
BioMath

1/16

8. Writing Functions

Creating reusable code and understanding tidy evaluation
Dr. Paul Schmidt

Why Write Functions?
One of the most important steps on the journey from R user to R programmer is writing your
own functions. The basic principle is simple: if you’ve copied and pasted the same code more
than twice, you should turn it into a function. This rule is often called the DRY principle —
“Don’t Repeat Yourself”.

Writing functions has several tangible benefits. First, you can give your function a meaningful
name that immediately reveals what the code does. Second, when changes are needed, you
only have to modify one place in the code, not every copy. Third, you eliminate errors that
arise from copying and pasting — like forgetting to change a variable name in one place. And
fourth, you can reuse your functions across projects.

Consider the following code that scales columns to a range of 0 to 1:

mtcars %>%
 select(mpg, hp, wt, qsec) %>%
 mutate(
 mpg = (mpg - min(mpg, na.rm = TRUE)) / (max(mpg, na.rm = TRUE) - min(mpg, na.rm
= TRUE)),
 hp = (hp - min(hp, na.rm = TRUE)) / (max(hp, na.rm = TRUE) - min(hp, na.rm =
TRUE)),
 wt = (wt - min(wt, na.rm = TRUE)) / (max(hp, na.rm = TRUE) - min(wt, na.rm =
TRUE)),
 qsec = (qsec - min(qsec, na.rm = TRUE)) / (max(qsec, na.rm = TRUE) - min(qsec,
na.rm = TRUE))
) %>%
 head()

 mpg hp wt qsec
Mazda RX4 0.4510638 0.2049470 -2.157895 0.2333333
Mazda RX4 Wag 0.4510638 0.2049470 -2.654971 0.3000000
Datsun 710 0.5276596 0.1448763 -1.573099 0.4892857
Hornet 4 Drive 0.4680851 0.2049470 -3.317739 0.5880952
Hornet Sportabout 0.3531915 0.4346290 -3.756335 0.3000000
Valiant 0.3276596 0.1872792 -3.795322 0.6809524

This code is not only long and repetitive, it also contains a subtle bug — can you spot it?
With so much repetition, it’s almost inevitable that typos creep in. A function solves both
problems.

 Further Resources

This chapter is strongly based on the excellent Chapter 25: Functions from “R for Data
Science” (2nd edition). For a deeper treatment of tidy evaluation, we recommend the
Programming with dplyr vignette.

1

https://r4ds.hadley.nz/functions.html
https://dplyr.tidyverse.org/articles/programming.html

BioMath

2/16

Basics: function()
Syntax and Structure
A function in R consists of three parts: a name, the arguments, and the body. The basic
syntax looks like this:

function_name <- function(argument1, argument2) {
 # Body: The code that gets executed
 result <- argument1 + argument2
 result
}

Let’s apply this to our scaling problem. The repeating part is the formula
(x - min(x)) / (max(x) - min(x)) . The only thing that changes is the variable — that
becomes our argument:

rescale01 <- function(x) {
 rng <- range(x, na.rm = TRUE)
 (x - rng[1]) / (rng[2] - rng[1])
}

Let’s test the function:

rescale01(c(-10, 0, 10))

[1] 0.0 0.5 1.0

rescale01(c(1, 2, 3, NA, 5))

[1] 0.00 0.25 0.50 NA 1.00

Now our original code becomes much more readable and shorter:

mtcars %>%
 select(mpg, hp, wt, qsec) %>%
 mutate(
 mpg = rescale01(mpg),
 hp = rescale01(hp),
 wt = rescale01(wt),
 qsec = rescale01(qsec)
) %>%
 head()

 mpg hp wt qsec
Mazda RX4 0.4510638 0.2049470 0.2830478 0.2333333
Mazda RX4 Wag 0.4510638 0.2049470 0.3482485 0.3000000
Datsun 710 0.5276596 0.1448763 0.2063411 0.4892857
Hornet 4 Drive 0.4680851 0.2049470 0.4351828 0.5880952
Hornet Sportabout 0.3531915 0.4346290 0.4927129 0.3000000
Valiant 0.3276596 0.1872792 0.4978266 0.6809524

Arguments With and Without Defaults
Functions can have any number of arguments. Arguments without a default value are
required, arguments with a default value are optional:

na.rm has a default value, x does not
my_mean <- function(x, na.rm = FALSE) {
 sum(x, na.rm = na.rm) / length(x)

2

BioMath

3/16

}

my_mean(c(1, 2, 3))

[1] 2

my_mean(c(1, 2, NA), na.rm = TRUE)

[1] 1

For ordering: required arguments come first, optional ones after. The most important
argument (usually the data) comes first — this enables seamless integration into pipe chains.

Return Values
R functions automatically return the result of the last line. You can also explicitly use
return() , which is especially useful for early exits:

Implicit return (last line)
add_one <- function(x) {
 x + 1
}

Explicit return with return()
safe_divide <- function(x, y) {
 if (y == 0) {
 return(NA_real_)
 }
 x / y
}

safe_divide(10, 2)

[1] 5

safe_divide(10, 0)

[1] NA

The convention is: use return() only for early exits. At the end of the function, implicit return
is more common and readable.

The Ellipsis Argument (…)
The special argument ... (three dots, also called “ellipsis”) allows passing any number of
additional arguments through to another function:

All additional arguments are passed to mean()
my_summary <- function(x, ...) {
 c(
 mean = mean(x, ...),
 sd = sd(x, ...)
)
}

Without na.rm
my_summary(c(1, 2, 3))

mean sd
 2 1

3

BioMath

4/16

With na.rm = TRUE (passed through to mean() and sd())
my_summary(c(1, 2, NA), na.rm = TRUE)

 mean sd
1.5000000 0.7071068

This is especially useful when writing wrapper functions and you don’t want to explicitly list all
possible arguments of the inner function.

 Exercise: Coefficient of Variation

Write a function cv() that calculates the coefficient of variation (standard deviation

divided by mean). The function should have an optional na.rm argument.

cv(c(1, 2, 3, 4, 5))
cv(c(1, 2, NA, 4, 5), na.rm = TRUE)

 Solution

cv <- function(x, na.rm = FALSE) {
 sd(x, na.rm = na.rm) / mean(x, na.rm = na.rm)
}

cv(c(1, 2, 3, 4, 5))

[1] 0.5270463

cv(c(1, 2, NA, 4, 5), na.rm = TRUE)

[1] 0.6085806

Three Types of Functions
The R for Data Science book distinguishes three useful categories of functions that you’ll
frequently write.

Vector Functions
Vector functions take one or more vectors as input and return a vector. They can be further
divided into mutate functions (output has the same length as input) and summary
functions (output has length 1).

Mutate function: same length as input
z_score <- function(x) {
 (x - mean(x, na.rm = TRUE)) / sd(x, na.rm = TRUE)
}

z_score(c(1, 2, 3, 4, 5))

[1] -1.2649111 -0.6324555 0.0000000 0.6324555 1.2649111

Summary function: single value as output
coef_variation <- function(x, na.rm = FALSE) {
 sd(x, na.rm = na.rm) / mean(x, na.rm = na.rm)
}

4

BioMath

5/16

coef_variation(c(1, 2, 3, 4, 5))

[1] 0.5270463

Dataframe Functions
Dataframe functions take a dataframe as input and return a dataframe. They are typically
wrappers around dplyr verbs:

Example of a dataframe function
filter_extreme <- function(df, var, threshold = 2) {
 df %>%
 filter(abs(as.vector(scale({{ var }}))) > threshold)
}

Cars with extreme fuel consumption (> 2 SD from mean)
mtcars %>%
 filter_extreme(mpg) %>%
 select(mpg, hp, wt)

 mpg hp wt
Fiat 128 32.4 66 2.200
Toyota Corolla 33.9 65 1.835

Plot Functions
Plot functions take a dataframe and return a ggplot:
Example of a plot function
histogram <- function(df, var, binwidth = NULL) {
 df %>%
 ggplot(aes(x = {{ var }})) +
 geom_histogram(binwidth = binwidth)
}

mtcars %>% histogram(mpg, binwidth = 2)

The { } syntax in the plot example will be explained in detail in the section on tidy
evaluation.

5

BioMath

6/16

Defensive Programming
Good functions check their inputs and provide understandable error messages. This saves
debugging time and makes the code more robust.

stop() for Error Messages
The stop() function aborts execution and displays an error message:

calculate_bmi <- function(weight_kg, height_m) {
 if (!is.numeric(weight_kg) || !is.numeric(height_m)) {
 stop("weight_kg and height_m must be numeric")
 }
 if (any(height_m <= 0)) {
 stop("height_m must be positive")
 }
 weight_kg / height_m^2
}

calculate_bmi(70, 1.75)

[1] 22.85714

calculate_bmi(70, "tall")

Error in calculate_bmi(70, "tall"): weight_kg and height_m must be numeric

stopifnot() for Quick Checks
For simple conditions, stopifnot() is more compact:

calculate_bmi <- function(weight_kg, height_m) {
 stopifnot(is.numeric(weight_kg), is.numeric(height_m))
 stopifnot(all(height_m > 0))

 weight_kg / height_m^2
}

calculate_bmi(70, 0)

Error in calculate_bmi(70, 0): all(height_m > 0) ist nicht TRUE

The downside: the automatically generated error messages are less informative than custom
ones.

match.arg() for Categorical Arguments
When an argument should only accept certain values, use match.arg() :

center <- function(x, type = c("mean", "median", "trimmed")) {
 type <- match.arg(type)

 switch(type,
 mean = mean(x, na.rm = TRUE),
 median = median(x, na.rm = TRUE),
 trimmed = mean(x, trim = 0.1, na.rm = TRUE)
)
}

center(1:10, "mean")

6

BioMath

7/16

[1] 5.5

center(1:10, "median")

[1] 5.5

center(1:10, "mena")

Error in match.arg(type): 'arg' sollte eines von '"mean", "median", "trimmed"' sein

The allowed values are defined in the argument’s default. match.arg() also allows partial
matching and provides helpful error messages for invalid inputs.

 Exercise: Safe Logarithm Function

Write a function safe_log() that:

1. Checks if the input is numeric
2. Checks if all values are positive
3. For non-positive values, gives a helpful error message indicating how many non-

positive values are present

safe_log(c(1, 10, 100))
safe_log(c(-1, 10, 100))

 Solution

safe_log <- function(x, base = exp(1)) {
 if (!is.numeric(x)) {
 stop("x must be numeric, not ", typeof(x))
 }

 n_negative <- sum(x <= 0, na.rm = TRUE)
 if (n_negative > 0) {
 stop(
 glue::glue("x contains {n_negative} value(s) <= 0. ",
 "Logarithm is only defined for positive numbers.")
)
 }

 log(x, base = base)
}

safe_log(c(1, 10, 100))

[1] 0.000000 2.302585 4.605170

safe_log(c(-1, 0, 10, 100))

Error in safe_log(c(-1, 0, 10, 100)): x contains 2 value(s) <= 0. Logarithm is
only defined for positive numbers.

Functions in the tidyverse: Tidy Evaluation
Once you start writing functions that use tidyverse verbs like filter() , mutate() , or
ggplot() , you encounter a special problem: how do you pass column names as arguments?

7

BioMath

8/16

The Problem: Indirection
Consider this naive function:

grouped_mean <- function(df, group_var, mean_var) {
 df %>%
 group_by(group_var) %>%
 summarize(mean = mean(mean_var))
}

mtcars %>% grouped_mean(cyl, mpg)

Error in `group_by()`:
! Must group by variables found in `.data`.
✖ Column `group_var` is not found.

The function looks for columns named group_var and mean_var — but they don’t exist! The
problem is indirection: dplyr uses data masking to allow column names without quotes.
This is convenient for interactive use but makes writing functions more complicated.

 Data Masking Explained

Data masking means you can write filter(df, x > 5) instead of
filter(df, df$x > 5) . R looks for x first in the dataframe’s columns, then in the

environment. That’s why group_var is interpreted as a column name — not as a variable
containing a column name.

The Standard Solution: Curly-Curly
Since rlang 0.4.0 (2019) there’s an elegant solution: the embracing operator { } (also
called “curly-curly”). It tells dplyr: “Don’t look for a column with this name, look inside this
variable instead”:

grouped_mean <- function(df, group_var, mean_var) {
 df %>%
 group_by({{ group_var }}) %>%
 summarize(mean = mean({{ mean_var }}), .groups = "drop")
}

mtcars %>% grouped_mean(cyl, mpg)

A tibble: 3 × 2
 cyl mean
 <dbl> <dbl>
1 4 26.7
2 6 19.7
3 8 15.1

The rule is simple: embrace every argument that is passed to a tidyverse function that
uses data masking or tidy selection.

How do you know which functions use these? The documentation tells you: look for
<data-masking> (for functions like filter() , mutate() , summarize()) or <tidy-select>

(for functions like select() , rename() , across()).

8

BioMath

9/16

Flexible summary function
summary_stats <- function(df, var) {
 df %>%
 summarize(
 n = n(),
 mean = mean({{ var }}, na.rm = TRUE),
 sd = sd({{ var }}, na.rm = TRUE),
 min = min({{ var }}, na.rm = TRUE),
 max = max({{ var }}, na.rm = TRUE)
)
}

mtcars %>% summary_stats(mpg)

 n mean sd min max
1 32 20.09062 6.026948 10.4 33.9

mtcars %>% group_by(cyl) %>% summary_stats(mpg)

A tibble: 3 × 6
 cyl n mean sd min max
 <dbl> <int> <dbl> <dbl> <dbl> <dbl>
1 4 11 26.7 4.51 21.4 33.9
2 6 7 19.7 1.45 17.8 21.4
3 8 14 15.1 2.56 10.4 19.2

 Exercise: Counting Proportions

Write a function count_prop() that works like count() but additionally adds a prop
column with the proportion.

Desired result:
mtcars %>% count_prop(cyl)
A tibble: 3 × 3
cyl n prop
<dbl> <int> <dbl>
1 4 11 0.344
2 6 7 0.219
3 8 14 0.438

 Solution

count_prop <- function(df, var, sort = FALSE) {
 df %>%
 count({{ var }}, sort = sort) %>%
 mutate(prop = n / sum(n))
}

mtcars %>% count_prop(cyl)

 cyl n prop
1 4 11 0.34375
2 6 7 0.21875
3 8 14 0.43750

9

BioMath

10/16

Dynamic Column Names with the Walrus Operator
What if you want to not just read a column, but create a column with a dynamic name? The
normal = operator only allows fixed names on the left side. This is where := comes in (the
“walrus operator”):

Function that creates a new column with dynamic name
standardize <- function(df, var) {
 df %>%
 mutate(
 "{{ var }}_z" := ({{ var }} - mean({{ var }}, na.rm = TRUE)) /
 sd({{ var }}, na.rm = TRUE)
)
}

mtcars %>%
 select(mpg, cyl) %>%
 standardize(mpg) %>%
 head()

 mpg cyl mpg_z
Mazda RX4 21.0 6 0.1508848
Mazda RX4 Wag 21.0 6 0.1508848
Datsun 710 22.8 4 0.4495434
Hornet 4 Drive 21.4 6 0.2172534
Hornet Sportabout 18.7 8 -0.2307345
Valiant 18.1 6 -0.3302874

The syntax "{{ var }}_z" := combines glue-style string interpolation with the walrus

operator. The { var } in the string is replaced by the variable name.

Columns as Strings: .data Pronoun
Sometimes you have column names as strings — perhaps from a configuration file or user
input. Here you use the .data pronoun:

Column name comes as string
summarize_column <- function(df, col_name) {
 df %>%
 summarize(mean = mean(.data[[col_name]], na.rm = TRUE))
}

summarize_column(mtcars, "mpg")

 mean
1 20.09062

Useful for iteration over column names
col_names <- c("mpg", "hp", "wt")
map(col_names, ~ summarize_column(mtcars, .x))

[[1]]
 mean
1 20.09062

[[2]]
 mean
1 146.6875

[[3]]
 mean
1 3.21725

10

BioMath

11/16

Advanced: enquo() and !!
The { } syntax is shorthand for a combination of enquo() and !! . In most cases you don’t
need the explicit form, but there are situations where it’s necessary — for example when you
want to extract the variable name as a string.

Here’s the same function in both notations:

With {{ }} - the recommended shorthand
grouped_mean_short <- function(df, group_var, mean_var) {
 df %>%
 group_by({{ group_var }}) %>%
 summarize(mean = mean({{ mean_var }}), .groups = "drop")
}

With enquo() and !! - the explicit form
grouped_mean_explicit <- function(df, group_var, mean_var) {
 group_var <- enquo(group_var) # Capture the argument
 mean_var <- enquo(mean_var)

 df %>%
 group_by(!!group_var) %>% # Insert with !!
 summarize(mean = mean(!!mean_var), .groups = "drop")
}

Both produce the same result
mtcars %>% grouped_mean_short(cyl, mpg)

A tibble: 3 × 2
 cyl mean
 <dbl> <dbl>
1 4 26.7
2 6 19.7
3 8 15.1

mtcars %>% grouped_mean_explicit(cyl, mpg)

A tibble: 3 × 2
 cyl mean
 <dbl> <dbl>
1 4 26.7
2 6 19.7
3 8 15.1

enquo() captures an argument without evaluating it. !! (bang-bang) inserts the captured
expression.

When do you need the explicit form? When you want to extract the variable name as a string:

as_label() extracts the name as string - only possible with enquo()
summary_with_label <- function(df, var) {
 var_quo <- enquo(var)
 var_name <- rlang::as_label(var_quo)

 df %>%
 summarize(
 variable = var_name,
 mean = mean(!!var_quo, na.rm = TRUE)
)
}

mtcars %>% summary_with_label(mpg)

11

BioMath

12/16

 variable mean
1 mpg 20.09062

mtcars %>% summary_with_label(hp)

 variable mean
1 hp 146.6875

Multiple Columns as Strings: syms() and !!!
When you have multiple column names as a character vector and want to use them in a
tidyverse function, you need syms() and !!! :

• syms() converts a character vector into a list of symbols
• !!! (splice operator) unpacks this list so each element is passed individually

Multiple grouping variables as character vector
grouped_summary <- function(df, group_vars, summary_var) {
 # syms() converts c("cyl", "am") to list(sym("cyl"), sym("am"))
 group_symbols <- syms(group_vars)

 df %>%
 # !!! unpacks the list: group_by(cyl, am) instead of group_by(list(...))
 group_by(!!!group_symbols) %>%
 summarize(mean = mean({{ summary_var }}, na.rm = TRUE), .groups = "drop")
}

mtcars %>% grouped_summary(c("cyl", "am"), mpg)

A tibble: 6 × 3
 cyl am mean
 <dbl> <dbl> <dbl>
1 4 0 22.9
2 4 1 28.1
3 6 0 19.1
4 6 1 20.6
5 8 0 15.0
6 8 1 15.4

This technique is especially useful when grouping variables are determined dynamically —
perhaps from a configuration or user input.

pick() for Tidy Selection in Data-Masking Context
Sometimes you want to use tidy selection (like in select()) inside a data-masking function

(like group_by()). This is where pick() helps:

Multiple grouping columns with tidy selection
count_by <- function(df, ...) {
 df %>%
 group_by(pick(...)) %>%
 summarize(n = n(), .groups = "drop")
}

mtcars %>% count_by(cyl, am)

A tibble: 6 × 3
 cyl am n
 <dbl> <dbl> <int>
1 4 0 3
2 4 1 8

12

BioMath

13/16

3 6 0 4
4 6 1 3
5 8 0 12
6 8 1 2

mtcars %>% count_by(starts_with("c"))

A tibble: 9 × 3
 cyl carb n
 <dbl> <dbl> <int>
1 4 1 5
2 4 2 6
3 6 1 2
4 6 4 4
5 6 6 1
6 8 2 4
7 8 3 3
8 8 4 6
9 8 8 1

Important: with ... you use pick(...) directly, not pick({{ ... }}) . The { } syntax is
only for single named arguments.

Overview: When to Use Which Approach?
Situation Solution Example

Column as “bare name” { } filter({{ var }} > 0)

Column name as string .data[[]] summarize(mean =
mean(.data[[col]]))

Multiple columns via ... Pass ... directly group_by(...) or
pick(...)

Create dynamic column name := mutate("{{ var }}
_new" := ...)

Extract variable name as string enquo() + as_label() as_label(enquo(var))

List of strings to symbols syms() + !!! group_by(!!!
syms(cols))

Tidy select in data masking pick() group_by(pick(...))

 Exercise: Flexible Filtering

Write a function filter_na() that removes all rows where a specific column is NA .

Test data
test_df <- tibble(
 x = c(1, NA, 3),
 y = c("a", "b", NA)
)

test_df %>% filter_na(x)
test_df %>% filter_na(y)

13

BioMath

14/16

 Solution

filter_na <- function(df, var) {
 df %>%
 filter(!is.na({{ var }}))
}

test_df <- tibble(
 x = c(1, NA, 3),
 y = c("a", "b", NA)
)

test_df %>% filter_na(x)

A tibble: 2 × 2
 x y
 <dbl> <chr>
1 1 a
2 3 <NA>

test_df %>% filter_na(y)

A tibble: 2 × 2
 x y
 <dbl> <chr>
1 1 a
2 NA b

 Exercise: Plot Function with Dynamic Title

Extend the histogram() function so that the title automatically includes the variable
name:

mtcars %>% histogram(mpg, binwidth = 2)
Should have a title like "Histogram of mpg"

Hint: Use rlang::englue() or the combination of enquo() and as_label() .

14

BioMath

15/16

 Solution

histogram <- function(df, var, binwidth = NULL) {
 title <- rlang::englue("Histogram of {{var}}")

 df %>%
 ggplot(aes(x = {{ var }})) +
 geom_histogram(binwidth = binwidth) +
 labs(title = title)
}

mtcars %>% histogram(mpg, binwidth = 2)

Best Practices and Style
Naming
Function names should be verbs and clearly describe what the function does:

Good: Verbs, descriptive
impute_missing()
calculate_bmi()
extract_coefficients()

Bad: Too short or not descriptive
f()
my_function()
do_stuff()

Argument names should be nouns. The data argument is typically called df , data , or
.data .

Code Formatting
Always use curly braces {} , even for single-line functions. The body is indented with two
spaces:

15

BioMath

16/16

Good
add_one <- function(x) {
 x + 1
}

Avoid
add_one <- function(x) x + 1

Documentation with Roxygen
When developing an R package, every exported function must be documented. This
documentation is written in Roxygen format — special comments directly above the function
that start with #' . When building the package, these comments are automatically converted

into the formatted help pages that you access with ?functionname .

But even if you’re not writing a package, just a script with a few helper functions, this format
is worthwhile. Instead of writing unstructured comments next to the function, you can use the
Roxygen format directly. It’s clear, standardized, and if the function later moves into a
package, the documentation is already done.

The most important Roxygen tags:

• Title (first line): A short, one-line description of the function
• Description (after blank line): More detailed explanation of what the function does
• @param name : Describes an argument of the function
• @return : Describes what the function returns
• @examples : Executable examples of usage

#' Calculate Body Mass Index
#'
#' This function calculates BMI from weight and height.
#' For vectors, BMI is calculated element-wise.
#'
#' @param weight_kg Weight in kilograms (numeric vector).
#' @param height_m Height in meters (numeric vector).
#'
#' @return A numeric vector of BMI values.
#'
#' @examples
#' calculate_bmi(70, 1.75)
#' calculate_bmi(c(60, 80), c(1.60, 1.80))
calculate_bmi <- function(weight_kg, height_m) {
 stopifnot(is.numeric(weight_kg), is.numeric(height_m))
 stopifnot(all(height_m > 0))

 weight_kg / height_m^2
}

In RStudio and Positron you can automatically insert an empty Roxygen skeleton: place the
cursor in the function and choose Code → Insert Roxygen Skeleton (or
Ctrl+Alt+Shift+R).

Bibliography

16

	Why Write Functions?
	Basics: function()
	Syntax and Structure
	Arguments With and Without Defaults
	Return Values
	The Ellipsis Argument (…)

	Three Types of Functions
	Vector Functions
	Dataframe Functions
	Plot Functions

	Defensive Programming
	stop() for Error Messages
	stopifnot() for Quick Checks
	match.arg() for Categorical Arguments

	Functions in the tidyverse: Tidy Evaluation
	The Problem: Indirection
	The Standard Solution: Curly-Curly
	Dynamic Column Names with the Walrus Operator
	Columns as Strings: .data Pronoun
	Advanced: enquo() and !!
	Multiple Columns as Strings: syms() and !!!
	pick() for Tidy Selection in Data-Masking Context
	Overview: When to Use Which Approach?

	Best Practices and Style
	Naming
	Code Formatting
	Documentation with Roxygen

	Bibliography

