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4. Strings and Text

Text Manipulation with paste, glue, stringr, and Number Formatting
Dr. Paul Schmidt

To install and load all packages used in this chapter, run the following code:

for (pkg in c("glue", "scales", "stringr", "tidyverse")) {
if (!require (pkg, character.only = TRUE)) install.packages (pkqg)
}

library (glue)
library (scales)
library (stringr)
library (tidyverse)

Introduction

In data analysis, we constantly work with text: assembling file names, cleaning column
names, standardizing categories, creating labels for graphics. Formatting numbers for
reports and tables is also part of this — percentages, thousands separators, p-values.

R offers various tools for this — from the built-in functions paste () and paste0() , to the

elegant {glue} package, to the powerful manipulation functions from {stringr}, and specialized
formatting functions from {scales}.

This chapter shows the most important techniques for typical data cleaning tasks and value
formatting for reports.

Example Data

For this chapter, we create a small dataset with typical “dirty” strings, as they commonly
occur in practice:

survey <- tibble (

id = 1:8,
response = c("Yes", " Yes", "yes ", " YES ", "No", "no", "NO ", "maybe"),
comment = c(

"All good",

" Leading whitespace",

"Trailing whitespace vy

@ Both @,

"Too many spaces",

NA,

"Contains number: 42"

),

category = c("Cat_A", "Cat B", "Cat A", "CAT C", "cat a", "Cat-B", "Cat A",
"Cat C")
)

survey

# A tibble: 8 x 4

id response comment category
<int> <chr> <chr> <chr>
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We can see typical problems: inconsistent capitalization, leading/trailing whitespace, different
spellings of the same category.
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Base R: paste() and paste0()

The functions paste() and paste0() are built into R and serve to concatenate strings.

Basic Principle

# paste() Joins with space (default)
paste ("Hello", "World")

I[l] "Hello World"

# pastel () joins without separator
pastel ("Hello", "World")

I[l] "HelloWorld"

# With variables

name <- "Anna"
age <- 28
paste ("Name:", name, "- Age:", age)

I[l] "Name: Anna - Age: 28"

The sep Argument

With sep , we can specify the separator between elements:
Ipaste("2024", "o1", "15", sep = "-")

I [1] "2024-01-15"

Ipaste("A", "B", "C", sep = " ")

| [1] "a B C"

Ipaste("One", "Two", "Three", sep =" | ")

I[l] "One | Two | Three"

The collapse Argument
When we want to combine a vector into a single string:
cities <- c("Berlin", "Hamburg", "Munich")

# Without collapse: vector with 3 elements
paste ("City:", cities)

I[l] "City: Berlin" "City: Hamburg" "City: Munich"

# With collapse: a single string
paste(cities, collapse =", ")

I[l] "Berlin, Hamburg, Munich"
Ipaste(cities, collapse = " and ")

I[l] "Berlin and Hamburg and Munich"
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Limitation
With more complex strings, paste () quickly becomes unwieldy:

abbrev <- "Ei"
date <- "2024-01-15"
version <- 2

# Hard to read
pastel ("Report ", abbrev, " ", date, " v", version, ".xlsx")

I[l] "Report Ei 2024-01-15 v2.xlsx"

This is where glue () offers a more elegant solution.

O Exercise: paste() and paste0()
a) Create the string "R-Workshop-2024" from the three parts “R”, “Workshop”, and “2024”
using paste() .

b) Given the vector months <- c("Jan", "Feb", "Mar") . Create the string

"Jan, Feb, Mar" fromit.

1 Solution

# a) With hyphen as separator
paste ("R", "Workshop", "2024", sep = "-")

I[l] "R-Workshop-2024"

# b) Combine vector with collapse
months <- c¢("Jan'", "Feb", "Mar'")
paste (months, collapse = ", ")

I[l] "Jan, Feb, Mar"
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glue: Elegant String Interpolation

The {glue} package allows embedding variables directly in strings — with curly braces {} .

Basic Principle

name <- "Anna"
age <- 28

glue ("My name is {name} and I am {age} years old.")

IMy name is Anna and I am 28 years old.
The code is much more readable than the corresponding paste () version.

Practical Example: Creating File Names
A common use case is creating file names:

abbrev <- "Ei"
date <- Sys.Date ()
version <- 2

# Elegant and readable
filename <- glue ("Report {abbrev} {date} v{version}.xlsx")
filename

| Report Ei 2026-02-08_v2.x1sx

Expressions in glue

You can also use R expressions directly within the braces:

x <- 10
glue ("The double of {x} is {x * 2}.")

IThe double of 10 is 20.
I glue ("Today is {format (Sys.Date(), '$Y-%m-%d')}.")

IToday is 2026-02-08.

glue_data() for Tibbles

With glue data() , we can access columns of a tibble row by row:

people <- tibble (
first name = c("Anna", "Ben", "Clara"),
last name = c("Miller", "Smith", "Weber"),
points = c (85, 92, 78)

)

people %>%
mutate (description = glue data(., "{first name} {last name}: {points} points"))

# A tibble: 3 x 4
first name last name points description
<chr> <chr> <dbl> <glue>
1 Anna Miller 85 Anna Miller: 85 points
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2 Ben Smith 92 Ben Smith: 92 points
3 Clara Weber 78 Clara Weber: 78 points

Comparison: paste0() vs glue()

# pastel: Variables interrupt the string
pastel ("Result ", name, " ", date, " final.csv")

# glue: Flows smoothly
glue ("Result {name} {date} final.csv")

Both produce the same result, but glue () is much clearer with complex strings.

© Exercise: glue()

Given the variables:

project <- "Analysis"
year <- 2024
month <- "March"

a) Create the string "Project: Analysis (March 2024)" using glue() .

b) Create the filename "analysis 2024 March report.pdf" .

1 Solution

# a) Description text
glue ("Project: {project} ({month} {year})")

IProject: Analysis (March 2024)

# b) Filename
glue ("{project} {year} {month} report.pdf")

IAnalysis_2024_March_report.pdf
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stringr: Manipulating Strings

The {stringr} package (part of the tidyverse) provides consistent functions for string
manipulation. All functions start with str_ , which makes autocomplete easier.

Removing Whitespace

# str trim: Remove whitespace at start/end
str trim(" Hello World ")

I[l] "Hello World"

Istritrim(" Hello World ", side = "left") # Only left
I[l] "Hello World "

Istritrim(” Hello World ", side = "right") # Only right
I[l] " Hello World"

# str squish: Additionally reduce multiple spaces within text
str squish (" Too many spaces ")

I[l] "Too many spaces"

Application to our dataset:

survey 3%>%
mutate (
response clean = str trim(response),
comment clean = str squish (comment)
) $>%
select (response, response clean, comment, comment clean)

# A tibble: 8 x 4

response response_clean comment comment clean

<chr> <chr> <chr> <chr>
1 "Yes" Yes "All good" "All good"
2 " Yes" Yes " Leading whitespace" "Leading whitespace"
3 "yes " yes "Trailing whitespace " "Trailing whitespace"
4 " YES " YES " Both " "Both"
5 "No" No "Too many spaces" "Too many spaces"
6 "no" no <NA> <NA>
7 "NO " NO " "
8

"maybe" maybe

Changing Case

text <- "HelLLo WoRLD"

"Contains number: 42"

str to lower (text) # all lowercase

I[l] "hello world"

Istritoiupper(text) # ALL

I[l] "HELLO WORLD"

Istritoititle(text)

I[l] "Hello World"

UPPERCASE

"Contains number: 42"

# First Letter Of Each Word Uppercase
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str to sentence(text) # Only first letter of sentence uppercase

Application: Standardizing responses:

survey $>%
mutate (response standard = str to lower(str trim(response))) 3%>%
select (response, response_ standard)

Searching with str_detect()

str_detect () checks if a pattern occurs in a string (returns TRUE/FALSE):

# Single strings
str detect("Hello World", "World")

str detect ("Hello World", "world") # Case-sensitive!

# Apply to vector/column
survey %>%
filter (str detect (comment, "whitespace"))

Replacing with str_replace()

# Replace first occurrence
str replace("Cat A and Cat B", " ", "-")

# Replace all occurrences
str replace all("Cat A and Cat B", " ", "-")

Application: Standardizing categories:

survey %>%
mutate (




category clean = category $>%

str_to_lower() $>% # All lowercase
str replace all("-", " ") %>% # Hyphens to underscores
str replace all(" ", " ") # Spaces to underscores

) $>%

select (category, category clean)

Extracting with str_extract()

# Extract first occurrence
str extract ("Contains number: 42 and 99", "\\d+")

# Extract all occurrences
str extract all("Contains number: 42 and 99", "\\d+")

Substrings with str_sub()

text <- "ABCDEFGH"

str sub (text, 1, 3) # Characters 1-3

str sub(text, -3, -1) # Last 3 characters

str sub (text, 3) # From character 3 to end

Other Useful Functions

# Length of a string
str length("Hello")

# Concatenate strings (alternative to paste)
str C(HA"’ "B"’ "C"’ sep = "_")

(o




# Pad with zeros (e.g., for IDs)
str pad(l:5, width = 3, pad = "0")

[1] "001"™ "002"™ "003"™ "Q04" "Q0O5"

# Split string

str split("a,B,C", ",")

[[11]
[1] npm o mpn o nweon

© Exercise: stringr

Use the survey dataset:

a) Clean the response column: Remove whitespace and convert everything to

lowercase. Save the result as a new column response clean .
b) Count how many rows in comment contain the word “whitespace”.

c) Create a new column id_formatted from the id column in the format “ID-001”

“ID-002", etc.

10

BioMath

10/18



# a) Clean responses

survey $%$>%
mutate (response clean = str to lower(str trim(response))) %>%
select (response, response clean)

# b) Count rows with "whitespace"

survey $%$>%
filter(str detect (comment, "whitespace"))
nrow ()

oe

>

oe

# c) Format IDs

survey %$>%
mutate (id formatted = glue("ID-{str pad(id, width = 3, pad = '0")}")) %>%
select (id, id formatted)

11




BioMath

Formatting Numbers

When creating reports and tables, numbers often need to be formatted attractively:
percentages with % signs, thousands separators, rounded decimal places, or correctly
formatted p-values. R offers various tools for this.

Base R: round() vs. format()
A common stumbling block is the difference between round() and format() :

numbers <- c (1.5, 2.0, 3.456, 10.1)

# round(): Rounds mathematically, but removes trailing zeros
round (numbers, 2)

|[1] 1.50 2.00 3.46 10.10

# format (): Keeps trailing zeros, but returns strings
format (round (numbers, 2), nsmall = 2)

I[l] " 1.50" " 2.00" " 3.46" "10.10"

round () returns numbers (1.5 becomes 1.5, not 1.50), while format () produces strings
with a constant number of decimal places.

scales: Formatting for Reports

The {scales} package offers specialized functions for common formatting tasks:

Percentages
proportions <- c¢(0.1, 0.255, 0.5, 1)

# Simple percentage formatting
percent (proportions)

I [l] "Iog" n"oeen n"50g" "100%"

# With precision
percent (proportions, accuracy = 0.1)

I[l] "10.0%" "25.5%" "50.0%" "100.0%"

# European decimal separator
percent (proportions, accuracy = 0.1, decimal.mark = ",")

| t11 "10,08" r25,58" vs0,08" 100, 0%"

Thousands Separators
large numbers <- c (1234, 56789, 1234567)

# English (comma as thousands separator)
comma (large numbers)

I[l] "1,234" "56,789" "1,234,567"

# European (period as thousands separator)
number (large numbers, big.mark = ".")

12
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Warning in prettyNum(.Internal (format (x, trim, digits, nsmall, width, 3L,
'big.mark' und 'decimal.mark' sind beide '.', was verwirrend sein konnte

I[l] "1.234" "56.789" "1.234.567"

General Number Formatting
values <- c(1.2345, 67.891, 0.0052)

# Fixed decimal places
number (values, accuracy = 0.01)

I[l] "1.23" "e67.89" "0.01"

# With prefix/suffix
number (values, accuracy = 0.01, suffix = " kg")

| (11 "1.23 kg" "67.89 kg" "0.01 kg"
I number (large numbers, prefix = "€ ", big.mark = ".")

Warning in prettyNum(.Internal (format (x, trim, digits, nsmall, width, 3L,

'big.mark' und 'decimal.mark' sind beide '.', was verwirrend sein konnte
I[l] "e 1.234" "€ 56.789" "€ 1.234.567"
P-Values

p_values <- c(0.5, 0.05, 0.001, 0.00001)

# Automatic formatting
pvalue (p_values)

I[l] "0.500" "0.050" "0.001" "<0.001"

# With precision
pvalue (p_values, accuracy = 0.001)

I[l] "0.500"™ "0.050"™ "0.001" "<O.O0O1"

1 Additional Formatting Functions

For complex formatting, base R also offers sprintf () with C-style syntax (e.g.,

for most use cases, the {scales} functions are more readable.

sprintf ("%.2£f", 3.14159) for two decimal places). The syntax is powerful but cryptic —

13
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© Exercise: Formatting Numbers

Given the following values:

revenue <- ¢ (12500, 8900, 156000)
proportions <- c(0.125, 0.089, 0.786)
p <- 0.0234

a) Format revenue with thousands separators (periods) and the suffix ” €.
b) Format proportions as percentages with one decimal place.

c) Format the p-value p using pvalue() .

1 Solution

# a) Format revenue
number (revenue, big.mark = ".", suffix = " €")

Warning in prettyNum(.Internal (format (x, trim, digits, nsmall, width, 3L,
'big.mark' und 'decimal.mark' sind beide '.', was verwirrend sein koénnte

I[l] "12.500 €" "8.900 €" "156.000 €"

# b) Proportions as percent

percent (proportions, accuracy = 0.1)

| t11 v12.55" "s.0%n n78.6%

# c) p-value

pvalue (p)

| [1] "0.023"

Outlook: Smart Rounding with BioMathR

A common problem with rounding: How many decimal places are sensible? The
round_smart () function from the {BioMathR} package solves this elegantly. It rounds so that
results have as few digits as possible, but as many as necessary:

# Installation from GitHub
# remotes::insta github ("SchmidtPaul/BioMathR")

library (BioMathR)

# Different numbers, automatically sensibly rounded
round smart (c(1.0001234, 0.0012345, 123.456))

# Result: 1.0001, 0.001, 123.5

# Apply to entire columns

data %>%
mutate (across (where (is.numeric), round smart))

The special feature: round smart () never changes the part before the decimal point and
allows a maximum number of decimal places. Details at github.com/SchmidtPaul/BioMathR.

14
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Outlook: Regular Expressions

Regular Expressions (Regex) are a powerful language for pattern description in strings. We

already used \\d+ above to extract numbers.

A Mini Example

texts <- c(
"Order No. 12345",
"Customer: Max Mustermann",
"Amount: 99.50 EUR",
"Date: 15.01.2024"

)

# Extract all numbers
str extract all (texts, "\\d+")

[[1]]
[1] "12345"

(0211

character (0)

[[3]11]
[1] nggn nwgQon

[[4]]
[l] nign nol" "o024"

# Only numbers with decimal point
str extract (texts, "\\d+\\.\\d+")

| i1 wa NA "99.50" "15.01"
# Email-like pattern (simplified)
email text <- "Contact: info@example.com or support@test.de"
str extract all (email text, "[a-z]+@[a-z]+\\.[a-z]+")
[[11]
[1] "infolexample.com" "support@test.de"

Important Regex Building Blocks

Pattern Meaning
\\d A digit (0-9)

\\w A “word character” (letter, digit, underscore)
\\s A whitespace (space, tab, newline)

Any character

+ One or more of the previous
* Zero or more of the previous
2 Zero or one of the previous

[abc] One of the characters a, b, or c

15
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Pattern Meaning

A Start of string

s End of string

1 Learning Regex

Regular expressions have a steep learning curve but are extremely powerful. Good
resources:

* regex101.com — Interactive regex tester
* R for Data Science: Strings — Chapter on strings and regex

2regex in R for the documentation

Outlook: epoxy

The {epoxy} package extends the idea of {glue} for dynamic documents in Quarto and
RMarkdown. It enables elegant inline formatting of numbers and text directly in prose.

# Installation
install.packages ("epoxy")

Automatica y format numbers

yvsis includes {nrow(data)} observations with an
f {mean (dataSvalue) :.2f}.

S S o e e

For recurring reports where numbers in prose need to be updated, {epoxy} is very practical.
See epoxy documentation.

16
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Summary

In this chapter, we learned the most important tools for working with strings in R.

1 Key Takeaways

Comparison of Concatenation Methods:

Function Package Strength

paste () |/ paste0() base R  Always available, sep/collapse
glue () glue Readability with many variables
str_c() stringr Consistent with stringr ecosystem

Key stringr Functions for Data Cleaning:

Function Purpose

str_trim() Remove whitespace at edges
str_squish () 1. reduce multiple spaces
str to lower () Convert to lowercase

str detect () Search for pattern (TRUE/FALSE)
str replace all() Replace pattern

str_extract () Extract pattern

str pad() Pad with characters

Formatting Numbers:

Function Package Purpose

percent () scales Percentages (10%)

comma () / number () scales Thousands separators,
decimals

pvalue () scales p-values

round_smart () BioMathR Smart rounding (as few
as possible, as many as
necessary)

Typical Cleaning Workflow:

data %>%
mutate (
column clean = column %>%
str _trim() %$>% #
str to lower () %>% ¥
str replace all("™ ", " ") # Replace spaces

17
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Further Resources:

* stringr Documentation

» glue Documentation

+ scales Documentation
BioMathR on GitHub

R for Data Science: Strings

» epoxy for Dynamic Documents

Bibliography
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