
BioMath

1/18

9. Iteration

Applying operations to many elements with for loops and purrr
Dr. Paul Schmidt

Why Iteration?
Iteration means repeatedly applying the same operation to different elements: to multiple
columns of a dataframe, to multiple files in a folder, or to multiple groups in your data. While
the previous chapter showed how to encapsulate repeated code in functions, this chapter
shows how to efficiently apply those functions to many elements.

R has a special feature: many operations are already vectorized. When you write x * 2 , R

automatically multiplies every value in x by 2 — no loop needed. In other languages this
wouldn’t be so automatic:

x <- c(1, 2, 3, 4, 5)

Vectorized - no explicit iteration needed
x * 2

[1] 2 4 6 8 10

sqrt(x)

[1] 1.000000 1.414214 1.732051 2.000000 2.236068

But not everything can be vectorized so elegantly. When you want to read 50 CSV files,
create 20 plots, or fit a model to each group of your data, you need explicit iteration. There
are two main approaches: for loops (imperative) and map functions (functional).

 Further Resources

This chapter is based on Chapter 26: Iteration from “R for Data Science” (2nd edition).
For a more comprehensive treatment of purrr, we recommend Jenny Bryan’s purrr
Tutorial and the purrr documentation.

Implicit Iteration with across()
Before we get to explicit iteration, you should know: for many column-based operations you
don’t need loops or map functions at all. The across() function from dplyr handles this
elegantly:

Without across() - repetitive
mtcars %>%
 summarize(
 mpg_mean = mean(mpg),
 hp_mean = mean(hp),
 wt_mean = mean(wt)
)

1

https://r4ds.hadley.nz/iteration.html
https://jennybc.github.io/purrr-tutorial/
https://jennybc.github.io/purrr-tutorial/
https://purrr.tidyverse.org/

BioMath

2/18

 mpg_mean hp_mean wt_mean
1 20.09062 146.6875 3.21725

With across() - compact
mtcars %>%
 summarize(across(c(mpg, hp, wt), mean))

 mpg hp wt
1 20.09062 146.6875 3.21725

With where() you can select columns by type:

Mean of all numeric columns
mtcars %>%
 summarize(across(where(is.numeric), \(x) mean(x, na.rm = TRUE)))

 mpg cyl disp hp drat wt qsec vs am
1 20.09062 6.1875 230.7219 146.6875 3.596563 3.21725 17.84875 0.4375 0.40625
 gear carb
1 3.6875 2.8125

And with the .names argument you control the column names in the output:

mtcars %>%
 summarize(across(
 c(mpg, hp, wt),
 list(mean = \(x) mean(x, na.rm = TRUE),
 sd = \(x) sd(x, na.rm = TRUE)),
 .names = "{.col}_{.fn}"
))

 mpg_mean mpg_sd hp_mean hp_sd wt_mean wt_sd
1 20.09062 6.026948 146.6875 68.56287 3.21725 0.9784574

! Syntax Change in dplyr 1.1.0

The old syntax across(a:b, mean, na.rm = TRUE) is deprecated. Use an anonymous

function instead: across(a:b, \(x) mean(x, na.rm = TRUE)) .

 Exercise: across() with Multiple Functions

Calculate the mean and standard deviation of all numeric columns in the iris dataset,

grouped by Species . Use across() with the .names argument.

2

BioMath

3/18

 Solution

iris %>%
 group_by(Species) %>%
 summarize(across(
 where(is.numeric),
 list(mean = \(x) mean(x), sd = \(x) sd(x)),
 .names = "{.col}_{.fn}"
))

A tibble: 3 × 9
 Species Sepal.Length_mean Sepal.Length_sd Sepal.Width_mean Sepal.Width_sd
 <fct> <dbl> <dbl> <dbl> <dbl>
1 setosa 5.01 0.352 3.43 0.379
2 versicolor 5.94 0.516 2.77 0.314
3 virginica 6.59 0.636 2.97 0.322
ℹ 4 more variables: Petal.Length_mean <dbl>, Petal.Length_sd <dbl>,
Petal.Width_mean <dbl>, Petal.Width_sd <dbl>

for Loops
Basic Syntax
A for loop repeats a code block for each element of a vector or list:

Simple for loop
for (i in 1:5) {
 print(glue::glue("Iteration {i}"))
}

Iteration 1
Iteration 2
Iteration 3
Iteration 4
Iteration 5

The structure is always the same: for (variable in sequence) { ... } . In each iteration,
variable takes the next value from sequence .

Storing Results
When you want to store results from a loop, you should pre-allocate the output container.
This is important for performance:

Good: Pre-allocate vector
n <- 10
results <- vector("double", n)

for (i in 1:n) {
 results[i] <- i^2
}

results

 [1] 1 4 9 16 25 36 49 64 81 100

Bad: "Growing" the vector in the loop
results <- c()

3

BioMath

4/18

for (i in 1:n) {
 results <- c(results, i^2)
}

The second example is slow because R has to copy the entire vector with each c() . With
large datasets this can make an enormous difference.

seq_along() Instead of 1:length()
It’s better to use seq_along() instead of 1:length() to avoid problems with empty vectors:

x <- c("a", "b", "c")
y <- character(0)

seq_along() is safe
for (i in seq_along(x)) {
 print(x[i])
}

[1] "a"
[1] "b"
[1] "c"

seq_along(y)

integer(0)

1:length() has a problem with empty vectors
1:length(y)

[1] 1 0

When for Loops Are Useful
for loops are especially useful when:

• The iteration has side effects (writing files, displaying plots)
• Each iteration depends on the result of the previous one
• The logic is very complex and you need maximum control

Iteration with dependency: Cumulative sum
x <- c(3, 1, 4, 1, 5)
cumsum_manual <- vector("double", length(x))
cumsum_manual[1] <- x[1]

for (i in 2:length(x)) {
 cumsum_manual[i] <- cumsum_manual[i - 1] + x[i]
}

cumsum_manual

[1] 3 4 8 9 14

cumsum(x)

[1] 3 4 8 9 14

4

BioMath

5/18

 Exercise: Column Means with for Loop

Calculate the means of the first four columns of mtcars using a for loop. Store the
results in a pre-allocated vector.

 Solution

Pre-allocate vector
means <- vector("double", 4)
names(means) <- names(mtcars)[1:4]

for (i in 1:4) {
 means[i] <- mean(mtcars[[i]])
}

means

 mpg cyl disp hp
 20.09062 6.18750 230.72188 146.68750

The map Family from purrr
The Basic Principle
The map() function from the purrr package is the functional alternative to the for loop. The

principle: you provide a list (or vector) and a function — map() applies the function to each
element and returns a list.

Apply a function to each element
numbers <- list(1:3, 4:6, 7:9)

map(numbers, mean)

[[1]]
[1] 2

[[2]]
[1] 5

[[3]]
[1] 8

The advantage over for loops: the code is more compact and expresses more clearly what
happens (apply function to all elements), not how it happens (loop variable, index, etc.).

Type-Safe Variants
map() always returns a list. But often you know what type to expect. The variants
map_dbl() , map_chr() , map_lgl() , and map_int() return vectors of the corresponding
type — and throw an error if the result doesn’t match:

map() returns a list
map(numbers, mean)

5

BioMath

6/18

[[1]]
[1] 2

[[2]]
[1] 5

[[3]]
[1] 8

map_dbl() returns a numeric vector
map_dbl(numbers, mean)

[1] 2 5 8

map_chr() returns a character vector
map_chr(numbers, \(x) glue::glue("Mean: {mean(x)}"))

[1] "Mean: 2" "Mean: 5" "Mean: 8"

Error when type doesn't match
map_chr(numbers, mean)

Warning: Automatic coercion from double to character was deprecated in purrr 1.0.0.
ℹ Please use an explicit call to `as.character()` within `map_chr()` instead.

[1] "2.000000" "5.000000" "8.000000"

Specifying Functions
There are several ways to specify the function to apply:

1. Named function
map_dbl(numbers, mean)

[1] 2 5 8

2. Anonymous function (modern syntax)
map_dbl(numbers, \(x) mean(x, na.rm = TRUE))

[1] 2 5 8

3. Anonymous function (classic syntax)
map_dbl(numbers, function(x) mean(x, na.rm = TRUE))

[1] 2 5 8

4. purrr formula (legacy, but still common)
map_dbl(numbers, ~ mean(.x, na.rm = TRUE))

[1] 2 5 8

The modern \(x) syntax (since R 4.1) is clearest. But you’ll often see the formula syntax

with ~ and .x in older code.

Extraction by Name or Position
A particularly practical feature: you can pass map() a string or number to extract elements:

List with named elements
people <- list(

6

BioMath

7/18

 list(name = "Anna", age = 25),
 list(name = "Bob", age = 30),
 list(name = "Clara", age = 28)
)

Extract by name
map_chr(people, "name")

[1] "Anna" "Bob" "Clara"

Extract by position
map_int(people, 2)

[1] 25 30 28

 Exercise: Applying map_dbl()

Given a list of vectors. Calculate the range (maximum minus minimum) for each vector
using map_dbl() .

data <- list(
 a = c(1, 5, 3),
 b = c(10, 20, 15, 25),
 c = c(-5, 0, 5)
)

 Solution

map_dbl(data, \(x) max(x) - min(x))

 a b c
 4 15 10

Or with range()
map_dbl(data, \(x) diff(range(x)))

 a b c
 4 15 10

map2 and pmap: Multiple Inputs
Sometimes you need to iterate over multiple lists in parallel. map2() takes two lists, pmap()
takes any number:

Two lists in parallel
x <- list(1, 2, 3)
y <- list(10, 20, 30)

map2_dbl(x, y, \(a, b) a + b)

[1] 11 22 33

Multiple lists with pmap()
params <- list(
 n = c(10, 20, 30),
 mean = c(0, 5, 10),
 sd = c(1, 2, 3)

7

BioMath

8/18

)

set.seed(42)
pmap(params, \(n, mean, sd) rnorm(n, mean, sd)) %>%
 map_dbl(mean)

[1] 0.5472968 4.6584637 9.6342745

imap: With Index or Names
imap() is shorthand for map2(x, names(x), ...) — useful when you need both the value
and the index/name:

x <- c(a = 10, b = 20, c = 30)

imap_chr(x, \(value, name) glue::glue("{name}: {value}"))

 a b c
"a: 10" "b: 20" "c: 30"

 Exercise: Robust Division with map2()

Write a function safe_divide() that returns NA for division by zero (instead of Inf).

Then apply it with map2_dbl() to two vectors.

numerator <- c(10, 20, 30, 40)
denominator <- c(2, 0, 5, 0)

Desired result: c(5, NA, 6, NA)

 Solution

safe_divide <- function(x, y) {
 if (y == 0) return(NA_real_)
 x / y
}

numerator <- c(10, 20, 30, 40)
denominator <- c(2, 0, 5, 0)

map2_dbl(numerator, denominator, safe_divide)

[1] 5 NA 6 NA

Alternative with possibly()
map2_dbl(numerator, denominator, possibly(\(x, y) x / y, otherwise = NA_real_))

[1] 5 Inf 6 Inf

walk: Iteration for Side Effects
When you’re not interested in the return value but in side effects (writing files, displaying
plots), use walk() instead of map() . It invisibly returns the input, making it ideal for pipe
chains:

8

BioMath

9/18

Save multiple plots
plots <- list(
 ggplot(mtcars, aes(mpg)) + geom_histogram(),
 ggplot(mtcars, aes(hp)) + geom_histogram(),
 ggplot(mtcars, aes(wt)) + geom_histogram()
)

filenames <- c("mpg.png", "hp.png", "wt.png")

walk2(plots, filenames, \(plot, file) {
 ggsave(file, plot, width = 6, height = 4)
})

walk() exists in the same variants as map() : walk2() , pwalk() , iwalk() .

Robust Iteration: Catching Errors
The Problem
When iterating over many elements, a single error can abort the entire operation:

One element causes an error
inputs <- list(1, "a", 3)

map_dbl(inputs, log)

Error in `map_dbl()`:
ℹ In index: 2.
Caused by error:
! Nicht-numerisches Argument für mathematische Funktion

Element 2 is not a number, and the whole operation fails. With 1000 files this would be
annoying — you want to know which files had problems while still processing the others.

safely(): Errors as Data
safely() is a “wrapper” (adverb) that modifies a function so it never aborts. Instead, it

returns a list with $result and $error :

safe_log <- safely(log)

safe_log(10)

$result
[1] 2.302585

$error
NULL

safe_log("a")

$result
NULL

$error
<simpleError in .Primitive("log")(x, base): Nicht-numerisches Argument für
mathematische Funktion>

Combined with map() :

9

BioMath

10/18

inputs <- list(1, "a", 3, -1)
results <- map(inputs, safe_log)

Warning in .Primitive("log")(x, base): NaNs wurden erzeugt

results

[[1]]
[[1]]$result
[1] 0

[[1]]$error
NULL

[[2]]
[[2]]$result
NULL

[[2]]$error
<simpleError in .Primitive("log")(x, base): Nicht-numerisches Argument für
mathematische Funktion>

[[3]]
[[3]]$result
[1] 1.098612

[[3]]$error
NULL

[[4]]
[[4]]$result
[1] NaN

[[4]]$error
NULL

With transpose() you can restructure the results:

results_t <- results %>% transpose()

results_t$result

[[1]]
[1] 0

[[2]]
NULL

[[3]]
[1] 1.098612

[[4]]
[1] NaN

results_t$error

[[1]]
NULL

[[2]]
<simpleError in .Primitive("log")(x, base): Nicht-numerisches Argument für
mathematische Funktion>

10

BioMath

11/18

[[3]]
NULL

[[4]]
NULL

possibly(): Replace Errors with Default
Often a simpler approach suffices: replace errors with a default value. For this there’s
possibly() :

Errors become NA
map_dbl(inputs, possibly(log, otherwise = NA_real_))

Warning in .Primitive("log")(x, base): NaNs wurden erzeugt

[1] 0.000000 NA 1.098612 NaN

This is especially practical with map_dbl() , since you get a vector directly instead of a
nested list.

Inspecting Errors
After iteration you often want to know which elements failed:

Which had errors?
results <- map(inputs, safe_log)

Warning in .Primitive("log")(x, base): NaNs wurden erzeugt

failed <- map_lgl(results, \(x) !is.null(x$error))
failed

[1] FALSE TRUE FALSE FALSE

The failed inputs
inputs[failed]

[[1]]
[1] "a"

Only the successful results
successful <- map(results, "result") %>%
 compact() %>%
 map_dbl(identity)

successful

[1] 0.000000 1.098612 NaN

11

BioMath

12/18

 Exercise: Identifying Errors

Given a list of file paths, some of which don’t exist. Use safely() to read all existing files
and find out which files were not found.

Prepare test data
temp_dir <- tempdir()

for (i in 1:2) {
 tibble(id = 1:3, value = rnorm(3)) %>%
 write_csv(file.path(temp_dir, glue::glue("test_{i}.csv")))
}

file_paths <- c(
 file.path(temp_dir, "test_1.csv"),
 "not_found.csv",
 file.path(temp_dir, "test_2.csv"),
 "also_missing.csv"
)

12

BioMath

13/18

 Solution

safe_read <- safely(read_csv)

results <- file_paths %>%
 set_names() %>%
 map(\(f) safe_read(f, show_col_types = FALSE))

Which succeeded?
success <- map_lgl(results, \(x) is.null(x$error))

cat("Successfully read:\n")

Successfully read:

names(results)[success]

[1] "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpqKrC2J/test_1.csv"
[2] "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpqKrC2J/test_2.csv"

cat("\nNot found:\n")

Not found:

names(results)[!success]

[1] "not_found.csv" "also_missing.csv"

Combine only successful data
data <- results[success] %>%
 map("result") %>%
 list_rbind(names_to = "source")

data

A tibble: 6 × 3
 source id value
 <chr> <dbl> <dbl>
1 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpqKrC2J/test_1.cs… 1 -0.367
2 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpqKrC2J/test_1.cs… 2 0.185
3 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpqKrC2J/test_1.cs… 3 0.582
4 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpqKrC2J/test_2.cs… 1 1.40
5 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpqKrC2J/test_2.cs… 2 -0.727
6 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpqKrC2J/test_2.cs… 3 1.30

Practical Applications
Batch Import: Reading Multiple Files
A common use case: you have a folder full of CSV files and want to read and combine them
all.

Find all CSV files in folder
files <- list.files("data/", pattern = "\\.csv$", full.names = TRUE)

Read all and combine into one dataframe
all_data <- files %>%
 map(\(f) read_csv(f, show_col_types = FALSE)) %>%
 list_rbind()

13

BioMath

14/18

With filename as column
all_data <- files %>%
 set_names() %>%
 map(\(f) read_csv(f, show_col_types = FALSE)) %>%
 list_rbind(names_to = "source")

The trick with set_names() without an argument makes the file paths the names of the list,

which then get transferred to the source column.

Batch Export: Writing Multiple Files
The counterpart: split data and write to separate files.

Split data by group
mtcars_split <- mtcars %>%
 group_by(cyl) %>%
 group_split()

Generate filenames
filenames <- mtcars %>%
 distinct(cyl) %>%
 pull(cyl) %>%
 map_chr(\(x) glue::glue("output/mtcars_cyl{x}.csv"))

Write all files
walk2(mtcars_split, filenames, \(data, file) {
 write_csv(data, file)
})

 Exercise: Simulating Batch Import

First create three temporary CSV files, then read them with map() and combine them
into a dataframe.

Create temporary files
batch_dir <- tempdir()

for (i in 1:3) {
 tibble(
 id = 1:5,
 value = rnorm(5),
 group = i
) %>%
 write_csv(file.path(batch_dir, glue::glue("batch_{i}.csv")))
}

14

BioMath

15/18

 Solution

files <- list.files(batch_dir, pattern = "batch_.*\\.csv$", full.names = TRUE)

all_data <- files %>%
 set_names() %>%
 map(\(f) read_csv(f, show_col_types = FALSE)) %>%
 list_rbind(names_to = "source")

all_data

A tibble: 15 × 4
 source id value group
 <chr> <dbl> <dbl> <dbl>
 1 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpqKrC2J/b… 1 0.336 1
 2 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpqKrC2J/b… 2 1.04 1
 3 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpqKrC2J/b… 3 0.921 1
 4 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpqKrC2J/b… 4 0.721 1
 5 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpqKrC2J/b… 5 -1.04 1
 6 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpqKrC2J/b… 1 -0.0902 2
 7 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpqKrC2J/b… 2 0.624 2
 8 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpqKrC2J/b… 3 -0.954 2
 9 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpqKrC2J/b… 4 -0.543 2
10 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpqKrC2J/b… 5 0.581 2
11 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpqKrC2J/b… 1 0.768 3
12 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpqKrC2J/b… 2 0.464 3
13 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpqKrC2J/b… 3 -0.886 3
14 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpqKrC2J/b… 4 -1.10 3
15 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpqKrC2J/b… 5 1.51 3

Fitting Models to Groups
With nest() you can nest dataframes and then fit models per group:

Nest data
mtcars_nested <- mtcars %>%
 group_by(cyl) %>%
 nest()

mtcars_nested

A tibble: 3 × 2
Groups: cyl [3]
 cyl data
 <dbl> <list>
1 6 <tibble [7 × 10]>
2 4 <tibble [11 × 10]>
3 8 <tibble [14 × 10]>

Fit model per group
mtcars_models <- mtcars_nested %>%
 mutate(
 model = map(data, \(df) lm(mpg ~ wt, data = df)),
 tidied = map(model, broom::tidy)
)

Extract results
mtcars_models %>%
 select(cyl, tidied) %>%
 unnest(tidied)

A tibble: 6 × 6
Groups: cyl [3]

15

BioMath

16/18

 cyl term estimate std.error statistic p.value
 <dbl> <chr> <dbl> <dbl> <dbl> <dbl>
1 6 (Intercept) 28.4 4.18 6.79 0.00105
2 6 wt -2.78 1.33 -2.08 0.0918
3 4 (Intercept) 39.6 4.35 9.10 0.00000777
4 4 wt -5.65 1.85 -3.05 0.0137
5 8 (Intercept) 23.9 3.01 7.94 0.00000405
6 8 wt -2.19 0.739 -2.97 0.0118

Creating and Saving Multiple Plots
A complete example combining nest(), map(), and walk():

Prepare data
plot_data <- mtcars %>%
 group_by(cyl) %>%
 nest() %>%
 mutate(
 plot = map2(data, cyl, \(df, cyl_val) {
 ggplot(df, aes(x = wt, y = mpg)) +
 geom_point() +
 geom_smooth(method = "lm", se = FALSE) +
 labs(title = glue::glue("{cyl_val} Cylinders: MPG vs. Weight"))
 }),
 filename = glue::glue("plots/scatter_cyl{cyl}.png")
)

Save all plots
walk2(plot_data$plot, plot_data$filename, \(p, f) {
 ggsave(f, p, width = 6, height = 4)
})

 Exercise: Summary Statistics per Group

Use nest() and map() to calculate the mean and standard deviation of mpg for each

value of cyl in the mtcars dataset. The result should be a tidy dataframe.

 Solution

mtcars %>%
 group_by(cyl) %>%
 nest() %>%
 mutate(
 mean_mpg = map_dbl(data, \(df) mean(df$mpg)),
 sd_mpg = map_dbl(data, \(df) sd(df$mpg))
) %>%
 select(cyl, mean_mpg, sd_mpg)

A tibble: 3 × 3
Groups: cyl [3]
 cyl mean_mpg sd_mpg
 <dbl> <dbl> <dbl>
1 6 19.7 1.45
2 4 26.7 4.51
3 8 15.1 2.56

16

BioMath

17/18

List-Columns: Dataframes with Lists as
Columns
The previous examples already used nest() to create “list-columns” — columns that contain
lists instead of atomic vectors. This is a powerful concept that we’ll briefly introduce here.

nest() creates a list-column
nested <- mtcars %>%
 group_by(cyl) %>%
 nest()

nested

A tibble: 3 × 2
Groups: cyl [3]
 cyl data
 <dbl> <list>
1 6 <tibble [7 × 10]>
2 4 <tibble [11 × 10]>
3 8 <tibble [14 × 10]>

The data column contains dataframes
nested$data[[1]]

A tibble: 7 × 10
 mpg disp hp drat wt qsec vs am gear carb
 <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 21 160 110 3.9 2.62 16.5 0 1 4 4
2 21 160 110 3.9 2.88 17.0 0 1 4 4
3 21.4 258 110 3.08 3.22 19.4 1 0 3 1
4 18.1 225 105 2.76 3.46 20.2 1 0 3 1
5 19.2 168. 123 3.92 3.44 18.3 1 0 4 4
6 17.8 168. 123 3.92 3.44 18.9 1 0 4 4
7 19.7 145 175 3.62 2.77 15.5 0 1 5 6

With unnest() you can “unpack” list-columns:

nested %>%
 unnest(data)

A tibble: 32 × 11
Groups: cyl [3]
 cyl mpg disp hp drat wt qsec vs am gear carb
 <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 1 6 21 160 110 3.9 2.62 16.5 0 1 4 4
 2 6 21 160 110 3.9 2.88 17.0 0 1 4 4
 3 6 21.4 258 110 3.08 3.22 19.4 1 0 3 1
 4 6 18.1 225 105 2.76 3.46 20.2 1 0 3 1
 5 6 19.2 168. 123 3.92 3.44 18.3 1 0 4 4
 6 6 17.8 168. 123 3.92 3.44 18.9 1 0 4 4
 7 6 19.7 145 175 3.62 2.77 15.5 0 1 5 6
 8 4 22.8 108 93 3.85 2.32 18.6 1 1 4 1
 9 4 24.4 147. 62 3.69 3.19 20 1 0 4 2
10 4 22.8 141. 95 3.92 3.15 22.9 1 0 4 2
ℹ 22 more rows

List-columns are especially useful in combination with map() inside mutate() . They allow
organizing complex workflows (like fitting many models) in a clear, tabular format.

17

BioMath

18/18

 Further Reading

List-columns and advanced applications of nest() / unnest() are a large topic on their
own. For more details we recommend Chapter 23: Hierarchical Data and Chapter 25:
Many Models (from the 1st edition of R4DS).

for vs. map: Decision Guide
When should you use for loops, when map functions? Here’s some guidance:

for loops are often better when:

• The logic is complex and you need maximum control
• Each iteration depends on the result of the previous one
• You’re just learning to program and the explicit notation helps

map functions are often better when:

• You’re applying the same operation to many elements (the standard case)
• You want to use the code in a pipe chain
• You want type safety (map_dbl, map_chr, etc.)
• You prefer the functional, declarative style

The most important advice: use what you understand. Both approaches are legitimate. for
loops are not “bad” or “slow” (this prejudice is outdated). map functions are not “better”, just
different. Over time you’ll develop a feel for which approach fits more naturally in which
situation.

Same result, different styles

for loop
results_for <- vector("double", 3)
for (i in 1:3) {
 results_for[i] <- mean(mtcars[[i]])
}
results_for

[1] 20.09062 6.18750 230.72188

map
results_map <- map_dbl(mtcars[1:3], mean)
results_map

 mpg cyl disp
 20.09062 6.18750 230.72188

Bibliography

18

https://r4ds.hadley.nz/rectangling.html
https://r4ds.had.co.nz/many-models.html
https://r4ds.had.co.nz/many-models.html

	Why Iteration?
	Implicit Iteration with across()
	for Loops
	Basic Syntax
	Storing Results
	seq_along() Instead of 1:length()
	When for Loops Are Useful

	The map Family from purrr
	The Basic Principle
	Type-Safe Variants
	Specifying Functions
	Extraction by Name or Position
	map2 and pmap: Multiple Inputs
	imap: With Index or Names

	walk: Iteration for Side Effects
	Robust Iteration: Catching Errors
	The Problem
	safely(): Errors as Data
	possibly(): Replace Errors with Default
	Inspecting Errors

	Practical Applications
	Batch Import: Reading Multiple Files
	Batch Export: Writing Multiple Files
	Fitting Models to Groups
	Creating and Saving Multiple Plots

	List-Columns: Dataframes with Lists as Columns
	for vs. map: Decision Guide
	Bibliography

