9. Iteration

Applying operations to many elements with for loops and purrr
Dr. Paul Schmidt

Why Iteration?

Iteration means repeatedly applying the same operation to different elements: to multiple
columns of a dataframe, to multiple files in a folder, or to multiple groups in your data. While
the previous chapter showed how to encapsulate repeated code in functions, this chapter
shows how to efficiently apply those functions to many elements.

R has a special feature: many operations are already vectorized. When you write = * 2 /R

automatically multiplies every value in x by 2 — no loop needed. In other languages this
wouldn’t be so automatic:

X <- c(1, 2, 3, 4, 5)

Vectorized - no explicit iteration needed
X * 2

I[l] 2 4 6 8 10
Isqrt(x)

I[l] 1.000000 1.414214 1.732051 2.000000 2.236068

But not everything can be vectorized so elegantly. When you want to read 50 CSYV files,
create 20 plots, or fit a model to each group of your data, you need explicit iteration. There
are two main approaches: for loops (imperative) and map functions (functional).

© Further Resources

This chapter is based on Chapter 26: Iteration from “R for Data Science” (2nd edition).
For a more comprehensive treatment of purrr, we recommend Jenny Bryan’s purrr
Tutorial and the purrr documentation.

Implicit Iteration with across()

Before we get to explicit iteration, you should know: for many column-based operations you
don’t need loops or map functions at all. The across () function from dplyr handles this
elegantly:

t Without across() - repetitive
mtcars %>%
summarize (
mpg mean = mean (mpg),
hp mean = mean (hp),
wt mean = mean (wt)

)

BioMath

118

https://r4ds.hadley.nz/iteration.html
https://jennybc.github.io/purrr-tutorial/
https://jennybc.github.io/purrr-tutorial/
https://purrr.tidyverse.org/

mpg _mean hp mean wt mean
1 20.09062 146.6875 3.21725

s () - compact

mtcars %>%
summarize (across (c (mpg, hp, wt), mean))

mpg hp wt
1 20.09062 146.6875 3.21725

With where () you can select columns by type:

Mean of all numeric columns
mtcars %>%
summarize (across (where (is.numeric), \(x) mean(x, na.rm = TRUE)))
mpg cyl disp hp drat wt gsec Vs am

1 20.09062 6.1875 230.7219 146.6875 3.596563 3.21725 17.84875 0.4375 0.40625
gear carb
1 3.6875 2.8125

And with the .names argument you control the column names in the output:

mtcars %>%
summarize (across (
c (mpg, hp, wt),

list (mean = \(x) mean(x, na.rm = TRUE),
sd = \(x) sd(x, na.rm = TRUE)),
.names = "{.col} {.fn}"
))
mpg mean mpg sd hp mean hp sd wt mean wt sd

1 20.09062 6.026948 146.6875 68.56287 3.21725 0.9784574

| Syntax Change in dplyr 1.1.0

The old syntax across(a:b, mean, na.rm = TRUE) is deprecated. Use an anonymous

function instead: across(a:b, \(x) mean(x, na.rm = TRUE))

© Exercise: across() with Multiple Functions

Calculate the mean and standard deviation of all numeric columns in the iris dataset,

grouped by Species . Use across() with the .names argument.

BioMath

2/18

1 Solution

iris %>%
group by (Species) %>%
summarize (across (
where (is.numeric),
list (mean = \(x) mean(x), sd = \(x) sd(x)),
.names = "{.col} {.fn}"

))

A tibble: 3 x 9

Species Sepal.Length mean Sepal.Length sd Sepal.Width mean Sepal.Width sd
<fct> <dbl> <dbl> <dbl> <dbl>
1 setosa 5.01 0.352 3.43 0.379
2 versicolor 5.94 0.516 2.717 0.314
3 virginica 6.59 0.636 2.97 0.322
i 4 more variables: Petal.Length mean <dbl>, Petal.Length sd <dbl>,
Petal.Width mean <dbl>, Petal.Width sd <dbl>
for Loops

Basic Syntax

A for loop repeats a code block for each element of a vector or list:

Simple for loop
for (i1 in 1:5) {
print (glue::glue ("Iteration {i}"))

}

Iteration
Iteration
Iteration
Iteration
Iteration

g w N

The structure is always the same: for (variable in sequence) { ... }.In each iteration,

variable takes the next value from sequence .

Storing Results

When you want to store results from a loop, you should pre-allocate the output container.

This is important for performance:

results <- vector ("double", n)

for (i in 1:n) {
results[i] <- i"2

results

|[1] 1 4 9 16 25 36 49 64 81 100

Bad: "Growing" the vector in the loop

results <- c()

BioMath

3/18

BioMath

for (i in 1:n) {
results <- c(results, i"72)

}

The second example is slow because R has to copy the entire vector with each <) . With
large datasets this can make an enormous difference.

seq_along() Instead of 1:length()

It's better to use seq_along() instead of 1:length() to avoid problems with empty vectors:

X <- c("a", "b", "C")
y <- character (0)

seq along() is safe

for (i in seq along(x)) {
print (x[i])

}

[l] ngn
[1] npn
[1] nen

g _along (y)

integer (0

l:1length() has a problem with empty vectors
1 length (y)

[1]

When for Loops Are Useful
for loops are especially useful when:

* The iteration has side effects (writing files, displaying plots)
» Each iteration depends on the result of the previous one
* The logic is very complex and you need maximum control

Iterat with dependenc Cumulative sum
X <- c(3, 1, 4, 1, 5)

cumsum manual <- vector ("double", length (x))
cumsum manual [1] <- x[1]

for (i in 2:length(x)) {
cumsum manual [i] <- cumsum manual[i - 1] + x[i]

}

cumsum manual

I[l] 3 4 8 9 14
Icumsum(x)

|[1] 3 4 8 914

4/18

BioMath

@ Exercise: Column Means with for Loop

Calculate the means of the first four columns of mtcars using a for loop. Store the
results in a pre-allocated vector.

1 Solution

Pre-allocate vector

means <- vector ("double", 4)
names (means) <- names (mtcars) [1:4]

for (i in 1:4) {
means[1] <- mean (mtcars[[i]])

}

means

mpg cyl disp hp
20.09062 6.18750 230.72188 146.68750

The map Family from purrr

The Basic Principle

The map () function from the purrr package is the functional alternative to the for loop. The

principle: you provide a list (or vector) and a function — map () applies the function to each
element and returns a list.

Apply a function to each element
numbers <- list(1:3, 4:6, 7:9)

map (numbers, mean)

[[11]

[1] 2
(211
[1] 5
[[31]
[1] 8

The advantage over for loops: the code is more compact and expresses more clearly what
happens (apply function to all elements), not how it happens (loop variable, index, etc.).

Type-Safe Variants

map () always returns a list. But often you know what type to expect. The variants

map_dbl () , map_chr() , map_lgl() ,and map_int () return vectors of the corresponding
type — and throw an error if the result doesn’t match:

map () returns a list
map (numbers, mean)

5/18

[[1]1]

[1]1 2

[[2]]

[1] 5

[[311]

[1] 8

map dbl () returns a numeric vector
map dbl (numbers, mean)

|[1]258

map chr() returns a character vector

I[l] "Mean: 2" "Mean: 5" "Mean: 8"

Error when type doesn't match
map chr (numbers, mean)

I[l] "2.000000™ "5.000000" "8.000000"

Specifying Functions

map chr (numbers, \ (x) glue::glue("Mean: {mean (x)}"))

Warning: Automatic coercion from double to character was deprecated in purrr 1.0.0.
i Please use an explicit call to "as.character() within "map chr () instead.

There are several ways to specify the function to apply:

1. Named function
map dbl (numbers, mean)

|[1]258

2. Anonymous function (modern syntax)
map dbl (numbers, \(x) mean(x, na.rm = TRUE))

|[1] 258

3. Anonymous function (classic syntax)

map dbl (numbers, function(x) mean(x, na.rm =
| [1] 2 5 8

4. purrr formula (legacy, but still common)

map dbl (numbers, ~ mean(.X, na.rm = TRUE))
|11 258

The modern \ (x) syntax (since R 4.1) is clearest. But you'll often see the formula syntax

with ~ and .x in older code.

Extraction by Name or Position

A particularly practical feature: you can pass map () a string or number to extract elements:

List with named elements
people <- list(

TRUE))

BioMath

6/18

list (name = "Anna", age = 25),
list (name = "Bob", age = 30),
list (name = "Clara", age = 28)

)

Extract by name
map chr (people, "name")

I[l] "Anna" "Bob" "Clara"

Extract by position
map_ int (people, 2)

| [1] 25 30 28

© Exercise: Applying map_dbl()

using map_dbl () .

data <- list(
a = C(lr 5! 3)!

Given a list of vectors. Calculate the range (maximum minus minimum) for each vector

Or with range ()

a b c
4 15 10

b = c(10, 20, 15, 25),
c = c(-5, 0, 5)
)
1 Solution
Imap_dbl(data, \(x) max(x) - min(x))
a b c
4 15 10

map dbl (data, \(x) diff (range(x)))

map2 and pmap: Multiple Inputs

Sometimes you need to iterate over multiple lists in parallel. map2 () takes two lists, pmap ()

takes any number:

Two lists in parallel
x <- list (1, 2, 3)
y <- list (10, 20, 30)

map2 dbl(x, y, \(a, b) a + b)

I[l] 11 22 33

Multiple lists with pmap ()
params <- list(

n = c(10, 20, 30),

mean = c(0, 5, 10),

sd = c(1, 2, 3)

BioMath

7118

)

set.seed (42)
pmap (params, \(n, mean, sd) rnorm(n, mean, sd)) %$>%
map dbl (mean)

I[l] 0.5472968 4.6584637 9.6342745

imap: With Index or Names

imap () is shorthand for map2 (x, names(x), ...) — useful when you need both the value
and the index/name:

X <- c(a = 10, b = 20, c = 30)
imap chr(x, \ (value, name) glue::glue("{name}: {value}"))

a b @
"a: 10" "b: 20" "c: 30"

© Exercise: Robust Division with map2()

Write a function safe_divide() thatreturns Na for division by zero (instead of Inf).

Then apply it with map2 _dbl () to two vectors.

numerator <- c (10, 20, 30, 40)
denominator <- c(2, 0, 5, 0)

Desired result: c(5, NA, 6, NA)

1 Solution

safe divide <- function(x, y) {
if (y == 0) return(NA real)
x /vy

}

numerator <- c (10, 20, 30, 40)
denominator <- c(2, 0, 5, 0)

map2 dbl (numerator, denominator, safe divide)

I[l] 5 NA 6 NA

Alternative with possibly ()
map2 dbl (numerator, denominator, possibly(\(x, y) x / y, otherwise = NA real))

I[l] 5 Inf 6 Inf

walk: Iteration for Side Effects

When you’re not interested in the return value but in side effects (writing files, displaying
plots), use walk() instead of map () . It invisibly returns the input, making it ideal for pipe
chains:

BioMath

8/18

BioMath

Save multiple plots

plots <- list(
ggplot (mtcars, aes(mpg)) + geom histogramf(),
ggplot (mtcars, aes(hp)) + geom histogram(),
ggplot (mtcars, aes(wt)) + geom histogram()

)
filenames <- c("mpg.png", "hp.png", "wt.png")
walk?2 (plots, filenames, \ (plot, file) {

ggsave (file, plot, width = 6, height = 4)
})

walk () exists in the same variants as map () : walk2() , pwalk() , iwalk() .

Robust Iteration: Catching Errors

The Problem

When iterating over many elements, a single error can abort the entire operation:

One element causes an error

inputs <- list (1, "a", 3)
map dbl (inputs, log)

Error in "map dbl () ":
i In index: 2.

Caused by error:
! Nicht-numerisches Argument fiir mathematische Funktion

Element 2 is not a number, and the whole operation fails. With 1000 files this would be
annoying — you want to know which files had problems while still processing the others.

safely(): Errors as Data

safely () is a “wrapper” (adverb) that modifies a function so it never aborts. Instead, it

returns a list with sresult and Serror:

safe log <- safely(log)
safe log(10)

Sresult
[1] 2.302585

Serror
NULL

safe log("a")

Sresult
NULL

Serror
<simpleError in .Primitive("log") (x, base): Nicht-numerisches Argument fir

mathematische Funktion>

Combined with map () :

9/18

inputs <- list(l, "a", 3, -1)
results <- map (inputs, safe log)

results

With transpose () you can restructure the results:

results t <- results %>% transpose ()

results_tSresult

results_tSerror

BioMath

[[31]
NULL

[[4]]
NULL

possibly(): Replace Errors with Default

Often a simpler approach suffices: replace errors with a default value. For this there’s
possibly () .

Errors become NA
map dbl (inputs, possibly(log, otherwise = NA real))

IWarning in .Primitive ("log") (x, base): NaNs wurden erzeugt
I[l] 0.000000 NA 1.098612 NaN

This is especially practical with map_db1 () , since you get a vector directly instead of a
nested list.

Inspecting Errors
After iteration you often want to know which elements failed:

Which had errors?
results <- map (inputs, safe log)

Warning in .Primitive ("log") (x, base): NaNs wurden erzeugt

failed <- map 1lgl (results, \(x) !is.null (xSerror))
failed

[1] FALSE TRUE FALSE FALSE

The failed inputs
inputs([failed]

[[1]]
[1] ngn

Only the successful results

successful <- map(results, "result") %>%
compact () %$>%
map dbl (identity)

successful

I[l] 0.000000 1.098612 NaN

11
11/18

@ Exercise: Identifying Errors

Given a list of file paths, some of which don’t exist. Use safely() to read all existing files
and find out which files were not found.

Prepare test data

temp dir <- tempdir ()

for (i in 1:2) {
tibble(id = 1:3, value = rnorm(3)) %>%
write csv(file.path(temp dir, glue::glue("test {i}.csv")))
}

file paths <- c(
file.path(temp dir, "test 1l.csv"),
"not found.csv",
file.path(temp dir, "test 2.csv"),
"also missing.csv"

)

12

BioMath

12/18

1 Solution

safe read <- safely(read csv)
results <- file paths %>%
set names () %>%

map (\ (f) safe read(f, show col types = FALSE))

Which succeeded?
success <- map_ lgl (results, \(x) is.null(xSerror))

cat ("Successfully read:\n")

ISuccessfully read:
Inames(results)[success]

[1] "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpgKrC2J/test 1l.csv"
[2] "C:\\Users\\BIOMAT~I1\\AppData\\Local\\Temp\\RtmpgKrC2J/test 2.csv"

Icat("\nNot found:\n")

Not found:
Inames(results)[lsuccess]
I[l] "not found.csv" "also missing.csv"

Combine only successful data

su
data <- results[success] %>%
map ("result") %$>%
list rbind(names to = "source")

data

A tibble: 6 x 3

source id wvalue

<chr> <dbl> <dbl>
1 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpgKrC2J/test 1.cs.. 1 -0.367
2 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpgKrC2J/test 1.cs.. 2 0.185
3 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpgKrC2J/test 1.cs.. 3 0.582
4 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpgKrC2J/test 2.cs.. 1 1.40
5 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpgKrC2J/test 2.cs.. 2 -0.727
6 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpgKrC2J/test 2.cs.. 3 1.30

Practical Applications

Batch Import: Reading Multiple Files

A common use case: you have a folder full of CSV files and want to read and combine them
all.

Find all CSV files in folder

files <- list.files("data/", pattern = "\\.csv$", full.names = TRUE)
Read all and combine into one dataframe
all data <- files $>%

map (\ (f) read csv(f, show col types = FALSE)) $%$>%

list rbind()

13

BioMath

13/18

With filename as column

all data <- files %>%
set names () %>%
map (\ (f) read csv(f, show col types = FALSE)) $>%
list rbind(names to = "source")

The trick with set_names () without an argument makes the file paths the names of the list,

which then get transferred to the source column.

Batch Export: Writing Multiple Files
The counterpart: split data and write to separate files.

Split data by group

mtcars split <- mtcars %>%
group by (cyl) %>%
group_split ()

Generate filenames
filenames <- mtcars %>%
distinct (cyl) %>%
pull (cyl) $>%
map_chr (\ (x) glue::glue("output/mtcars cyl{x}.csv"))

Write all files
walk2 (mtcars split, filenames, \(data, file) {
write csv(data, file)

b

© Exercise: Simulating Batch Import

First create three temporary CSV files, then read them with map () and combine them
into a dataframe.

e

Create temporary files
batch dir <- tempdir ()

for (i1 in 1:3) {

tibble (
id = 1:5,
value = rnorm(5),
group = i

) $>%

write csv(file.path (batch dir, glue::glue("batch {i}.csv")))

14

BioMath

14/18

1 Solution

files <- list.files(batch dir, pattern = "batch .*\\.csv$",

all data <- files %>%
set names () %>%

map (\ (f) read csv(f, show col types = FALSE)) $>%
list rbind(names to = "source")
all data

A tibble: 15 x 4

source
<chr>
1 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpgKrC2J/b...
2 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpgKrC2J/b..
3 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpgKrC2J/b...
4 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpgKrC2J/b...
5 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpgKrC2J/b..
6 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpgKrC2J/b...
7 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpgKrC2J/b...
8 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpgKrC2J/b...
9 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpgKrC2J/b..
10 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpgKrC2J/b..
11 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpgKrC2J/b..
12 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpgKrC2J/b..
13 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpgKrC2J/b...
14 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpgKrC2J/b...
15 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpgKrC2J/b..

full.names = TRUE)

id
<dbl>

s W N O wNDE O wN

value group
<dbl> <dbl>

- 336
.04
.921
.721
.04
.0902
.624
.954
.543
.581
.768
.464
.886
.10
> 51

1

W W wWwwwhNhDNDNDNDND PP PP

Fitting Models to Groups

With nest () you can nest dataframes and then fit models per group:

Nest

Extrac
mtcars models %>%
select (cyl, tidied) %>%
unnest (tidied)

data

mtcars nested <- mtcars $>%
group by (cyl) %>%
nest ()

mtcars nested

A tibble: 3 x 2

Groups: cyl [3]
cyl data
<dbl> <list>
1 6 <tibble [7 x 10]>
2 4 <tibble [11 x 10]>
3 8 <tibble [14 x 10]>

Fit model per group
mtcars models <- mtcars nested %$>%
mutate (
model = map (data, \(df) lm(mpg ~ wt, data = df)),
tidied = map (model, broom::tidy)

>t results

A tibble: 6 x 6
Groups: cyl [3]

15

BioMath

15/18

BioMath

cyl term estimate std.error statistic p.value
<dbl> <chr> <dbl> <dbl> <dbl> <dbl>
1 6 (Intercept) 28.4 4.18 6.79 0.00105
2 6 wt -2.78 1.33 -2.08 0.0918
3 4 (Intercept) 39.6 4.35 9.10 0.00000777
4 4 wt =5,65 1.85 -3.05 0.0137
5 8 (Intercept) 23.9 3.01 7.94 0.00000405
6 8 wt -2.19 0.739 -2.97 0.0118

Creating and Saving Multiple Plots
A complete example combining nest(), map(), and walk():

Prepare data
plot data <- mtcars %>%
group by (cyl) %>%
nest () %>%
mutate (
plot = map2(data, cyl, \(df, cyl val) ({
ggplot (df, aes(x = wt, y = mpg)) +
geom point () +
geom smooth (method = "1lm", se = FALSE) +
labs (title = glue::glue("{cyl val} Cylinders: MPG vs. Weight"))
})
filename = glue::glue("plots/scatter cyl{cyl}.png")

Save all plots

walk?2 (plot data$plot, plot data$filename, \(p, f) {
ggsave (£, p, width = 6, height = 4)

})

© Exercise: Summary Statistics per Group

Use nest () and map () to calculate the mean and standard deviation of mpg for each

value of cyl in the mtcars dataset. The result should be a tidy dataframe.

1 Solution

mtcars %>%

group by (cyl) 3%>%

nest () %>%

mutate (
mean mpg = map dbl (data, \(df) mean (dfSmpg)),
sd mpg = map dbl (data, \(df) sd(dfSmpg))

) $>%

select (cyl, mean mpg, sd mpg)

A tibble: 3 x 3
Groups: cyl [3]
cyl mean mpg sd mpg
<dbl> <dbl> <dbl>

1 6 19.7 1.45
2 4 26.7 4.51
3 8 151 2.56

16
16/18

List-Columns: Dataframes with Lists as

Columns

The previous examples already used nest () to create “list-columns” — columns that contain
lists instead of atomic vectors. This is a powerful concept that we'll briefly introduce here.

nested <- mtcars %>%
group by (cyl) %>%
nest ()

nested

A tibble: 3 x 2

Groups: cyl [3]
cyl data
<dbl> <list>
1 6 <tibble [7 x 10]>
2 4 <tibble [11 x 10]>
3 8 <tibble [14 x 10]>
The data column contains

nestedSdatal[[1]]

A tibble: 7 x 10
mpg disp hp drat
<dbl> <dbl> <dbl> <dbl>

1 21 160 110 3.9

2 21 160 110 3.9

3 21.4 258 110 3.08
4 18.1 225 105 2.76
5 19.2 168. 123 3.92
6 17.8 168. 123 3.92
7 19.7 145 175 3.62

nest() creates a list-column

dataframes
wt gsec
<dbl> <dbl>
2.62 16.5
2.88 17.0
3.22 19.4
3.46 20.2
3.44 18.3
3.44 18.9
2.77 15.5

Vs

<dbl

With unnest () you can “unpack” list-columns:

nested %>%
unnest (data)
A tibble: 32 x 11
Groups: cyl [3]
cyl mpg disp hp
<dbl> <dbl> <dbl> <dbl>

1 6 21 160 110
2 6 21 160 110
3 6 21.4 258 110
4 6 18.1 225 105
5 6 19.2 168. 123
6 6 17.8 168. 123
7 6 19.7 145 175
8 4 22.8 108 93
9 4 24.4 147. 62
10 4 22.8 141. 95

i 22 more rows

List-columns are especially useful in combination with map () inside mutate () . They allow
organizing complex workflows (like fitting many models) in a clear, tabular format.

drat
<dbl>

B

W wWwwwwwdhdww

9

-9

.08
.76
0 92
- 92
.62
-85
.69
092

wt

<dbl>

2o
.88
.22
.46
.44
.44
.77
0 D2
1LY
5 1L5

W WNNDWWWWDN

62

>
0

O P PP O

gsec
<dbl>
16.
17.
19.
20.
18.
18.
15.
18.

20

22.

5

o U1 © W N B O

17

am
<dbl>

P O oo o~

vs
<dbl>

o

s =l N Y e

gear
<dbl>
4

g s W W

am

<dbl

>

OO PP OOOOoORF

carb
<dbl>

[I S o >

gear
<dbl>
4

SO D O DWW D

carb
<dbl>

NDNE oS D BB D

BioMath

17118

1 Further Reading

List-columns and advanced applications of nest () /unnest () are a large topic on their

own. For more details we recommend Chapter 23: Hierarchical Data and Chapter 25:
Many Models (from the 1st edition of R4DS).

for vs. map: Decision Guide

When should you use for loops, when map functions? Here’s some guidance:
for loops are often better when:

» The logic is complex and you need maximum control
» Each iteration depends on the result of the previous one
* You're just learning to program and the explicit notation helps

map functions are often better when:

* You're applying the same operation to many elements (the standard case)
* You want to use the code in a pipe chain

* You want type safety (map_dbl, map_chr, etc.)

* You prefer the functional, declarative style

The most important advice: use what you understand. Both approaches are legitimate. for
loops are not “bad” or “slow” (this prejudice is outdated). map functions are not “better”, just
different. Over time you’ll develop a feel for which approach fits more naturally in which
situation.

Same result, different styles
for loop
results for <- vector ("double", 3)

for (1 in 1:3) {
results for([i] <- mean (mtcars([[i]])
}

results for

I[l] 20.09062 6.18750 230.72188

mar
results map <- map dbl (mtcars([1:3], mean)
results map

mpg cyl disp
20.09062 6.18750 230.72188

Bibliography

18

BioMath

18/18

https://r4ds.hadley.nz/rectangling.html
https://r4ds.had.co.nz/many-models.html
https://r4ds.had.co.nz/many-models.html

	Why Iteration?
	Implicit Iteration with across()
	for Loops
	Basic Syntax
	Storing Results
	seq_along() Instead of 1:length()
	When for Loops Are Useful

	The map Family from purrr
	The Basic Principle
	Type-Safe Variants
	Specifying Functions
	Extraction by Name or Position
	map2 and pmap: Multiple Inputs
	imap: With Index or Names

	walk: Iteration for Side Effects
	Robust Iteration: Catching Errors
	The Problem
	safely(): Errors as Data
	possibly(): Replace Errors with Default
	Inspecting Errors

	Practical Applications
	Batch Import: Reading Multiple Files
	Batch Export: Writing Multiple Files
	Fitting Models to Groups
	Creating and Saving Multiple Plots

	List-Columns: Dataframes with Lists as Columns
	for vs. map: Decision Guide
	Bibliography

