

# 6. Analyzing Multiple Response Questions

Multiple-choice questions with several possible answers

Dr. Paul Schmidt

## What Are Multiple Response Questions?

---

Many surveys and interviews include questions where respondents can select not just one, but multiple answer options. A classic example would be the question “Which of these fruits do you like?” with five options. Unlike a single-choice question, where exactly one option must be selected, respondents can check any number of options here — from none at all to all five.

This seemingly simple extension has far-reaching consequences for data structure and analysis: While single-choice only requires one column with the selected categories, multiple-choice needs different approaches. Let’s imagine four people answering our fruit question:

### Which of these fruits do you like?

#### Person 1

- Apple
- Banana
- Cherry
- Mango
- Orange

#### Person 2

- Apple
- Banana
- Cherry
- Mango
- Orange

#### Person 3

- Apple
- Banana
- Cherry
- Mango
- Orange

#### Person 4

- Apple
- Banana
- Cherry
- Mango
- Orange

Person 1 likes three fruits, Person 2 only one, Person 3 all five, and Person 4 three again. How do we store this information in a table? There are different formats for this.

# Data Formats for Multiple Responses

---

## Dichotomous Format (Wide)

The most common format in practice: Each answer option becomes its own column with values 0 (not selected) and 1 (selected). This makes the table “wide”, which is why it’s also called the wide format.

|   |           |          |           |           |          |           |
|---|-----------|----------|-----------|-----------|----------|-----------|
| 1 | person_id | Q1_apple | Q1_banana | Q1_cherry | Q1_mango | Q1_orange |
| 2 |           | 0        | 1         | 0         | 0        | 1         |

This format is typical for exports from survey tools like Google Forms, SurveyMonkey, Qualtrics, LimeSurvey, or REDCap. The related columns of a multiple response question often share a common prefix (here: `Q1_`), which makes it easier to identify and select the columns. The advantage: Each row is one person, and you can immediately see which combinations were selected. The disadvantage: With many answer options, the table becomes very wide.

## Collapsed Format (Delimited)

A more compact alternative: All selected options are in a single column, separated by a delimiter such as semicolon, comma, or pipe.

|   |           |          |                              |
|---|-----------|----------|------------------------------|
| 1 | person_id | Q1_fruit | berry, Orange                |
| 2 |           |          | Apple; Banana; Mango; Orange |

This format often arises from manual data entry in Excel or from older database systems. It's space-saving and human-readable, but must first be converted to another format for statistical analysis.

## Long Format

In the long format, there is one row per selected option. This means: A person who selected three fruits appears in three rows.

|   |           |       |        |
|---|-----------|-------|--------|
| 1 | person_id | fruit | Apple  |
| 2 |           |       | Banana |
| 3 |           |       | Cherry |
| 4 |           |       | Mango  |

The long format is typical for relational databases and particularly well-suited for analysis with tidyverse functions like `count()` or `group_by()`. The disadvantage: The table becomes very long with many responses, and people who selected nothing don't appear at all.

### i For SPSS Users: Multiple Response Sets

In SPSS, multiple responses must be analyzed through a special mechanism: You first define a “Multiple Response Set” from the individual variables before you can calculate frequencies. SPSS distinguishes between counting “by cases” (percent of respondents) and “by responses” (percent of all given responses).

| 1: s01_1 | 5 | s01_1 | s01_2 | s01_3 | s01_4 | s01_5 | alter | geschlecht |
|----------|---|-------|-------|-------|-------|-------|-------|------------|
| 1        |   | 5     | .     | .     | .     | .     | 24    | 1          |
| 2        |   | 2     | .     | .     | .     | .     | 25    | 0          |
| 3        |   | 1     | 7     | .     | .     | .     | 22    | 1          |
| 4        |   | 4     | 5     | .     | .     | .     | 20    | 1          |
| 5        |   | 1     | 2     | 6     | .     | .     | 24    | 1          |
| 6        |   | 1     | 4     | .     | .     | .     | 21    | 1          |
| 7        |   | 1     | 3     | 7     | .     | .     | 18    | 0          |
| 8        |   | 4     | .     | .     | .     | .     | 19    | 0          |
| 9        |   | 2     | 8     | .     | .     | .     | 19    | 0          |
| 10       |   | 1     | 3     | .     | .     | .     | 24    | 0          |
| 11       |   | 2     | 5     | .     | .     | .     | 24    | 1          |
| 12       |   | 8     | .     | .     | .     | .     | 21    | 0          |
| 13       |   | 7     | .     | .     | .     | .     | 23    | 0          |
| 14       |   | .     | .     | .     | .     | .     | 18    | 1          |
| 15       |   | 5     | .     | .     | .     | .     | 21    | 1          |
| 16       |   | 8     | .     | .     | .     | .     | 18    | 0          |
| 17       |   | 2     | .     | .     | .     | .     | 24    | 1          |
| 18       |   | 6     | .     | .     | .     | .     | 22    | 1          |
| 19       |   | 1     | 2     | 6     | 8     | .     | 23    | 1          |

Figure 1: SPSS Data Editor with multiple response variables

In R, this detour via set definitions is not necessary — we work directly with the data in one of the three formats. Those who still prefer SPSS-like syntax can use the R packages `expss` (with `mrset()` and `tab_stat_cpct()`) or `sjmisc` (with `frq()` and `flat_table()`).

A detailed guide to the SPSS approach is shown in this video (in German): Multiple Responses in SPSS

## Converting Between Formats

In practice, you often receive data in one format but want to analyze it in another. With `tidyverse` functions, any format can be converted to any other. Let's first define our three example datasets explicitly:

```
# Dichotomous Format (Wide)
fruit_dichotom <- tibble(
```

```

person_id = 1:4,
Q1_apple = c(1, 0, 1, 1),
Q1_banana = c(0, 1, 1, 0),
Q1_cherry = c(1, 0, 1, 1),
Q1_mango = c(0, 0, 1, 1),
Q1_orange = c(1, 0, 1, 0)
)

# Collapsed Format
fruitCollapsed <- tibble(
  person_id = 1:4,
  Q1_fruit = c("Apple; Cherry; Orange",
              "Banana",
              "Apple; Banana; Cherry; Mango; Orange",
              "Apple; Cherry; Mango")
)

# Long Format
fruitLong <- tibble(
  person_id = c(1, 1, 1, 2, 3, 3, 3, 3, 4, 4, 4),
  fruit = c("Apple", "Cherry", "Orange",
           "Banana",
           "Apple", "Banana", "Cherry", "Mango", "Orange",
           "Apple", "Cherry", "Mango")
)

```

## Dichotomous → Long

The dichotomous format is converted to long format using `pivot_longer()`. The common prefix `Q1_` allows selecting the related columns with `starts_with()`. Then we filter only the rows where an option was selected (value = 1).

```

fruit_dichotom %>%
  pivot_longer(
    cols = starts_with("Q1_"),           # all columns with prefix Q1_
    names_to = "fruit",                  # column names become values
    names_prefix = "Q1_",                # remove prefix
    values_to = "selected"              # 0/1 values in new column
  ) %>%
  filter(selected == 1) %>%
  select(-selected)                   # remove helper column

```

```

# A tibble: 12 × 2
  person_id fruit
  <int> <chr>
1 1         apple
2 1         cherry
3 1         orange
4 2         banana
5 3         apple
6 3         banana
7 3         cherry
8 3         mango
9 3         orange
10 4         apple
11 4         cherry
12 4         mango

```

## Dichotomous → Collapsed

For conversion to collapsed format, we first pivot to long format, filter the selected options, and then combine them with `summarise()` and `str_c()`.

```
fruit_dichotom %>%
  pivot_longer(
    cols = starts_with("Q1_"),
    names_to = "fruit",
    names_prefix = "Q1_",
    values_to = "selected"
  ) %>%
  filter(selected == 1) %>%
  summarise(
    Q1_fruit = str_c(str_to_title(fruit), collapse = "; "),
    .by = person_id
)
```

```
# A tibble: 4 × 2
  person_id Q1_fruit
  <int> <chr>
1 1 Apple; Cherry; Orange
2 2 Banana
3 3 Apple; Banana; Cherry; Mango; Orange
4 4 Apple; Cherry; Mango
```

## Long → Dichotomous

The reverse direction: We add a helper column with value 1 and then pivot to wide format with `pivot_wider()`. Missing values are filled with 0.

```
fruit_long %>%
  mutate(
    fruit = str_to_lower(fruit),      # consistent spelling
    selected = 1                     # helper column
  ) %>%
  pivot_wider(
    names_from = fruit,
    names_prefix = "Q1_",           # add prefix
    values_from = selected,
    values_fill = 0                 # not selected = 0
  )
```

```
# A tibble: 4 × 6
  person_id Q1_apple Q1_cherry Q1_orange Q1_banana Q1_mango
  <dbl>     <dbl>     <dbl>     <dbl>     <dbl>     <dbl>
1 1         1         1         1         1         0         0
2 2         2         0         0         0         1         0
3 3         3         1         1         1         1         1
4 4         4         1         1         0         0         1
```

## Long → Collapsed

In long format, we group by person and concatenate the fruits into a string.

```
fruit_long %>%
  summarise(
    Q1_fruit = str_c(fruit, collapse = "; "),
    .by = person_id
)

# A tibble: 4 × 2
  person_id Q1_fruit
  <dbl> <chr>
1 1 Apple; Cherry; Orange
2 2 Banana
3 3 Apple; Banana; Cherry; Mango; Orange
4 4 Apple; Cherry; Mango
```

## Collapsed → Long

The collapsed format is split using `separate_longer_delim()`. This function creates a separate row for each value between the delimiters.

```
fruit_collapsed %>%
  separate_longer_delim(Q1_fruit, delim = "; ") %>%
  rename(fruit = Q1_fruit) %>%
  mutate(fruit = str_trim(fruit)) # remove any whitespace
```

```
# A tibble: 12 × 2
  person_id fruit
  <int> <chr>
1 1         Apple
2 1         Cherry
3 1         Orange
4 2         Banana
5 3         Apple
6 3         Banana
7 3         Cherry
8 3         Mango
9 3         Orange
10 4        Apple
11 4        Cherry
12 4        Mango
```

## Collapsed → Dichotomous

For conversion to dichotomous format, we take the detour via long format.

```
fruit_collapsed %>%
  separate_longer_delim(Q1_fruit, delim = "; ") %>%
  mutate(
    fruit = str_to_lower(str_trim(Q1_fruit)),
    selected = 1
  ) %>%
  select(-Q1_fruit) %>%
  pivot_wider(
    names_from = fruit,
    names_prefix = "Q1_",
    values_from = selected,
    values_fill = 0
  )
```

```
# A tibble: 4 × 6
  person_id Q1_apple Q1_cherry Q1_orange Q1_banana Q1_mango
  <int>     <dbl>     <dbl>     <dbl>     <dbl>     <dbl>
1 1         1         1         1         0         0
2 2         2         0         0         1         0
3 3         3         1         1         1         1
4 4         4         1         1         0         1
```

## Analysis: Frequencies

For the previous examples, we used a minimal dataset with only four people to demonstrate the formats clearly. For a realistic analysis, we now work with a larger dataset: 20 respondents (9 male, 11 female) answered the same fruit question.

```
# Larger dataset in dichotomous format
survey <- tibble(
  person_id = 1:20,
  gender = c("m", "f", "f", "m", "f", "m", "f", "f", "m", "f",
```

```

    "f", "m", "f", "m", "f", "m", "f", "f", "m", "f"),
Q1_apple = c(1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1),
Q1_banana = c(0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0),
Q1_cherry = c(1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1),
Q1_mango = c(0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1),
Q1_orange = c(1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0)
)

survey

```

```

# A tibble: 20 × 7
  person_id gender Q1_apple Q1_banana Q1_cherry Q1_mango Q1_orange
  <int> <chr>    <dbl>     <dbl>     <dbl>     <dbl>     <dbl>
1       1 m         1         0         1         0         1
2       2 f         1         1         1         0         0
3       3 f         0         1         1         1         0
4       4 m         1         0         0         1         1
5       5 f         1         1         1         0         0
6       6 m         0         1         0         0         1
7       7 f         1         1         1         1         1
8       8 f         1         1         0         0         1
9       9 m         1         0         1         0         1
10     10 f         0         1         1         1         0
11     11 f         1         1         1         0         0
12     12 m         1         0         0         1         1
13     13 f         0         1         1         0         0
14     14 m         1         0         1         0         1
15     15 f         1         1         0         1         0
16     16 m         0         1         1         0         0
17     17 f         1         0         1         1         0
18     18 f         1         1         0         0         1
19     19 m         0         1         1         0         0
20     20 f         1         0         1         1         0

```

### 💡 Exercise: Format Conversion

Use what you've learned to convert the `survey` dataset to the other two formats.

**Task A:** Convert `survey` to long format and collapsed format. You can ignore the `gender` column for now (simply exclude it).

**Task B (Bonus):** Convert `survey` to long format in a way that preserves the `gender` column and correctly assigns it to each row.

## i Solution

### Task A: Long Format (without gender)

```
survey %>%
  select(-gender) %>%
  pivot_longer(
    cols = starts_with("Q1_"),
    names_to = "fruit",
    names_prefix = "Q1_",
    values_to = "selected"
  ) %>%
  filter(selected == 1) %>%
  select(-selected)
```

```
# A tibble: 58 × 2
  person_id fruit
  <int> <chr>
1 1         apple
2 1         cherry
3 1         orange
4 2         apple
5 2         banana
6 2         cherry
7 3         banana
8 3         cherry
9 3         mango
10 4         apple
# i 48 more rows
```

### Task A: Collapsed Format (without gender)

```
survey %>%
  select(-gender) %>%
  pivot_longer(
    cols = starts_with("Q1_"),
    names_to = "fruit",
    names_prefix = "Q1_",
    values_to = "selected"
  ) %>%
  filter(selected == 1) %>%
  summarise(
    Q1_fruit = str_c(str_to_title(fruit), collapse = "; "),
    .by = person_id
  )
```

```
# A tibble: 20 × 2
  person_id Q1_fruit
  <int> <chr>
1 1         Apple; Cherry; Orange
2 2         Apple; Banana; Cherry
3 3         Banana; Cherry; Mango
4 4         Apple; Mango; Orange
5 5         Apple; Banana; Cherry
6 6         Banana; Orange
7 7         Apple; Banana; Cherry; Mango; Orange
8 8         Apple; Banana; Orange
9 9         Apple; Cherry; Orange
10 10        Banana; Cherry; Mango
11 11        Apple; Banana; Cherry
12 12        Apple; Mango; Orange
13 13        Banana; Cherry
14 14        Apple; Cherry; Orange
15 15        Apple; Banana; Mango
16 16        Banana; Cherry
```

The trick in Task B: With `starts_with("Q1_")`, only the multiple response columns are pivoted, gender is not.

```
1 pivot_longer(
2   cols = starts_with("Q1_"),
  # only pivot Q1 columns
```

## Frequency Tables with `tabyl()`

Once the data is in long format, we can use the familiar tools from the chapter on frequency tables. First, let's convert the dataset to long format:

```
survey_long <- survey %>%
  pivot_longer(
    cols = starts_with("Q1_"),
    names_to = "fruit",
    names_prefix = "Q1_",
    values_to = "selected"
  ) %>%
  filter(selected == 1) %>%
  select(-selected)
```

Now we can create a frequency table with `tabyl()` from the `janitor` package — just like with any other categorical variable:

```
survey_long %>%
  tabyl(fruit) %>%
  adorn_pct_formatting()
```

| fruit  | n  | percent |
|--------|----|---------|
| apple  | 14 | 24.1%   |
| banana | 13 | 22.4%   |
| cherry | 14 | 24.1%   |
| mango  | 8  | 13.8%   |
| orange | 9  | 15.5%   |

## Percent of Cases vs. Percent of Responses

With multiple responses, there's an important distinction that `tabyl()` doesn't make automatically: The percentages refer to the number of *responses* (here: 56), not the number of *respondents* (here: 20).

**Percent of responses** (what `tabyl()` provides) answers the question: "What proportion does this option make up of *all given responses*?" These percentages sum to exactly 100%.

**Percent of cases** answers the question: "What percentage of *respondents* selected this option?" Since each person can select multiple options, these percentages sum to more than 100%.

```
n_persons <- n_distinct(survey$person_id)

survey_long %>%
  count(fruit, name = "n") %>%
  mutate(
    pct_responses = n / sum(n) * 100,
    pct_cases = n / n_persons * 100
  ) %>%
  mutate(across(starts_with("pct"), \(\(x) round(x, 1))))
```

| fruit  | n  | pct_responses | pct_cases |
|--------|----|---------------|-----------|
| apple  | 14 | 24.1          | 70        |
| banana | 13 | 22.4          | 65        |
| cherry | 14 | 24.1          | 70        |
| mango  | 8  | 13.8          | 40        |
| orange | 9  | 15.5          | 45        |

## ! Caution: Missing Values vs. “Nothing Selected”

When calculating “percent of cases”, the question is: What is the base?

- **All columns = 0:** The person saw the question and actively selected nothing
- **All columns = NA:** The person skipped the question (missing values)

In long format, both cases disappear — there’s no row when nothing was selected.

Before analysis, you should therefore check whether such cases exist:

```
# Persons without response (all 0)
survey %>%
  filter(rowSums(across(starts_with("Q1_"))) == 0)

# Persons with missing values
survey %>%
  filter(if_any(starts_with("Q1_"), is.na))
```

Depending on the research question, these persons count toward the base (n) or not.

In practice, **percent of cases** is usually more meaningful because you can directly say: “65% of respondents like apples.” Percent of responses is more relevant when comparing the relative popularity of options among each other.

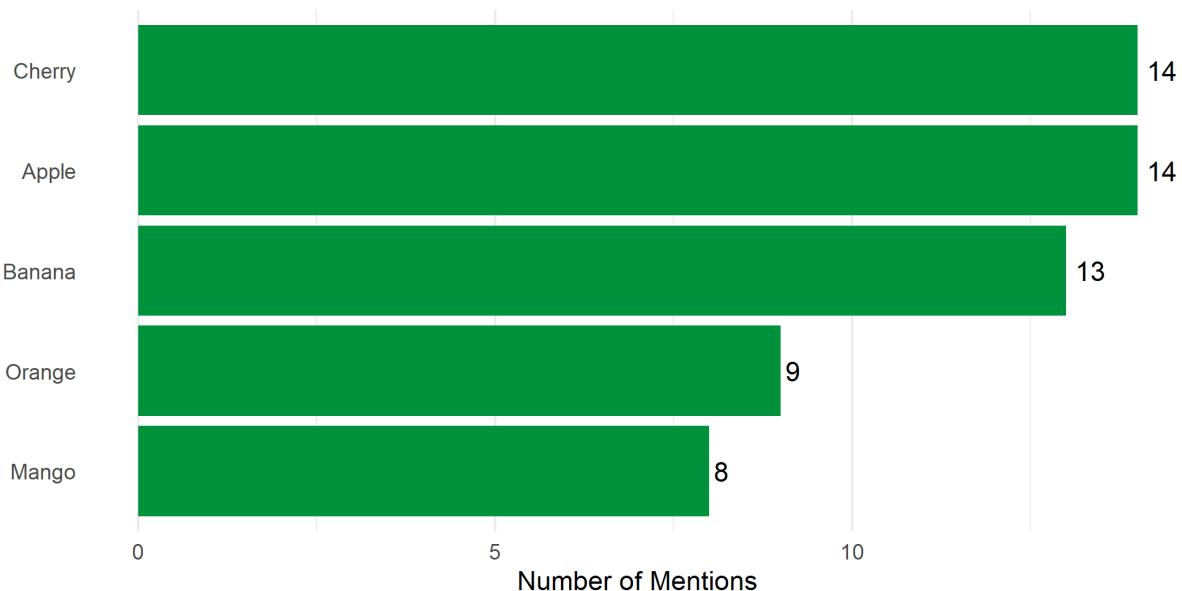
## Visualization

A simple bar chart shows the frequencies at a glance:

```
survey_long %>%
  count(fruit) %>%
  mutate(fruit = str_to_title(fruit)) %>%
  ggplot(aes(x = reorder(fruit, n), y = n)) +
  geom_col(fill = "#00923f") +
  geom_text(aes(label = n), hjust = -0.3, size = 4) +
  coord_flip() +
  labs(
    x = NULL,
    y = "Number of Mentions",
    title = "Which fruits do you like?",
    subtitle = glue::glue("n = {n_persons} respondents, multiple responses
possible"))
  ) +
  theme_minimal() +
  theme(panel.grid.major.y = element_blank())
```

Which fruits do you like?

n = 20 respondents, multiple responses possible



## Analysis: Cross-Tabulations

Often you want to know whether responses differ between groups. With our grouping variable `gender`, we can create cross-tabulations — again with the familiar tools:

```
survey_long %>%
  tabyl(fruit, gender) %>%
  adorn_totals("col") %>%
  adorn_percentages("col") %>%
  adorn_pct_formatting() %>%
  adorn_ns()
```

| fruit  | f          | m         | Total      |
|--------|------------|-----------|------------|
| apple  | 24.3% (9)  | 23.8% (5) | 24.1% (14) |
| banana | 27.0% (10) | 14.3% (3) | 22.4% (13) |
| cherry | 24.3% (9)  | 23.8% (5) | 24.1% (14) |
| mango  | 16.2% (6)  | 9.5% (2)  | 13.8% (8)  |
| orange | 8.1% (3)   | 28.6% (6) | 15.5% (9)  |

This table shows for each gender what proportion the respective fruit makes up of all responses in that group. Note: Here too, these are “percent of responses”, not “percent of cases”.

## Combination Patterns (Advanced)

Another interesting question: Which fruits are frequently selected together? This analysis goes beyond simple frequencies and examines the patterns in the responses.

### The Most Common Combinations

For this, we use the same approach as for format conversion — we pivot to long format and combine the selected options per person:

```
survey %>%
  pivot_longer(
```

```

  cols = starts_with("Q1_"),
  names_to = "fruit",
  names_prefix = "Q1_",
  values_to = "selected"
) %>%
filter(selected == 1) %>%
summarise(
  combination = str_c(str_to_title(fruit), collapse = " + "),
  .by = person_id
) %>%
count(combination, sort = TRUE, name = "count")

```

```

# A tibble: 10 × 2
  combination           count
  <chr>                  <int>
1 Apple + Banana + Cherry      3
2 Apple + Cherry + Orange      3
3 Banana + Cherry      3
4 Apple + Banana + Orange      2
5 Apple + Cherry + Mango      2
6 Apple + Mango + Orange      2
7 Banana + Cherry + Mango      2
8 Apple + Banana + Cherry + Mango + Orange 1
9 Apple + Banana + Mango      1
10 Banana + Orange      1

```

## Overview with UpSet Plot

For visualizing combinations, UpSet plots are better suited than classic Venn diagrams, especially when there are more than three categories. The `ggupset` package provides a `ggplot2` integration:

```

survey_long %>%
  summarise(
    fruit = list(str_to_title(fruit)),
    .by = person_id
) %>%
  ggplot(aes(x = fruit)) +
  geom_bar(fill = "#00923f") +
  scale_x_upset() +
  labs(
    x = NULL,
    y = "Number of Persons",
    title = "Combination Patterns of Fruit Preferences"
) +
  theme_minimal()

```

Warning: Using `size` aesthetic for lines was deprecated in `ggplot2` 3.4.0.  
 i Please use `linewidth` instead.  
 i The deprecated feature was likely used in the `ggupset` package.  
 Please report the issue at <<https://github.com/const-ae/ggupset/issues>>.



#### 💡 Exercise: Your Own Analysis

Analyze the `survey` dataset further:

1. Calculate the average number of selected fruits per person.
2. Is there a difference between men and women in the number of selected options?
3. Which fruit is most frequently selected as the *only* option (i.e., by people who like only one fruit)?

## i Solution

### 1. Average number per person

```
survey %>%
  mutate(
    n_selected = rowSums(across(starts_with("Q1_")))
  ) %>%
  summarise(
    mean = mean(n_selected),
    median = median(n_selected),
    min = min(n_selected),
    max = max(n_selected)
  )

# A tibble: 1 × 4
  mean median  min  max
  <dbl> <dbl> <dbl> <dbl>
1 2.9     3     2     5
```

### 2. Difference by gender

```
survey %>%
  mutate(
    n_selected = rowSums(across(starts_with("Q1_")))
  ) %>%
  summarise(
    mean = mean(n_selected),
    .by = gender
  )

# A tibble: 2 × 2
  gender  mean
  <chr> <dbl>
1 m      2.62
2 f      3.08
```

### 3. Most common single choice

```
survey %>%
  mutate(
    n_selected = rowSums(across(starts_with("Q1_")))
  ) %>%
  filter(n_selected == 1) %>% # only persons with one choice
  pivot_longer(
    cols = starts_with("Q1_"),
    names_to = "fruit",
    names_prefix = "Q1_",
    values_to = "selected"
  ) %>%
  filter(selected == 1) %>%
  count(fruit, sort = TRUE)

# A tibble: 0 × 2
# i 2 variables: fruit <chr>, n <int>
```

## Summary

Multiple responses require special attention to data structure and analysis:

- **Three common formats:** Dichotomous (0/1 columns), Collapsed (delimited), Long (one row per response)
- **Column prefixes:** Related columns often share a common prefix (e.g., `Q1_`) that can be selected with `starts_with()`
- **Conversion:** With `pivot_longer()`, `pivot_wider()`, `separate_longer_delim()`, and `summarise()`, all formats can be converted to each other
- **Frequency tables:** In long format, `tabyl()` works as usual
- **Two percentage types:** Percent of cases (base: persons) vs. percent of responses (base: all responses)
- **Cross-tabulations:** Grouping variables enable comparisons between subgroups
- **Combination patterns:** Show which options are frequently selected together (UpSet plot)

## Bibliography

---