BioMath

5. Factors

Understanding Categorical Variables and Manipulating Them with forcats
Dr. Paul Schmidt

To install and load all packages used in this chapter, run the following code:

for (pkg in c("forcats", "janitor", "patchwork", "tidyverse")) {
if (!require (pkg, character.only = TRUE)) install.packages (pkqg)
}

forcats)
janitor)
patchwork)
tidyverse)

library
library
library

library

Introduction

Anyone working with categorical data in R will sooner or later encounter the concept of
factors. For beginners, they are often confusing: Why does a column suddenly behave
differently than expected? Why do the bars in the chart appear in a strange order?

This chapter explains what factors are, when you need them, and how to elegantly
manipulate them with the {forcats} package.

Example Data

We again use the starwars dataset, filtered to humans:

humans <- starwars %>%
filter (species == "Human") %>%
select (name, height, mass, hair color, eye color, gender)

humans

A tibble: 35 x 6

name height mass hair color eye color gender

<chr> <int> <dbl> <chr> <chr> <chr>
1 Luke Skywalker 172 77 blond blue masculine
2 Darth Vader 202 136 none yellow masculine
3 Leia Organa 150 49 brown brown feminine
4 Owen Lars 178 120 brown, grey blue masculine
5 Beru Whitesun Lars 165 75 brown blue feminine
6 Biggs Darklighter 183 84 black brown masculine
7 Obi-Wan Kenobi 182 77 auburn, white blue-gray masculine
8 Anakin Skywalker 188 84 blond blue masculine
9 Wilhuff Tarkin 180 NA auburn, grey Dblue masculine
10 Han Solo 180 80 brown brown masculine

i 25 more rows

114

Character vs. Factor: The Difference

Character: Simply Text

A character variable is simply text. R treats each value as an independent string:

eye color is a character vector
class (humansSeye color)
I[l] "character"
Unique values (in order of first occurrence)
unique (humansSeye color)
[1] "blue" "yellow" "brown" "blue-gray" "hazel" "dark"
[7] "unknown"

When we sort character values, it happens alphabetically:
Isort(unique(humans$eye_color))

[1] "blue" "blue-gray" "brown" "dark" "hazel" "unknown"
[7] "yellow"

Factor: Text with Structure
A factor is text plus additional information:

1. Levels: The possible categories
2. Order: The sorting of the levels

Convert character to factor

eye factor <- factor(humans$eye_color)
class (eye factor)

I[l] "factor"

Ilevels(eye_factor) # The stored levels
[1] "blue" "blue-gray" "brown" "dark" "hazel" "unknown"
[7] "yellow"

The levels are sorted alphabetically by default. But we can define a custom order:

eye custom <- factor (
humansSeye color,
levels = c("blue", "brown", "hazel", "dark", "blue-gray")

)

levels (eye custom)

I[l] "blue" "brown" "hazel" "dark" "blue-gray"

Why Does This Matter?

The level order affects:

» Sorting in tables
* Order in graphics (e.g., bar charts)

BioMath

214

* Reference category in statistical models

With character: alphabetical order
pl <- humans %>%
count (eye color) %>%
ggplot (aes (x = eye color, y = n)) +
geom col () +
labs (title = "Character: alphabetical") +
theme minimal ()

With factor: our order
p2 <- humans %>%

mutate (eye color = factor (eye color,

levels = c("brown", "blue", "hazel", "dark", "blue-

gray"))) %>%

count (eye color) %>%

ggplot (aes (x = eye color, y = n)) +

geom col () +

labs(title = "Factor: custom order") +

theme minimal ()

Display side by side

pl + p2
Character: alphabetical Factor: custom order
15
10
c
5
T e e IO e - __-
blue blue-gray brown dark hazel unknown yellow brown blue hazel dark blue-gray

eye_color eye_color

© Exercise: Character vs. Factor

a) Check with class() whether hair_color inthe humans dataset is a character or
factor.

b) Convert hair_color to a factor and display the levels.

c) Create a factor for hair_color with the order: “brown”, “black”, “blond”, “auburn”, then
all others.

BioMath

314

a) Check class
class (humansShair color)

b) Convert to factor
hair factor <- factor (humansShair color)
levels (hair factor)

c) With custom order
hair custom <- factor(
humansShair color,
levels = c("brown", "black", "blond", "auburn",
"auburn, grey", "auburn, white", "grey", "white", "none")
)

levels (hair_custom)

Creating Factors

factor() vs. as_factor()
There are two main functions for creating factors:

colors <- c("red", "blue", "red", "green", "blue")

factor(): Levels alphabetical
factor (colors)

[1] red blue red green blue
Levels: blue green red

as factor(): Levels by order of first occurrence
as_factor (colors)

[1] red blue red green blue
Levels: red blue green

Function Package Level Order

factor () base R Alphabetical

as factor() forcats By occurrence in vector

as_factor () is often more practical because the order of the data is preserved.

Specifying Levels Explicitly

With the levels argument, we can determine the order ourselves:

Custom order
satisfaction <- c("medium", "high", "low", "high",

WRONG: alphabetical
factor (satisfaction)

[1] medium high low high medium
Levels: high low medium

RIGHT: logical order

[1] medium high low high medium
Levels: low medium high

factor (satisfaction, levels = c("low", "medium", "high"))

BioMath

5/14

BioMath

forcats: Manipulating Factors

The {forcats} package (part of the tidyverse) provides practical functions for factor
manipulation. All functions start with fct_ .

Changing Order

fct_relevel() — Manual Reordering

Original order

humans %>%
mutate (eye color = factor (eye color)) %>%
pull (eye color) %>%
levels ()

[1] "blue" "blue-gray" "brown" "dark" "hazel" "unknown"
[7] "yellow"

Move "brown" to the beginning
humans %>%

mutate (eye color = fct relevel (eye color, "brown")) %>%
pull (eye color) %>%
levels ()
[1] "brown" "blue" "blue-gray" "dark" "hazel" "unknown"
[7] "yellow"
Multiple levels in specific order
humans %>%
mutate (eye color = fct relevel (eye color, "brown", "blue", "hazel")) %>%
pull (eye color) %>%
levels ()
[1] "brown" "blue" "hazel" "blue-gray" "dark" "unknown"

[7] "yellow"

fct_reorder() — Sort by Another Variable
Particularly useful for graphics — sort categories by a numerical value:

Average height by hair color

hair height <- humans %>%
filter(!is.na(hair color), !is.na(height)) %>%
group by (hair color) 3%>%
summarise (mean height = mean (height), n = n()) %>%
filter(n >= 2) # Only groups with at least 2 people

Without fct reorder: alphabetical
pl <- hair height %>%

ggplot (aes (x = hair color, y = mean height)) +
geom col () +

labs (title = "Alphabetical") +
theme minimal () +
theme (axis.text.x = element text (angle = 45, hjust = 1))

With fct reorder: sorted by height

p2 <- hair height %>%
ggplot (aes (x fct reorder (hair color, mean height), y = mean height)) +
geom _col () +

labs (title = "Sorted by height", x = "hair color") +

theme minimal () +

theme (axis.text.x = element text (angle = 45, hjust = 1))
6

6/14

Ipl + p2
Alphabetical Sorted by height
w 150 w 150
e =
2 2
[))
<, 100 <, 100
C C
®© ®©
]]
€ 50 € 50
0 0
6&# 669 6¢$ Q&Q S§9 ddS 669 £§9 @5&
hair_color hair_color
fct_infreq() — Sort by Frequency
humans %>%
mutate (eye color = fctiinfreq(eye_color)) $>%
pull (eye color) %>%
levels ()
[1] "brown" "blue" "hazel" "yellow" "blue-gray" "dark"
[7] "unknown"
The most frequent categories come first — ideal for bar charts.
fct_rev() — Reverse Order
Most frequent first, then reverse (least frequent first)
humans %>%
mutate (eye color = fct_rev(fct_infreq(eye_color))) $>%
pull (eye color) %>%
levels ()
[1] "unknown" "dark" "blue-gray" "yellow" "hazel" "blue"

[7] "brown"
Combining Levels

fct_lump_n() — Combine Rare into “Other”

Keep only the 3 most frequent, rest becomes "Other"
humans %$>%
mutate (eye color = fct lump n(eye color, n = 3))
tabyl (eye color)

o©

>

o©

eye color n percent
blue 12 0.34285714
brown 16 0.45714286
hazel 2 0.05714286
yellow 2 0.05714286
Other 3 0.08571429

With custom label

humans %>%
mutate (eye color = fct lump n(eye color, n = 3, other level = "Misc"))
tabyl (eye color)

%>

BioMath

714

Related functions:

fet_lump min() — Combine if fewer than n occurrences

* fct_lump_prop() — Combine if proportion below x%

fct_collapse() — Combine Multiple Levels

humans %>%
mutate (
eye group = fct collapse(
eye color,
"light" = c("blue", "blue-gray", "hazel"),
"dark" = c("brown", "dark")
)
) $>%

tabyl (eye group)

Renaming Levels

fct_recode()

humans %>%
mutate (
eye color full = fct recode(
eye color,
"Blue" = "blue",
"Brown" = "brown",
"Dark" = "dark",
"Hazel" = "hazel",
"Blue-Gray" = "blue-gray"
)
) $>%
tabyl (eye color full)

O Exercise: forcats

Work with the humans dataset:
a) Create a bar chart of hair_color where the bars are sorted by frequency (most
frequent on the left).

b) Combine all hair colors except the 3 most frequent under “Other” and create a
frequency table with tabyl () .

¢) Rename the levels of gender ; “feminine” — “female”, “masculine” — “male”.

BioMath

9/14

1 Solution

a) Bar chart by frequency
humans %>%
filter(!is.na(hair color)) %>%

ggplot (aes (x = fct infreq(hair color))) +

geom bar () +

labs (x = "Hair color", y = "Count") +

theme minimal () +

theme (axis.text.x = element text (angle = 45, hjust = 1))

10
-
c
=)
O
© 5

0 . - - . 1 1 I
& o & N @ N 2 g 2 2
P R O S $ $
? Q& & &
db (P ©
> ~N ©
Hair color

b) Lump and tabyl
humans %>%

mutate (hair color = fct lump n(hair color, n 3, other level = "Other")) %>%

tabyl (hair color, show na = FALSE)

hair color n percent
black 8 0.2285714
brown 13 0.3714286
none 4 0.1142857
Other 10 0.2857143

c) Rename gender
humans %>%

mutate (
gender renamed = fct recode (
gender,
"female" = "feminine",
"male" = "masculine"

)
) $>%

tabyl (gender renamed)

gender renamed n percent
female 9 0.2571429
male 26 0.7428571

10

BioMath

10/14

BioMath

Practical Applications

Factors in ggplot2

The level order determines the arrangement in graphics:

Sensible order for bar chart
humans %>%
filter(!is.na(eye color)) 3%>%
mutate (eye color = fct infreq(eye color)) %$>% # By frequency
ggplot (aes (x = eye color, fill = eye color)) +
geom bar () +

coord_flip() + # Horizontal bars

labs (
title = "Eye Colors of Star Wars Humans",
x = NULL,
y = "Count"

) +

theme minimal () +

theme (legend.position = "none")

Eye Colors of Star Wars Humans

unknown
dark
blue-gray

yellow

haze

blue

brown

Count

With horizontal bar charts, you often want the most frequent category at the top. For this,
combine fct_infreq() with fct_rev() :

humans %>%
filter(!is.na(eye color)) 3%>%
mutate (eye color = fct rev(fct infreg(eye color))) %$>% # Reversed
ggplot (aes(x = eye color, fill = eye color)) +
geom bar () +
coord flip() +
labs (
title = "Most Frequent Category on Top",
x = NULL,
y = "Count"
) +
theme minimal () +
theme (legend.position = "none")

1114

Most Frequent Category on Top

brown

blue

hazel

yellow

blue-gray

dark

unknown

10 15

o
o

Count

Factors in tabyl()

tabyl () also respects the level order:

Without factor: alphabetical
humans %>%
tabyl (eye color)

With factor: by our order

humans %>%
mutate (eye color = fct relevel (eye color, "brown", "blue")) 3%>%
tabyl (eye color)

By frequency

humans %>%
mutate (eye color = fct infreq(eye color)) %>%
tabyl (eye color)

This is particularly useful for reports where the order of categories should have a substantive

EEIN 1]

meaning (e.g., “excellent’, “good”, “satisfactory”, “poor”).

13

Summary

Factors are more powerful than simple character variables because they store a defined set
of categories with a specific order.

1 Key Takeaways

Character vs. Factor:

Aspect Character Factor

Stores Only text Text + levels + order
Sorting Alphabetical By level order

Unknown values Allowed Become NA (if not in levels)
Use case Free text Categories with fixed values

When Character, When Factor?

* Character: Free text, names, IDs, comments
» Factor: Categories with defined values (gender, Likert scales, regions)

Key forcats Functions:

Function Purpose

fct_relevel () Manually reorder levels
fct_reorder () Sort by numerical variable
fct_infreq() Sort by frequency
fct_rev() Reverse order

fct_lump n () Combine rare into “Other”
fct_collapse() Combine multiple levels
fct_recode () Rename levels

Typical Workflow for Graphics:

data %>%
mutate (category = fct infreg(category)) %>% # By
ggplot (aes (x = category)) +
geom_bar ()

Further Resources:

 forcats Documentation
* R for Data Science: Factors

Bibliography

14

BioMath

14/14

https://forcats.tidyverse.org/
https://r4ds.hadley.nz/factors

	Introduction
	Example Data
	Character vs. Factor: The Difference
	Character: Simply Text
	Factor: Text with Structure
	Why Does This Matter?

	Creating Factors
	factor() vs. as_factor()
	Specifying Levels Explicitly

	forcats: Manipulating Factors
	Changing Order
	fct_relevel() – Manual Reordering
	fct_reorder() – Sort by Another Variable
	fct_infreq() – Sort by Frequency
	fct_rev() – Reverse Order

	Combining Levels
	fct_lump_n() – Combine Rare into "Other"
	fct_collapse() – Combine Multiple Levels

	Renaming Levels
	fct_recode()

	Practical Applications
	Factors in ggplot2
	Factors in tabyl()

	Summary
	Bibliography

