BioMath

8. Writing Functions

Creating reusable code and understanding tidy evaluation
Dr. Paul Schmidt

Why Write Functions?

One of the most important steps on the journey from R user to R programmer is writing your
own functions. The basic principle is simple: if you've copied and pasted the same code more
than twice, you should turn it into a function. This rule is often called the DRY principle —
“‘Don’t Repeat Yourself”.

Writing functions has several tangible benefits. First, you can give your function a meaningful
name that immediately reveals what the code does. Second, when changes are needed, you
only have to modify one place in the code, not every copy. Third, you eliminate errors that
arise from copying and pasting — like forgetting to change a variable name in one place. And
fourth, you can reuse your functions across projects.

Consider the following code that scales columns to a range of 0 to 1:

mtcars %>%
select (mpg, hp, wt, gsec) %>%
mutate (
mpg = (mpg - min(mpg, na.rm = TRUE)) / (max(mpg, na.rm = TRUE) - min(mpg, na.rm
= TRUE)),
hp = (hp - min(hp, na.rm = TRUE)) / (max(hp, na.rm = TRUE) - min(hp, na.rm =
TRUE)),
wt = (wt - min(wt, na.rm = TRUE)) / (max(hp, na.rm = TRUE) - min(wt, na.rm =
TRUE)),
gsec = (gsec - min(gsec, na.rm = TRUE)) / (max(gsec, na.rm = TRUE) - min (gsec,

na.rm = TRUE))
) %>%

head ()

mpg hp wt gsec
Mazda RX4 0.4510638 0.2049470 -2.157895 0.2333333
Mazda RX4 Wag 0.4510638 0.2049470 -2.654971 0.3000000
Datsun 710 0.5276596 0.1448763 -1.573099 0.4892857
Hornet 4 Drive 0.4680851 0.2049470 -3.317739 0.5880952
Hornet Sportabout 0.3531915 0.4346290 -3.756335 0.3000000
Valiant 0.3276596 0.1872792 -3.795322 0.6809524

This code is not only long and repetitive, it also contains a subtle bug — can you spot it?
With so much repetition, it's almost inevitable that typos creep in. A function solves both
problems.

© Further Resources

This chapter is strongly based on the excellent Chapter 25: Functions from “R for Data
Science” (2nd edition). For a deeper treatment of tidy evaluation, we recommend the
Programming with dplyr vignette.

116

https://r4ds.hadley.nz/functions.html
https://dplyr.tidyverse.org/articles/programming.html

BioMath

Basics: function()

Syntax and Structure

A function in R consists of three parts: a name, the arguments, and the body. The basic
syntax looks like this:

function name <- function (argumentl, argument2) {

Body: The code that gets executed
result <- argumentl + argument2
result

Let’s apply this to our scaling problem. The repeating part is the formula
(x - min(x)) / (max(x) - min(x)) . The only thing that changes is the variable — that
becomes our argument:

rescaleOl <- function(x) {

rng <- range(x, na.rm = TRUE)

(x - rng[l]) / (rng[2] - rng[l])
Let’s test the function:
IrescaleOl(c(—lO, 0, 10))
| t11 0.0 0.5 1.0
IrescaleOl(c(l, 2, 3, NA, 5))

I [1] 0.00 0.25 0.50 NA 1.00

Now our original code becomes much more readable and shorter:

mtcars %>%
select (mpg, hp, wt, gsec) %>%
mutate (
mpg = rescalelOl (mpg),
hp = rescaleOl (hp),
wt = rescaleOl (wt),
gsec = rescale0l (gsec)
) $>%
head ()
mpg hp wt gsec
Mazda RX4 0.4510638 0.2049470 0.2830478 0.2333333
Mazda RX4 Wag 0.4510638 0.2049470 0.3482485 0.3000000
Datsun 710 0.5276596 0.1448763 0.2063411 0.4892857
Hornet 4 Drive 0.4680851 0.2049470 0.4351828 0.5880952
Hornet Sportabout 0.3531915 0.4346290 0.4927129 0.3000000
Valiant 0.3276596 0.1872792 0.4978266 0.6809524

Arguments With and Without Defaults

Functions can have any number of arguments. Arguments without a default value are
required, arguments with a default value are optional:

na.rm has a default value, x does not
my mean <- function(x, na.rm = FALSE) {
sum(x, na.rm = na.rm) / length (x)

2/16

BioMath

}

my mean(c(l, 2, 3))
I [1] 2
Imyimean(c(l, 2, NA), na.rm = TRUE)

I[l] 1

For ordering: required arguments come first, optional ones after. The most important
argument (usually the data) comes first — this enables seamless integration into pipe chains.

Return Values

R functions automatically return the result of the last line. You can also explicitly use
return () , which is especially useful for early exits:

Implicit return (last line)
add one <- function(x) {
x + 1
}
Explicit return with return()

safe divide <- function(x, y) {
it (g = @) {
return (NA real)
}
X /y
}

safe divide (10, 2)
I[l] 5
Isafeidivide(lo, 0)

I[l] NA

The convention is: use return() only for early exits. At the end of the function, implicit return
is more common and readable.

The Ellipsis Argument (...)

The special argument ... (three dots, also called “ellipsis”) allows passing any number of
additional arguments through to another function:

All additional arguments are passed to mean ()
my summary <- function(x, ...) {
c(
mean = mean(x, ...),
el = Gellr; ooo)
)
}
Without na.rn

my summary(c(l, 2, 3))

mean sd
2 1

3/16

With na.rm = TRUE (passed through to mean () and sd())

my summary(c(l, 2, NA), na.rm = TRUE)

mean sd
1.5000000 0.7071068

This is especially useful when writing wrapper functions and you don’t want to explicitly list all

possible arguments of the inner function.

© Exercise: Coefficient of Variation

Write a function cv () that calculates the coefficient of variation (standard deviation

divided by mean). The function should have an optional na.rm argument.

1 Solution
cv <- function(x, na.rm = FALSE) {
sd(x, na.rm = na.rm) / mean (X, na.rm = na.rm)

}

| [1] 0.5270463
Icv(c(l, 2, NA, 4, 5), na.rm = TRUE)

I[l] 0.6085806

Three Types of Functions

The R for Data Science book distinguishes three useful categories of functions that you'll
frequently write.

Vector Functions

Vector functions take one or more vectors as input and return a vector. They can be further
divided into mutate functions (output has the same length as input) and summary
functions (output has length 1).

Mutate function: same length as input
z _score <- function (x) {

(x - mean(x, na.rm = TRUE)) / sd(x, na.rm = TRUE)
}

z_score(c(l, 2, 3, 4, 5))

I[l] -1.2649111 -0.6324555 0.0000000 0.6324555 1.2649111

Summary function: single value as output
coef variation <- function(x, na.rm = FALSE) {
sd(x, na.rm = na.rm) / mean(xX, na.rm = na.rm)

}

BioMath

4/16

BioMath

|coef_variation(c(1, 2, 3, 4, 5))

I [1] 0.5270463

Dataframe Functions

Dataframe functions take a dataframe as input and return a dataframe. They are typically
wrappers around dplyr verbs:

Example of a dataframe function
filter extreme <- function(df, var, threshold = 2) {
df $>%

filter (abs (as.vector (scale({{ var }}))) > threshold)
}

Cars with extreme fuel consumption (> 2 SD from mean)
mtcars $>%
filter extreme (mpg) %>%

select (mpg, hp, wt)

mpg hp wt
Fiat 128 32.4 66 2.200
Toyota Corolla 33.9 65 1.835

Plot Functions

Plot functions take a dataframe and return a ggplot:

Example of a plot function
histogram <- function(df, var, binwidth = NULL) {

df %>%
ggplot (aes (x = {{ var }})) +

geom histogram(binwidth = binwidth)
}

)

mtcars $>% histogram(mpg, binwidth = 2)

5_

count

10 15 20 25 30 35
mpg

The { } syntaxin the plot example will be explained in detail in the section on tidy
evaluation.

5/16

Defensive Programming

Good functions check their inputs and provide understandable error messages. This saves
debugging time and makes the code more robust.

stop() for Error Messages

The stop () function aborts execution and displays an error message:

calculate bmi <- function(weight kg, height m) {
if (!is.numeric(weight kg) || !is.numeric (height m)) {
stop ("weight kg and height m must be numeric")
}
if (any(height m <= 0)) {
stop ("height m must be positive")
}
weight kg / height m"2
}

calculate bmi (70, 1.75)

I[l] 22.85714
I calculate bmi (70, "tall")

IError in calculate bmi (70, "tall"): weight kg and height m must be numeric

stopifnot() for Quick Checks

For simple conditions, stopifnot() is more compact:

calculate bmi <- function(weight kg, height m) ({
stopifnot (is.numeric (weight kg), is.numeric(height m))
stopifnot (all (height m > 0))

weight kg / height m"2
}

calculate bmi (70, 0)

IError in calculate bmi (70, 0): all(height m > 0) ist nicht TRUE

The downside: the automatically generated error messages are less informative than custom
ones.

match.arg() for Categorical Arguments
When an argument should only accept certain values, use match.arg() :

center <- function(x, type = c("mean", "median", "trimmed")) {
type <- match.arg(type)

switch (type,

mean = mean (x, na.rm = TRUE),
median = median(x, na.rm = TRUE),
trimmed = mean(x, trim = 0.1, na.rm = TRUE)

}

center(1:10, "mean")

BioMath

6/16

BioMath

| i1 5.5

Icenter(l:lo, "median")
| (11 5.5

Icenter(l:lo, "mena')

IError in match.arg(type): 'arg' sollte eines von '"mean", "median", "trimmed"' sein

The allowed values are defined in the argument’s default. match.arg() also allows partial
matching and provides helpful error messages for invalid inputs.

© Exercise: Safe Logarithm Function

Write a function safe log() that:

1. Checks if the input is numeric

2. Checks if all values are positive

3. For non-positive values, gives a helpful error message indicating how many non-
positive values are present

safe log(c(l, 10, 100))
safe log(c(-1, 10, 100))

1 Solution

safe log <- function(x, base = exp(l)) {
if (!is.numeric(x)) {
stop ("x must be numeric, not ", typeof (x))

}

n _negative <- sum(x <= 0, na.rm = TRUE)
if (n_negative > 0) {
stop (
glue::glue("x contains {n negative} value(s) <= 0. ",
"Logarithm is only defined for positive numbers.")

}

log (x, base = base)

}

safe log(c(l, 10, 100))

I[l] 0.000000 2.302585 4.605170
I safe log(c(-1, 0, 10, 100))

Error in safe log(c(-1, 0, 10, 100)): x contains 2 value(s) <= 0. Logarithm is
only defined for positive numbers.

Functions in the tidyverse: Tidy Evaluation

Once you start writing functions that use tidyverse verbs like filter() , mutate() , or

ggplot () , you encounter a special problem: how do you pass column names as arguments?

7
716

The Problem: Indirection

Consider this naive function:

grouped mean <- function(df, group var, mean var) {

df %>%
group by (group var) %>%
summarize (mean = mean (mean_ var))

}
mtcars %>% grouped mean (cyl, mpg)

Error in “group by () ":
! Must group by variables found in ~.data’.

¥ Column ‘group var 1is not found.

The function looks for columns named group var and mean_var — but they don’t exist! The

problem is indirection: dplyr uses data masking to allow column names without quotes.
This is convenient for interactive use but makes writing functions more complicated.

1 Data Masking Explained

Data masking means you can write filter(df, x > 5) instead of
filter (df, df$x > 5) . Rlooks for x firstin the dataframe’s columns, then in the

environment. That's why group_var is interpreted as a column name — not as a variable

containing a column name.

The Standard Solution: Curly-Curly

Since rlang 0.4.0 (2019) there’s an elegant solution: the embracing operator { } (also

called “curly-curly”). It tells dplyr: “Don’t look for a column with this name, look inside this
variable instead”:

grouped mean <- function(df, group var, mean var) {

df $>%
group by ({{ group var }}) %>%
summarize (mean = mean ({{ mean var }t}), .groups = "drop")

}
mtcars %$>% grouped mean (cyl, mpg)
A tibble: 3 x 2

cyl mean
<dbl> <dbl>

1 4 26.7
2 6 19.7
3 8 15.1

The rule is simple: embrace every argument that is passed to a tidyverse function that
uses data masking or tidy selection.

How do you know which functions use these? The documentation tells you: look for

<data-masking> ﬁorfuncﬁons like filter() , mutate() , summarize ())or <tidy-select>

(for functions like select() , rename() , across()).

BioMath

8/16

Flexible summary function
summary stats <- function (df, var) {
df $>%
summarize (

n=n(),
mean = mean ({{ var }}, na.rm = TRUE),
sd = sd({{ var }}, na.rm = TRUE),
min = min({{ var }}, na.rm = TRUE),
max = max({{ var }}, na.rm = TRUE)

mtcars %>% summary stats (mpg)

n mean sd min max
1 32 20.09062 6.026948 10.4 33.9

Imtcars $>% group by (cyl) %>% summary stats (mpg)

A tibble: 3 x 6

cyl n mean sd min max
<dbl> <int> <dbl> <dbl> <dbl> <dbl>

1 4 11 26.7 4.51 21.4 33.9
2 6 7 19.7 1.45 17.8 21.4
3 8 14 15.1 2.56 10.4 19.2

© Exercise: Counting Proportions

Write a function count_prop() that works like count () but additionally adds a prop

column with the proportion.

Desired result:

mtcars %>% count prop(cyl)
A tibble: 3 x 3

cyl n prop

<dbl> <int> <dbl>

1 4 11 0.344

2 6 7 0.219

3 8 14 0.438
1 Solution

count prop <- function(df, var, sort = FALSE)

df %>%
count ({{ var }}, sort = sort) %>%
mutate (prop = n / sum(n))

mtcars %>% count prop(cyl)

cyl n prop
1 4 11 0.34375
2 6 7 0.21875
3 8 14 0.43750

{

BioMath

9/16

Dynamic Column Names with the Walrus Operator

What if you want to not just read a column, but create a column with a dynamic name? The

normal = operator only allows fixed names on the left side. This is where := comes in (the

“walrus operator”):

Function that creates a new column with dynamic name
standardize <- function (df, wvar) ({
df $>%
mutate (
"{{ var }} z" := ({{ var }} - mean({{ var }}, na.rm = TRUE)) /

sd({{ var }}, na.rm = TRUE)

}

mtcars $>%
select (mpg, cyl) %>%
standardize (mpg) %>%

head ()
mpg cyl mpg_z
Mazda RX4 21.0 6 0.1508848
Mazda RX4 Wag 21.0 6 0.1508848
Datsun 710 22.8 4 0.4495434
Hornet 4 Drive 21.4 6 0.2172534
Hornet Sportabout 18.7 8 -0.2307345
Valiant 18.1 6 -0.3302874
The syntax "{{ var }}_z" := combines glue-style string interpolation with the walrus

operator. The { var } in the string is replaced by the variable name.

Columns as Strings: .data Pronoun

Sometimes you have column names as strings — perhaps from a configuration file or user
input. Here you use the .data pronoun:

Column name comes as string
summarize column <- function(df, col name) {
df $>%
summarize (mean = mean(.data[[col name]], na.rm = TRUE))

}

summarize column (mtcars, "mpg")

mean
1 20.09062

Useful for iteration over column names
col names <- c("mpg", "hp", "wt")
map (col names, ~ summarize column (mtcars, .x))

[[1]]
mean
1 20.09062

[rz1]
mean
1 146.6875

[[31]
mean
1 3.21725

10

BioMath

10/16

Advanced: enquo() and !!

The { } syntax is shorthand for a combination of enquo() and !! . In most cases you don'’t

need the explicit form, but there are situations where it's necessary — for example when you
want to extract the variable name as a string.

Here’s the same function in both notations:

With {{ } - the recommended shorthand
grouped mean short <- function(df, group var, mean var) {
df %>%
group by ({{ group var }}) %>%
summarize (mean = mean ({{ mean var }t}), .groups = "drop")
}
With enquo() and !! - the explicit form

grouped mean explicit <- function(df, group var, mean var) {
group var <- enquo(group var) # Capture the argument
mean var <- enquo (mean_var)

df $>%
group by (!!group var) %>% # Insert with !!
summarize (mean = mean(!!mean var), .groups = "drop")
}
Both produce the same result

mtcars %>% grouped mean short (cyl, mpg)

A tibble: 3 x 2
cyl mean
<dbl> <dbl>

1 4 26.7
2 6 19.7
3 8 15.1

Imtcars %>% grouped mean explicit (cyl, mpg)

A tibble: 3 x 2
cyl mean
<dbl> <dbl>

1 4 26.7
2 & 19,7
3 8 15.1

enquo() captures an argument without evaluating it. ! (bang-bang) inserts the captured
expression.

When do you need the explicit form? When you want to extract the variable name as a string:

as_label () extracts the name as string - only possible with enquo ()
summary with label <- function(df, wvar) {

var _quo <- enquo (var)

var name <- rlang::as label (var quo)

df $>%
summarize (
variable = var name,
mean = mean (!!var quo, na.rm = TRUE)

}

mtcars %>% summary with label (mpg)

11

BioMath

11/16

BioMath

variable mean
1 mpg 20.09062
Imtcars $>% summary with label (hp)

variable mean
1 hp 146.6875

Multiple Columns as Strings: syms() and !!!

When you have multiple column names as a character vector and want to use them in a
tidyverse function, you need syms () and !!!:

» syms() converts a character vector into a list of symbols
« 111 (splice operator) unpacks this list so each element is passed individually

Multiple grouping variables as character vector
grouped summary <- function(df, group vars, summary var) {
syms () converts c("cyl", "am") to list(sym("cyl"), sym("am"))

group_ symbols <- syms(group vars)

df $>%
!!! unpacks the list: group by(cyl, am) instead of group by (list(...))
group by (!!!group symbols) %>%
summarize (mean = mean ({{ summary var }}, na.rm = TRUE), .groups = "drop")

}
mtcars %>% grouped summary(c("cyl", "am"), mpg)

A tibble: 6 x 3

cyl am mean
<dbl> <dbl> <dbl>

1 4 0 22.9
2 4 1 28.1
3 6 0 19.1
4 6 1 20.6
5 8 0 15.0
6 8 1 15.4

This technique is especially useful when grouping variables are determined dynamically —
perhaps from a configuration or user input.

pick() for Tidy Selection in Data-Masking Context

Sometimes you want to use tidy selection (like in select ())inside a data-masking function

(like group by ()). This is where pick() helps:

Multiple grouping columns with tidy selection
count by <- function(df, ...) {
df $>%
group by (pick(...)) %>%
summarize(n = n(), .groups = "drop")
}

mtcars %>% count by (cyl, am)

A tibble: 6 x 3

cyl am n
<dbl> <dbl> <int>

1 4 0 3
2 4 1 8

12
12/16

3 6 0 4
4 6 1 3
5 8 0 12
6 8 1 2

Imtcars $>% count by (starts with("c"))

A tibble: 9 x 3

cyl carb n
<dbl> <dbl> <int>
1 4 1 5
2 4 6
3 6 1 2
4 6 4 4
5 6 6 1
6 8 2 4
7 8 3 3
8 8 4 6
9 8 8 1
Important: with ... you use pick(...) directly, not pick({{ ... }}) .The { } syntaxis

only for single named arguments.

Overview: When to Use Which Approach?

Situation Solution Example
Column as “bare name” {1 filter ({{ var }} > 0)
Column name as string .datal[]] summarize (mean =

mean (.data[[col]l]))

Multiple columns via ... Pass ... directly group by (...) Of
pick(...)

Create dynamic column name a= mutate ("{{ var }}
_new" := ...)

Extract variable name as string enquo () + as_ label () as_label (enquo (var))

List of strings to symbols syms() + !!! group by (!!!

syms (cols))

Tidy select in data masking pick () group by (pick(...))

© Exercise: Flexible Filtering

Write a function filter na() thatremoves all rows where a specific column is Na .

Test data
test df <- tibble(

x = c(l, NA, 3),

y = c(vlavl, vle, NA)
)

test df $>% filter na(x)
test df $>% filter na(y)

13

BioMath

13/16

filter na <- function(df, var)
df $>%
filter(!is.na({{ var }}))

}

test df <- tibble(

X = c(l, NA, 3),

y e C("a", "b"’ NA)
)

test df %>% filter na(x)

Itest_df $>% filter na(y)

Extend the histogram() function so that the title automatically includes the variable
name:

mtcars %>% histogram(mpg, binwidth = 2)
Should have a title like "Histogram of mpg"

Hint: Use rlang::englue() orthe combination of enquo() and as_label() .

14

1 Solution

histogram <- function(df, var, binwidth = NULL) {
title <- rlang::englue("Histogram of {{var}}")

df %>%
ggplot(aes(x = {{ var }})) +
geom histogram(binwidth = binwidth) +
labs (title = title)
}

mtcars %>% histogram(mpg, binwidth = 2)

Histogram of mpg

5_
4_
4—-3'
c
>
3
2_
) I
O_
10 15 20 25 30 35

mpg

Best Practices and Style

Naming
Function names should be verbs and clearly describe what the function does:

Good: Verbs, descriptive
impute missing ()
calculate bmi ()

extract coefficients|()

Bad: Too short or not descriptive
£0)

my function ()

do_stuff ()

Argument names should be nouns. The data argument is typically called df , data, or

.data .

Code Formatting

Always use curly braces {} , even for single-line functions. The body is indented with two
spaces:

15

BioMath

15/16

BioMath

Good

add one <- function(x) {
x + 1

}

oid
add one <- function(x) x + 1

Documentation with Roxygen

When developing an R package, every exported function must be documented. This
documentation is written in Roxygen format — special comments directly above the function

that start with #' . When building the package, these comments are automatically converted
into the formatted help pages that you access with 2functionname .

But even if you’re not writing a package, just a script with a few helper functions, this format
is worthwhile. Instead of writing unstructured comments next to the function, you can use the

Roxygen format directly. It's clear, standardized, and if the function later moves into a
package, the documentation is already done.

The most important Roxygen tags:

« Title (first line): A short, one-line description of the function
» Description (after blank line): More detailed explanation of what the function does

* @param name : Describes an argument of the function
* @return: Describes what the function returns

Rexamples : Executable examples of usage

#! ate Body Mass Index

ﬁl

#' This function calculates BMI from weight and height.
#' For vectors, BMI is calculated element-wise.

W‘T'

#' @param weight kg Weight in kilograms (numeric vector).
#' @param height m Height in meters (numeric vector).
J‘l'

' Q@return A numeric vector of BMI values.

W‘T'

#' @examples

#' calculate bmi (70, 1.75)

#' calculate bmi (c (60, 80), c(1.60, 1.80))

calculate bmi <- function(weight kg, height m) {
stopifnot(is.numeric(weight_kg), is.numeric(height_m))
stopifnot (all (height m > 0))

weight kg / height m"2
}

In RStudio and Positron you can automatically insert an empty Roxygen skeleton: place the
cursor in the function and choose Code — Insert Roxygen Skeleton (or

Ctrl+Alt+Shift+R)_

Bibliography

16
16/16

	Why Write Functions?
	Basics: function()
	Syntax and Structure
	Arguments With and Without Defaults
	Return Values
	The Ellipsis Argument (…)

	Three Types of Functions
	Vector Functions
	Dataframe Functions
	Plot Functions

	Defensive Programming
	stop() for Error Messages
	stopifnot() for Quick Checks
	match.arg() for Categorical Arguments

	Functions in the tidyverse: Tidy Evaluation
	The Problem: Indirection
	The Standard Solution: Curly-Curly
	Dynamic Column Names with the Walrus Operator
	Columns as Strings: .data Pronoun
	Advanced: enquo() and !!
	Multiple Columns as Strings: syms() and !!!
	pick() for Tidy Selection in Data-Masking Context
	Overview: When to Use Which Approach?

	Best Practices and Style
	Naming
	Code Formatting
	Documentation with Roxygen

	Bibliography

