
BioMath

1/18

4. Strings and Text

Text Manipulation with paste, glue, stringr, and Number Formatting
Dr. Paul Schmidt

To install and load all packages used in this chapter, run the following code:

for (pkg in c("glue", "scales", "stringr", "tidyverse")) {
 if (!require(pkg, character.only = TRUE)) install.packages(pkg)
}

library(glue)
library(scales)
library(stringr)
library(tidyverse)

Introduction
In data analysis, we constantly work with text: assembling file names, cleaning column
names, standardizing categories, creating labels for graphics. Formatting numbers for
reports and tables is also part of this – percentages, thousands separators, p-values.

R offers various tools for this – from the built-in functions paste() and paste0() , to the
elegant {glue} package, to the powerful manipulation functions from {stringr}, and specialized
formatting functions from {scales}.

This chapter shows the most important techniques for typical data cleaning tasks and value
formatting for reports.

Example Data
For this chapter, we create a small dataset with typical “dirty” strings, as they commonly
occur in practice:

survey <- tibble(
 id = 1:8,
 response = c("Yes", " Yes", "yes ", " YES ", "No", "no", "NO ", "maybe"),
 comment = c(
 "All good",
 " Leading whitespace",
 "Trailing whitespace ",
 " Both ",
 "Too many spaces",
 NA,
 "",
 "Contains number: 42"
),
 category = c("Cat_A", "Cat_B", "Cat_A", "CAT_C", "cat_a", "Cat-B", "Cat A",
"Cat_C")
)

survey

A tibble: 8 × 4
 id response comment category
 <int> <chr> <chr> <chr>

1

BioMath

2/18

1 1 "Yes" "All good" Cat_A
2 2 " Yes" " Leading whitespace" Cat_B
3 3 "yes " "Trailing whitespace " Cat_A
4 4 " YES " " Both " CAT_C
5 5 "No" "Too many spaces" cat_a
6 6 "no" <NA> Cat-B
7 7 "NO " "" Cat A
8 8 "maybe" "Contains number: 42" Cat_C

We can see typical problems: inconsistent capitalization, leading/trailing whitespace, different
spellings of the same category.

2

BioMath

3/18

Base R: paste() and paste0()
The functions paste() and paste0() are built into R and serve to concatenate strings.

Basic Principle
paste() joins with space (default)
paste("Hello", "World")

[1] "Hello World"

paste0() joins without separator
paste0("Hello", "World")

[1] "HelloWorld"

With variables
name <- "Anna"
age <- 28
paste("Name:", name, "- Age:", age)

[1] "Name: Anna - Age: 28"

The sep Argument
With sep , we can specify the separator between elements:

paste("2024", "01", "15", sep = "-")

[1] "2024-01-15"

paste("A", "B", "C", sep = "_")

[1] "A_B_C"

paste("One", "Two", "Three", sep = " | ")

[1] "One | Two | Three"

The collapse Argument
When we want to combine a vector into a single string:

cities <- c("Berlin", "Hamburg", "Munich")

Without collapse: vector with 3 elements
paste("City:", cities)

[1] "City: Berlin" "City: Hamburg" "City: Munich"

With collapse: a single string
paste(cities, collapse = ", ")

[1] "Berlin, Hamburg, Munich"

paste(cities, collapse = " and ")

[1] "Berlin and Hamburg and Munich"

3

BioMath

4/18

Limitation
With more complex strings, paste() quickly becomes unwieldy:

abbrev <- "Ei"
date <- "2024-01-15"
version <- 2

Hard to read
paste0("Report_", abbrev, "_", date, "_v", version, ".xlsx")

[1] "Report_Ei_2024-01-15_v2.xlsx"

This is where glue() offers a more elegant solution.

 Exercise: paste() and paste0()

a) Create the string "R-Workshop-2024" from the three parts “R”, “Workshop”, and “2024”

using paste() .

b) Given the vector months <- c("Jan", "Feb", "Mar") . Create the string
"Jan, Feb, Mar" from it.

 Solution

a) With hyphen as separator
paste("R", "Workshop", "2024", sep = "-")

[1] "R-Workshop-2024"

b) Combine vector with collapse
months <- c("Jan", "Feb", "Mar")
paste(months, collapse = ", ")

[1] "Jan, Feb, Mar"

4

BioMath

5/18

glue: Elegant String Interpolation
The {glue} package allows embedding variables directly in strings – with curly braces {} .

Basic Principle
name <- "Anna"
age <- 28

glue("My name is {name} and I am {age} years old.")

My name is Anna and I am 28 years old.

The code is much more readable than the corresponding paste() version.

Practical Example: Creating File Names
A common use case is creating file names:

abbrev <- "Ei"
date <- Sys.Date()
version <- 2

Elegant and readable
filename <- glue("Report_{abbrev}_{date}_v{version}.xlsx")
filename

Report_Ei_2026-02-08_v2.xlsx

Expressions in glue
You can also use R expressions directly within the braces:

x <- 10
glue("The double of {x} is {x * 2}.")

The double of 10 is 20.

glue("Today is {format(Sys.Date(), '%Y-%m-%d')}.")

Today is 2026-02-08.

glue_data() for Tibbles
With glue_data() , we can access columns of a tibble row by row:

people <- tibble(
 first_name = c("Anna", "Ben", "Clara"),
 last_name = c("Miller", "Smith", "Weber"),
 points = c(85, 92, 78)
)

people %>%
 mutate(description = glue_data(., "{first_name} {last_name}: {points} points"))

A tibble: 3 × 4
 first_name last_name points description
 <chr> <chr> <dbl> <glue>
1 Anna Miller 85 Anna Miller: 85 points

5

BioMath

6/18

2 Ben Smith 92 Ben Smith: 92 points
3 Clara Weber 78 Clara Weber: 78 points

Comparison: paste0() vs glue()
paste0: Variables interrupt the string
paste0("Result_", name, "_", date, "_final.csv")

glue: Flows smoothly
glue("Result_{name}_{date}_final.csv")

Both produce the same result, but glue() is much clearer with complex strings.

 Exercise: glue()

Given the variables:

project <- "Analysis"
year <- 2024
month <- "March"

a) Create the string "Project: Analysis (March 2024)" using glue() .

b) Create the filename "Analysis_2024_March_report.pdf" .

 Solution

a) Description text
glue("Project: {project} ({month} {year})")

Project: Analysis (March 2024)

b) Filename
glue("{project}_{year}_{month}_report.pdf")

Analysis_2024_March_report.pdf

6

BioMath

7/18

stringr: Manipulating Strings
The {stringr} package (part of the tidyverse) provides consistent functions for string
manipulation. All functions start with str_ , which makes autocomplete easier.

Removing Whitespace
str_trim: Remove whitespace at start/end
str_trim(" Hello World ")

[1] "Hello World"

str_trim(" Hello World ", side = "left") # Only left

[1] "Hello World "

str_trim(" Hello World ", side = "right") # Only right

[1] " Hello World"

str_squish: Additionally reduce multiple spaces within text
str_squish(" Too many spaces ")

[1] "Too many spaces"

Application to our dataset:

survey %>%
 mutate(
 response_clean = str_trim(response),
 comment_clean = str_squish(comment)
) %>%
 select(response, response_clean, comment, comment_clean)

A tibble: 8 × 4
 response response_clean comment comment_clean
 <chr> <chr> <chr> <chr>
1 "Yes" Yes "All good" "All good"
2 " Yes" Yes " Leading whitespace" "Leading whitespace"
3 "yes " yes "Trailing whitespace " "Trailing whitespace"
4 " YES " YES " Both " "Both"
5 "No" No "Too many spaces" "Too many spaces"
6 "no" no <NA> <NA>
7 "NO " NO "" ""
8 "maybe" maybe "Contains number: 42" "Contains number: 42"

Changing Case
text <- "HeLLo WoRLD"

str_to_lower(text) # all lowercase

[1] "hello world"

str_to_upper(text) # ALL UPPERCASE

[1] "HELLO WORLD"

str_to_title(text) # First Letter Of Each Word Uppercase

[1] "Hello World"

7

BioMath

8/18

str_to_sentence(text) # Only first letter of sentence uppercase

[1] "Hello world"

Application: Standardizing responses:

survey %>%
 mutate(response_standard = str_to_lower(str_trim(response))) %>%
 select(response, response_standard)

A tibble: 8 × 2
 response response_standard
 <chr> <chr>
1 "Yes" yes
2 " Yes" yes
3 "yes " yes
4 " YES " yes
5 "No" no
6 "no" no
7 "NO " no
8 "maybe" maybe

Searching with str_detect()
str_detect() checks if a pattern occurs in a string (returns TRUE/FALSE):

Single strings
str_detect("Hello World", "World")

[1] TRUE

str_detect("Hello World", "world") # Case-sensitive!

[1] FALSE

Apply to vector/column
survey %>%
 filter(str_detect(comment, "whitespace"))

A tibble: 2 × 4
 id response comment category
 <int> <chr> <chr> <chr>
1 2 " Yes" " Leading whitespace" Cat_B
2 3 "yes " "Trailing whitespace " Cat_A

Replacing with str_replace()
Replace first occurrence
str_replace("Cat_A and Cat_B", "_", "-")

[1] "Cat-A and Cat_B"

Replace all occurrences
str_replace_all("Cat_A and Cat_B", "_", "-")

[1] "Cat-A and Cat-B"

Application: Standardizing categories:

survey %>%
 mutate(

8

BioMath

9/18

 category_clean = category %>%
 str_to_lower() %>% # All lowercase
 str_replace_all("-", "_") %>% # Hyphens to underscores
 str_replace_all(" ", "_") # Spaces to underscores
) %>%
 select(category, category_clean)

A tibble: 8 × 2
 category category_clean
 <chr> <chr>
1 Cat_A cat_a
2 Cat_B cat_b
3 Cat_A cat_a
4 CAT_C cat_c
5 cat_a cat_a
6 Cat-B cat_b
7 Cat A cat_a
8 Cat_C cat_c

Extracting with str_extract()
Extract first occurrence
str_extract("Contains number: 42 and 99", "\\d+")

[1] "42"

Extract all occurrences
str_extract_all("Contains number: 42 and 99", "\\d+")

[[1]]
[1] "42" "99"

Substrings with str_sub()
text <- "ABCDEFGH"

str_sub(text, 1, 3) # Characters 1-3

[1] "ABC"

str_sub(text, -3, -1) # Last 3 characters

[1] "FGH"

str_sub(text, 3) # From character 3 to end

[1] "CDEFGH"

Other Useful Functions
Length of a string
str_length("Hello")

[1] 5

Concatenate strings (alternative to paste)
str_c("A", "B", "C", sep = "-")

[1] "A-B-C"

9

BioMath

10/18

Pad with zeros (e.g., for IDs)
str_pad(1:5, width = 3, pad = "0")

[1] "001" "002" "003" "004" "005"

Split string
str_split("A,B,C", ",")

[[1]]
[1] "A" "B" "C"

 Exercise: stringr

Use the survey dataset:

a) Clean the response column: Remove whitespace and convert everything to

lowercase. Save the result as a new column response_clean .

b) Count how many rows in comment contain the word “whitespace”.

c) Create a new column id_formatted from the id column in the format “ID-001”,
“ID-002”, etc.

10

BioMath

11/18

 Solution

a) Clean responses
survey %>%
 mutate(response_clean = str_to_lower(str_trim(response))) %>%
 select(response, response_clean)

A tibble: 8 × 2
 response response_clean
 <chr> <chr>
1 "Yes" yes
2 " Yes" yes
3 "yes " yes
4 " YES " yes
5 "No" no
6 "no" no
7 "NO " no
8 "maybe" maybe

b) Count rows with "whitespace"
survey %>%
 filter(str_detect(comment, "whitespace")) %>%
 nrow()

[1] 2

c) Format IDs
survey %>%
 mutate(id_formatted = glue("ID-{str_pad(id, width = 3, pad = '0')}")) %>%
 select(id, id_formatted)

A tibble: 8 × 2
 id id_formatted
 <int> <glue>
1 1 ID-001
2 2 ID-002
3 3 ID-003
4 4 ID-004
5 5 ID-005
6 6 ID-006
7 7 ID-007
8 8 ID-008

11

BioMath

12/18

Formatting Numbers
When creating reports and tables, numbers often need to be formatted attractively:
percentages with % signs, thousands separators, rounded decimal places, or correctly
formatted p-values. R offers various tools for this.

Base R: round() vs. format()
A common stumbling block is the difference between round() and format() :

numbers <- c(1.5, 2.0, 3.456, 10.1)

round(): Rounds mathematically, but removes trailing zeros
round(numbers, 2)

[1] 1.50 2.00 3.46 10.10

format(): Keeps trailing zeros, but returns strings
format(round(numbers, 2), nsmall = 2)

[1] " 1.50" " 2.00" " 3.46" "10.10"

round() returns numbers (1.5 becomes 1.5, not 1.50), while format() produces strings
with a constant number of decimal places.

scales: Formatting for Reports
The {scales} package offers specialized functions for common formatting tasks:

Percentages
proportions <- c(0.1, 0.255, 0.5, 1)

Simple percentage formatting
percent(proportions)

[1] "10%" "26%" "50%" "100%"

With precision
percent(proportions, accuracy = 0.1)

[1] "10.0%" "25.5%" "50.0%" "100.0%"

European decimal separator
percent(proportions, accuracy = 0.1, decimal.mark = ",")

[1] "10,0%" "25,5%" "50,0%" "100,0%"

Thousands Separators
large_numbers <- c(1234, 56789, 1234567)

English (comma as thousands separator)
comma(large_numbers)

[1] "1,234" "56,789" "1,234,567"

European (period as thousands separator)
number(large_numbers, big.mark = ".")

12

BioMath

13/18

Warning in prettyNum(.Internal(format(x, trim, digits, nsmall, width, 3L, :
'big.mark' und 'decimal.mark' sind beide '.', was verwirrend sein könnte

[1] "1.234" "56.789" "1.234.567"

General Number Formatting
values <- c(1.2345, 67.891, 0.0052)

Fixed decimal places
number(values, accuracy = 0.01)

[1] "1.23" "67.89" "0.01"

With prefix/suffix
number(values, accuracy = 0.01, suffix = " kg")

[1] "1.23 kg" "67.89 kg" "0.01 kg"

number(large_numbers, prefix = "€ ", big.mark = ".")

Warning in prettyNum(.Internal(format(x, trim, digits, nsmall, width, 3L, :
'big.mark' und 'decimal.mark' sind beide '.', was verwirrend sein könnte

[1] "€ 1.234" "€ 56.789" "€ 1.234.567"

P-Values
p_values <- c(0.5, 0.05, 0.001, 0.00001)

Automatic formatting
pvalue(p_values)

[1] "0.500" "0.050" "0.001" "<0.001"

With precision
pvalue(p_values, accuracy = 0.001)

[1] "0.500" "0.050" "0.001" "<0.001"

 Additional Formatting Functions

For complex formatting, base R also offers sprintf() with C-style syntax (e.g.,
sprintf("%.2f", 3.14159) for two decimal places). The syntax is powerful but cryptic –
for most use cases, the {scales} functions are more readable.

13

BioMath

14/18

 Exercise: Formatting Numbers

Given the following values:

revenue <- c(12500, 8900, 156000)
proportions <- c(0.125, 0.089, 0.786)
p <- 0.0234

a) Format revenue with thousands separators (periods) and the suffix ” €“.

b) Format proportions as percentages with one decimal place.

c) Format the p-value p using pvalue() .

 Solution

a) Format revenue
number(revenue, big.mark = ".", suffix = " €")

Warning in prettyNum(.Internal(format(x, trim, digits, nsmall, width, 3L, :
'big.mark' und 'decimal.mark' sind beide '.', was verwirrend sein könnte

[1] "12.500 €" "8.900 €" "156.000 €"

b) Proportions as percent
percent(proportions, accuracy = 0.1)

[1] "12.5%" "8.9%" "78.6%"

c) p-value
pvalue(p)

[1] "0.023"

Outlook: Smart Rounding with BioMathR
A common problem with rounding: How many decimal places are sensible? The
round_smart() function from the {BioMathR} package solves this elegantly. It rounds so that
results have as few digits as possible, but as many as necessary:

Installation from GitHub
remotes::install_github("SchmidtPaul/BioMathR")

library(BioMathR)

Different numbers, automatically sensibly rounded
round_smart(c(1.0001234, 0.0012345, 123.456))
Result: 1.0001, 0.001, 123.5

Apply to entire columns
data %>%
 mutate(across(where(is.numeric), round_smart))

The special feature: round_smart() never changes the part before the decimal point and
allows a maximum number of decimal places. Details at github.com/SchmidtPaul/BioMathR.

14

https://github.com/SchmidtPaul/BioMathR

BioMath

15/18

Outlook: Regular Expressions
Regular Expressions (Regex) are a powerful language for pattern description in strings. We
already used \\d+ above to extract numbers.

A Mini Example
texts <- c(
 "Order No. 12345",
 "Customer: Max Mustermann",
 "Amount: 99.50 EUR",
 "Date: 15.01.2024"
)

Extract all numbers
str_extract_all(texts, "\\d+")

[[1]]
[1] "12345"

[[2]]
character(0)

[[3]]
[1] "99" "50"

[[4]]
[1] "15" "01" "2024"

Only numbers with decimal point
str_extract(texts, "\\d+\\.\\d+")

[1] NA NA "99.50" "15.01"

Email-like pattern (simplified)
email_text <- "Contact: info@example.com or support@test.de"
str_extract_all(email_text, "[a-z]+@[a-z]+\\.[a-z]+")

[[1]]
[1] "info@example.com" "support@test.de"

Important Regex Building Blocks
Pattern Meaning

\\d A digit (0-9)

\\w A “word character” (letter, digit, underscore)

\\s A whitespace (space, tab, newline)

. Any character

+ One or more of the previous

* Zero or more of the previous

? Zero or one of the previous

[abc] One of the characters a, b, or c

15

BioMath

16/18

Pattern Meaning

^ Start of string

$ End of string

 Learning Regex

Regular expressions have a steep learning curve but are extremely powerful. Good
resources:

• regex101.com – Interactive regex tester
• R for Data Science: Strings – Chapter on strings and regex
• ?regex in R for the documentation

Outlook: epoxy
The {epoxy} package extends the idea of {glue} for dynamic documents in Quarto and
RMarkdown. It enables elegant inline formatting of numbers and text directly in prose.

Installation
install.packages("epoxy")

In Quarto: Automatically format numbers
```{epoxy}
The analysis includes {nrow(data)} observations with an
average of {mean(data$value):.2f}.
```

For recurring reports where numbers in prose need to be updated, {epoxy} is very practical.
See epoxy documentation.

16

https://regex101.com/
https://r4ds.hadley.nz/strings
https://pkg.garrickadenbuie.com/epoxy/

BioMath

17/18

Summary
In this chapter, we learned the most important tools for working with strings in R.

 Key Takeaways

Comparison of Concatenation Methods:

Function Package Strength

paste() / paste0() base R Always available, sep/collapse

glue() glue Readability with many variables

str_c() stringr Consistent with stringr ecosystem

Key stringr Functions for Data Cleaning:

Function Purpose

str_trim() Remove whitespace at edges

str_squish() 1. reduce multiple spaces

str_to_lower() Convert to lowercase

str_detect() Search for pattern (TRUE/FALSE)

str_replace_all() Replace pattern

str_extract() Extract pattern

str_pad() Pad with characters

Formatting Numbers:

Function Package Purpose

percent() scales Percentages (10%)

comma() / number() scales Thousands separators,
decimals

pvalue() scales p-values

round_smart() BioMathR Smart rounding (as few
as possible, as many as
necessary)

Typical Cleaning Workflow:
data %>%
 mutate(
 column_clean = column %>%
 str_trim() %>% # Remove whitespace
 str_to_lower() %>% # Lowercase
 str_replace_all(" ", "_") # Replace spaces
)

17

BioMath

18/18

Further Resources:

• stringr Documentation
• glue Documentation
• scales Documentation
• BioMathR on GitHub
• R for Data Science: Strings
• epoxy for Dynamic Documents

Bibliography

18

https://stringr.tidyverse.org/
https://glue.tidyverse.org/
https://scales.r-lib.org/
https://github.com/SchmidtPaul/BioMathR
https://r4ds.hadley.nz/strings
https://pkg.garrickadenbuie.com/epoxy/

	Introduction
	Example Data
	Base R: paste() and paste0()
	Basic Principle
	The sep Argument
	The collapse Argument
	Limitation

	glue: Elegant String Interpolation
	Basic Principle
	Practical Example: Creating File Names
	Expressions in glue
	glue_data() for Tibbles
	Comparison: paste0() vs glue()

	stringr: Manipulating Strings
	Removing Whitespace
	Changing Case
	Searching with str_detect()
	Replacing with str_replace()
	Extracting with str_extract()
	Substrings with str_sub()
	Other Useful Functions

	Formatting Numbers
	Base R: round() vs. format()
	scales: Formatting for Reports
	Percentages
	Thousands Separators
	General Number Formatting
	P-Values

	Outlook: Smart Rounding with BioMathR

	Outlook: Regular Expressions
	A Mini Example
	Important Regex Building Blocks

	Outlook: epoxy
	Summary
	Bibliography

