = " kg")

| (11 "1.23 kg" "67.89 kg" "0.01 kg"
I number (large numbers, prefix = "€ ", big.mark = ".")

Warning in prettyNum(.Internal (format (x, trim, digits, nsmall, width, 3L,

'big.mark' und 'decimal.mark' sind beide '.', was verwirrend sein konnte
I[l] "e 1.234" "€ 56.789" "€ 1.234.567"
P-Values

p_values <- c(0.5, 0.05, 0.001, 0.00001)

Automatic formatting
pvalue (p_values)

I[l] "0.500" "0.050" "0.001" "<0.001"

With precision
pvalue (p_values, accuracy = 0.001)

I[l] "0.500"™ "0.050"™ "0.001" "<O.O0O1"

1 Additional Formatting Functions

For complex formatting, base R also offers sprintf () with C-style syntax (e.g.,

for most use cases, the {scales} functions are more readable.

sprintf ("%.2£f", 3.14159) for two decimal places). The syntax is powerful but cryptic —

13

BioMath

13/18

BioMath

© Exercise: Formatting Numbers

Given the following values:

revenue <- ¢ (12500, 8900, 156000)
proportions <- c(0.125, 0.089, 0.786)
p <- 0.0234

a) Format revenue with thousands separators (periods) and the suffix ” €.
b) Format proportions as percentages with one decimal place.

c) Format the p-value p using pvalue() .

1 Solution

a) Format revenue
number (revenue, big.mark = ".", suffix = " €")

Warning in prettyNum(.Internal (format (x, trim, digits, nsmall, width, 3L,
'big.mark' und 'decimal.mark' sind beide '.', was verwirrend sein koénnte

I[l] "12.500 €" "8.900 €" "156.000 €"

b) Proportions as percent

percent (proportions, accuracy = 0.1)

| t11 v12.55" "s.0%n n78.6%

c) p-value

pvalue (p)

| [1] "0.023"

Outlook: Smart Rounding with BioMathR

A common problem with rounding: How many decimal places are sensible? The
round_smart () function from the {BioMathR} package solves this elegantly. It rounds so that
results have as few digits as possible, but as many as necessary:

Installation from GitHub
remotes::insta github ("SchmidtPaul/BioMathR")

library (BioMathR)

Different numbers, automatically sensibly rounded
round smart (c(1.0001234, 0.0012345, 123.456))

Result: 1.0001, 0.001, 123.5

Apply to entire columns

data %>%
mutate (across (where (is.numeric), round smart))

The special feature: round smart () never changes the part before the decimal point and
allows a maximum number of decimal places. Details at github.com/SchmidtPaul/BioMathR.

14
14/18

https://github.com/SchmidtPaul/BioMathR

BioMath

Outlook: Regular Expressions

Regular Expressions (Regex) are a powerful language for pattern description in strings. We

already used \\d+ above to extract numbers.

A Mini Example

texts <- c(
"Order No. 12345",
"Customer: Max Mustermann",
"Amount: 99.50 EUR",
"Date: 15.01.2024"

)

Extract all numbers
str extract all (texts, "\\d+")

[[1]]
[1] "12345"

(0211

character (0)

[[3]11]
[1] nggn nwgQon

[[4]]
[l] nign nol" "o024"

Only numbers with decimal point
str extract (texts, "\\d+\\.\\d+")

| i1 wa NA "99.50" "15.01"
Email-like pattern (simplified)
email text <- "Contact: info@example.com or support@test.de"
str extract all (email text, "[a-z]+@[a-z]+\\.[a-z]+")
[[11]
[1] "infolexample.com" "support@test.de"

Important Regex Building Blocks

Pattern Meaning
\\d A digit (0-9)

\\w A “word character” (letter, digit, underscore)
\\s A whitespace (space, tab, newline)

Any character

+ One or more of the previous
* Zero or more of the previous
2 Zero or one of the previous

[abc] One of the characters a, b, or c

15
15/18

BioMath

Pattern Meaning

A Start of string

s End of string

1 Learning Regex

Regular expressions have a steep learning curve but are extremely powerful. Good
resources:

* regex101.com — Interactive regex tester
* R for Data Science: Strings — Chapter on strings and regex

2regex in R for the documentation

Outlook: epoxy

The {epoxy} package extends the idea of {glue} for dynamic documents in Quarto and
RMarkdown. It enables elegant inline formatting of numbers and text directly in prose.

Installation
install.packages ("epoxy")

Automatica y format numbers

yvsis includes {nrow(data)} observations with an
f {mean (dataSvalue) :.2f}.

S S o e e

For recurring reports where numbers in prose need to be updated, {epoxy} is very practical.
See epoxy documentation.

16
16/18

https://regex101.com/
https://r4ds.hadley.nz/strings
https://pkg.garrickadenbuie.com/epoxy/

BioMath

Summary

In this chapter, we learned the most important tools for working with strings in R.

1 Key Takeaways

Comparison of Concatenation Methods:

Function Package Strength

paste () |/ paste0() base R Always available, sep/collapse
glue () glue Readability with many variables
str_c() stringr Consistent with stringr ecosystem

Key stringr Functions for Data Cleaning:

Function Purpose

str_trim() Remove whitespace at edges
str_squish () 1. reduce multiple spaces
str to lower () Convert to lowercase

str detect () Search for pattern (TRUE/FALSE)
str replace all() Replace pattern

str_extract () Extract pattern

str pad() Pad with characters

Formatting Numbers:

Function Package Purpose

percent () scales Percentages (10%)

comma () / number () scales Thousands separators,
decimals

pvalue () scales p-values

round_smart () BioMathR Smart rounding (as few
as possible, as many as
necessary)

Typical Cleaning Workflow:

data %>%
mutate (
column clean = column %>%
str _trim() %$>% #
str to lower () %>% ¥
str replace all("™ ", " ") # Replace spaces

17
17118

Further Resources:

* stringr Documentation

» glue Documentation

+ scales Documentation
BioMathR on GitHub

R for Data Science: Strings

» epoxy for Dynamic Documents

Bibliography

18

BioMath

18/18

https://stringr.tidyverse.org/
https://glue.tidyverse.org/
https://scales.r-lib.org/
https://github.com/SchmidtPaul/BioMathR
https://r4ds.hadley.nz/strings
https://pkg.garrickadenbuie.com/epoxy/

	Introduction
	Example Data
	Base R: paste() and paste0()
	Basic Principle
	The sep Argument
	The collapse Argument
	Limitation

	glue: Elegant String Interpolation
	Basic Principle
	Practical Example: Creating File Names
	Expressions in glue
	glue_data() for Tibbles
	Comparison: paste0() vs glue()

	stringr: Manipulating Strings
	Removing Whitespace
	Changing Case
	Searching with str_detect()
	Replacing with str_replace()
	Extracting with str_extract()
	Substrings with str_sub()
	Other Useful Functions

	Formatting Numbers
	Base R: round() vs. format()
	scales: Formatting for Reports
	Percentages
	Thousands Separators
	General Number Formatting
	P-Values

	Outlook: Smart Rounding with BioMathR

	Outlook: Regular Expressions
	A Mini Example
	Important Regex Building Blocks

	Outlook: epoxy
	Summary
	Bibliography

