
BioMath

1/14

5. Factors

Understanding Categorical Variables and Manipulating Them with forcats
Dr. Paul Schmidt

To install and load all packages used in this chapter, run the following code:

for (pkg in c("forcats", "janitor", "patchwork", "tidyverse")) {
 if (!require(pkg, character.only = TRUE)) install.packages(pkg)
}

library(forcats)
library(janitor)
library(patchwork)
library(tidyverse)

Introduction
Anyone working with categorical data in R will sooner or later encounter the concept of
factors. For beginners, they are often confusing: Why does a column suddenly behave
differently than expected? Why do the bars in the chart appear in a strange order?

This chapter explains what factors are, when you need them, and how to elegantly
manipulate them with the {forcats} package.

Example Data
We again use the starwars dataset, filtered to humans:

humans <- starwars %>%
 filter(species == "Human") %>%
 select(name, height, mass, hair_color, eye_color, gender)

humans

A tibble: 35 × 6
 name height mass hair_color eye_color gender
 <chr> <int> <dbl> <chr> <chr> <chr>
 1 Luke Skywalker 172 77 blond blue masculine
 2 Darth Vader 202 136 none yellow masculine
 3 Leia Organa 150 49 brown brown feminine
 4 Owen Lars 178 120 brown, grey blue masculine
 5 Beru Whitesun Lars 165 75 brown blue feminine
 6 Biggs Darklighter 183 84 black brown masculine
 7 Obi-Wan Kenobi 182 77 auburn, white blue-gray masculine
 8 Anakin Skywalker 188 84 blond blue masculine
 9 Wilhuff Tarkin 180 NA auburn, grey blue masculine
10 Han Solo 180 80 brown brown masculine
ℹ 25 more rows

1

BioMath

2/14

Character vs. Factor: The Difference
Character: Simply Text
A character variable is simply text. R treats each value as an independent string:

eye_color is a character vector
class(humans$eye_color)

[1] "character"

Unique values (in order of first occurrence)
unique(humans$eye_color)

[1] "blue" "yellow" "brown" "blue-gray" "hazel" "dark"
[7] "unknown"

When we sort character values, it happens alphabetically:

sort(unique(humans$eye_color))

[1] "blue" "blue-gray" "brown" "dark" "hazel" "unknown"
[7] "yellow"

Factor: Text with Structure
A factor is text plus additional information:

1. Levels: The possible categories
2. Order: The sorting of the levels

Convert character to factor
eye_factor <- factor(humans$eye_color)

class(eye_factor)

[1] "factor"

levels(eye_factor) # The stored levels

[1] "blue" "blue-gray" "brown" "dark" "hazel" "unknown"
[7] "yellow"

The levels are sorted alphabetically by default. But we can define a custom order:

eye_custom <- factor(
 humans$eye_color,
 levels = c("blue", "brown", "hazel", "dark", "blue-gray")
)

levels(eye_custom)

[1] "blue" "brown" "hazel" "dark" "blue-gray"

Why Does This Matter?
The level order affects:

• Sorting in tables
• Order in graphics (e.g., bar charts)

2

BioMath

3/14

• Reference category in statistical models
With character: alphabetical order
p1 <- humans %>%
 count(eye_color) %>%
 ggplot(aes(x = eye_color, y = n)) +
 geom_col() +
 labs(title = "Character: alphabetical") +
 theme_minimal()

With factor: our order
p2 <- humans %>%
 mutate(eye_color = factor(eye_color,
 levels = c("brown", "blue", "hazel", "dark", "blue-
gray"))) %>%
 count(eye_color) %>%
 ggplot(aes(x = eye_color, y = n)) +
 geom_col() +
 labs(title = "Factor: custom order") +
 theme_minimal()

Display side by side
p1 + p2

 Exercise: Character vs. Factor

a) Check with class() whether hair_color in the humans dataset is a character or
factor.

b) Convert hair_color to a factor and display the levels.

c) Create a factor for hair_color with the order: “brown”, “black”, “blond”, “auburn”, then
all others.

3

BioMath

4/14

 Solution

a) Check class
class(humans$hair_color)

[1] "character"

b) Convert to factor
hair_factor <- factor(humans$hair_color)
levels(hair_factor)

 [1] "auburn" "auburn, grey" "auburn, white" "black"
 [5] "blond" "brown" "brown, grey" "grey"
 [9] "none" "white"

c) With custom order
hair_custom <- factor(
 humans$hair_color,
 levels = c("brown", "black", "blond", "auburn",
 "auburn, grey", "auburn, white", "grey", "white", "none")
)
levels(hair_custom)

[1] "brown" "black" "blond" "auburn"
[5] "auburn, grey" "auburn, white" "grey" "white"
[9] "none"

4

BioMath

5/14

Creating Factors
factor() vs. as_factor()
There are two main functions for creating factors:

colors <- c("red", "blue", "red", "green", "blue")

factor(): Levels alphabetical
factor(colors)

[1] red blue red green blue
Levels: blue green red

as_factor(): Levels by order of first occurrence
as_factor(colors)

[1] red blue red green blue
Levels: red blue green

Function Package Level Order

factor() base R Alphabetical

as_factor() forcats By occurrence in vector

as_factor() is often more practical because the order of the data is preserved.

Specifying Levels Explicitly
With the levels argument, we can determine the order ourselves:

Custom order
satisfaction <- c("medium", "high", "low", "high", "medium")

WRONG: alphabetical
factor(satisfaction)

[1] medium high low high medium
Levels: high low medium

RIGHT: logical order
factor(satisfaction, levels = c("low", "medium", "high"))

[1] medium high low high medium
Levels: low medium high

5

BioMath

6/14

forcats: Manipulating Factors
The {forcats} package (part of the tidyverse) provides practical functions for factor
manipulation. All functions start with fct_ .

Changing Order

fct_relevel() – Manual Reordering
Original order
humans %>%
 mutate(eye_color = factor(eye_color)) %>%
 pull(eye_color) %>%
 levels()

[1] "blue" "blue-gray" "brown" "dark" "hazel" "unknown"
[7] "yellow"

Move "brown" to the beginning
humans %>%
 mutate(eye_color = fct_relevel(eye_color, "brown")) %>%
 pull(eye_color) %>%
 levels()

[1] "brown" "blue" "blue-gray" "dark" "hazel" "unknown"
[7] "yellow"

Multiple levels in specific order
humans %>%
 mutate(eye_color = fct_relevel(eye_color, "brown", "blue", "hazel")) %>%
 pull(eye_color) %>%
 levels()

[1] "brown" "blue" "hazel" "blue-gray" "dark" "unknown"
[7] "yellow"

fct_reorder() – Sort by Another Variable
Particularly useful for graphics – sort categories by a numerical value:
Average height by hair color
hair_height <- humans %>%
 filter(!is.na(hair_color), !is.na(height)) %>%
 group_by(hair_color) %>%
 summarise(mean_height = mean(height), n = n()) %>%
 filter(n >= 2) # Only groups with at least 2 people

Without fct_reorder: alphabetical
p1 <- hair_height %>%
 ggplot(aes(x = hair_color, y = mean_height)) +
 geom_col() +
 labs(title = "Alphabetical") +
 theme_minimal() +
 theme(axis.text.x = element_text(angle = 45, hjust = 1))

With fct_reorder: sorted by height
p2 <- hair_height %>%
 ggplot(aes(x = fct_reorder(hair_color, mean_height), y = mean_height)) +
 geom_col() +
 labs(title = "Sorted by height", x = "hair_color") +
 theme_minimal() +
 theme(axis.text.x = element_text(angle = 45, hjust = 1))

6

BioMath

7/14

p1 + p2

fct_infreq() – Sort by Frequency
humans %>%
 mutate(eye_color = fct_infreq(eye_color)) %>%
 pull(eye_color) %>%
 levels()

[1] "brown" "blue" "hazel" "yellow" "blue-gray" "dark"
[7] "unknown"

The most frequent categories come first – ideal for bar charts.

fct_rev() – Reverse Order
Most frequent first, then reverse (least frequent first)
humans %>%
 mutate(eye_color = fct_rev(fct_infreq(eye_color))) %>%
 pull(eye_color) %>%
 levels()

[1] "unknown" "dark" "blue-gray" "yellow" "hazel" "blue"
[7] "brown"

Combining Levels

fct_lump_n() – Combine Rare into “Other”
Keep only the 3 most frequent, rest becomes "Other"
humans %>%
 mutate(eye_color = fct_lump_n(eye_color, n = 3)) %>%
 tabyl(eye_color)

 eye_color n percent
 blue 12 0.34285714
 brown 16 0.45714286
 hazel 2 0.05714286
 yellow 2 0.05714286
 Other 3 0.08571429

With custom label
humans %>%
 mutate(eye_color = fct_lump_n(eye_color, n = 3, other_level = "Misc")) %>%
 tabyl(eye_color)

7

BioMath

8/14

 eye_color n percent
 blue 12 0.34285714
 brown 16 0.45714286
 hazel 2 0.05714286
 yellow 2 0.05714286
 Misc 3 0.08571429

Related functions:

• fct_lump_min() – Combine if fewer than n occurrences
• fct_lump_prop() – Combine if proportion below x%

fct_collapse() – Combine Multiple Levels
humans %>%
 mutate(
 eye_group = fct_collapse(
 eye_color,
 "light" = c("blue", "blue-gray", "hazel"),
 "dark" = c("brown", "dark")
)
) %>%
 tabyl(eye_group)

 eye_group n percent
 light 15 0.42857143
 dark 17 0.48571429
 unknown 1 0.02857143
 yellow 2 0.05714286

Renaming Levels

fct_recode()
humans %>%
 mutate(
 eye_color_full = fct_recode(
 eye_color,
 "Blue" = "blue",
 "Brown" = "brown",
 "Dark" = "dark",
 "Hazel" = "hazel",
 "Blue-Gray" = "blue-gray"
)
) %>%
 tabyl(eye_color_full)

 eye_color_full n percent
 Blue 12 0.34285714
 Blue-Gray 1 0.02857143
 Brown 16 0.45714286
 Dark 1 0.02857143
 Hazel 2 0.05714286
 unknown 1 0.02857143
 yellow 2 0.05714286

8

BioMath

9/14

 Exercise: forcats

Work with the humans dataset:

a) Create a bar chart of hair_color where the bars are sorted by frequency (most
frequent on the left).

b) Combine all hair colors except the 3 most frequent under “Other” and create a
frequency table with tabyl() .

c) Rename the levels of gender : “feminine” → “female”, “masculine” → “male”.

9

BioMath

10/14

 Solution

a) Bar chart by frequency
humans %>%
 filter(!is.na(hair_color)) %>%
 ggplot(aes(x = fct_infreq(hair_color))) +
 geom_bar() +
 labs(x = "Hair color", y = "Count") +
 theme_minimal() +
 theme(axis.text.x = element_text(angle = 45, hjust = 1))

b) Lump and tabyl
humans %>%
 mutate(hair_color = fct_lump_n(hair_color, n = 3, other_level = "Other")) %>%
 tabyl(hair_color, show_na = FALSE)

 hair_color n percent
 black 8 0.2285714
 brown 13 0.3714286
 none 4 0.1142857
 Other 10 0.2857143

c) Rename gender
humans %>%
 mutate(
 gender_renamed = fct_recode(
 gender,
 "female" = "feminine",
 "male" = "masculine"
)
) %>%
 tabyl(gender_renamed)

 gender_renamed n percent
 female 9 0.2571429
 male 26 0.7428571

10

BioMath

11/14

Practical Applications
Factors in ggplot2
The level order determines the arrangement in graphics:
Sensible order for bar chart
humans %>%
 filter(!is.na(eye_color)) %>%
 mutate(eye_color = fct_infreq(eye_color)) %>% # By frequency
 ggplot(aes(x = eye_color, fill = eye_color)) +
 geom_bar() +
 coord_flip() + # Horizontal bars
 labs(
 title = "Eye Colors of Star Wars Humans",
 x = NULL,
 y = "Count"
) +
 theme_minimal() +
 theme(legend.position = "none")

With horizontal bar charts, you often want the most frequent category at the top. For this,
combine fct_infreq() with fct_rev() :

humans %>%
 filter(!is.na(eye_color)) %>%
 mutate(eye_color = fct_rev(fct_infreq(eye_color))) %>% # Reversed
 ggplot(aes(x = eye_color, fill = eye_color)) +
 geom_bar() +
 coord_flip() +
 labs(
 title = "Most Frequent Category on Top",
 x = NULL,
 y = "Count"
) +
 theme_minimal() +
 theme(legend.position = "none")

11

BioMath

12/14

Factors in tabyl()
tabyl() also respects the level order:

Without factor: alphabetical
humans %>%
 tabyl(eye_color)

 eye_color n percent
 blue 12 0.34285714
 blue-gray 1 0.02857143
 brown 16 0.45714286
 dark 1 0.02857143
 hazel 2 0.05714286
 unknown 1 0.02857143
 yellow 2 0.05714286

With factor: by our order
humans %>%
 mutate(eye_color = fct_relevel(eye_color, "brown", "blue")) %>%
 tabyl(eye_color)

 eye_color n percent
 brown 16 0.45714286
 blue 12 0.34285714
 blue-gray 1 0.02857143
 dark 1 0.02857143
 hazel 2 0.05714286
 unknown 1 0.02857143
 yellow 2 0.05714286

By frequency
humans %>%
 mutate(eye_color = fct_infreq(eye_color)) %>%
 tabyl(eye_color)

12

BioMath

13/14

 eye_color n percent
 brown 16 0.45714286
 blue 12 0.34285714
 hazel 2 0.05714286
 yellow 2 0.05714286
 blue-gray 1 0.02857143
 dark 1 0.02857143
 unknown 1 0.02857143

This is particularly useful for reports where the order of categories should have a substantive
meaning (e.g., “excellent”, “good”, “satisfactory”, “poor”).

13

BioMath

14/14

Summary
Factors are more powerful than simple character variables because they store a defined set
of categories with a specific order.

 Key Takeaways

Character vs. Factor:

Aspect Character Factor

Stores Only text Text + levels + order

Sorting Alphabetical By level order

Unknown values Allowed Become NA (if not in levels)

Use case Free text Categories with fixed values

When Character, When Factor?

• Character: Free text, names, IDs, comments
• Factor: Categories with defined values (gender, Likert scales, regions)

Key forcats Functions:

Function Purpose

fct_relevel() Manually reorder levels

fct_reorder() Sort by numerical variable

fct_infreq() Sort by frequency

fct_rev() Reverse order

fct_lump_n() Combine rare into “Other”

fct_collapse() Combine multiple levels

fct_recode() Rename levels

Typical Workflow for Graphics:
data %>%
 mutate(category = fct_infreq(category)) %>% # By frequency
 ggplot(aes(x = category)) +
 geom_bar()

Further Resources:

• forcats Documentation
• R for Data Science: Factors

Bibliography

14

https://forcats.tidyverse.org/
https://r4ds.hadley.nz/factors

	Introduction
	Example Data
	Character vs. Factor: The Difference
	Character: Simply Text
	Factor: Text with Structure
	Why Does This Matter?

	Creating Factors
	factor() vs. as_factor()
	Specifying Levels Explicitly

	forcats: Manipulating Factors
	Changing Order
	fct_relevel() – Manual Reordering
	fct_reorder() – Sort by Another Variable
	fct_infreq() – Sort by Frequency
	fct_rev() – Reverse Order

	Combining Levels
	fct_lump_n() – Combine Rare into "Other"
	fct_collapse() – Combine Multiple Levels

	Renaming Levels
	fct_recode()

	Practical Applications
	Factors in ggplot2
	Factors in tabyl()

	Summary
	Bibliography

