

9. Iteration

Applying operations to many elements with for loops and purrr

Dr. Paul Schmidt

Why Iteration?

Iteration means repeatedly applying the same operation to different elements: to multiple columns of a data frame, to multiple files in a folder, or to multiple groups in your data. While the previous chapter showed how to encapsulate repeated code in functions, this chapter shows how to efficiently apply those functions to many elements.

R has a special feature: many operations are already **vectorized**. When you write `x * 2`, R automatically multiplies every value in `x` by 2 — no loop needed. In other languages this wouldn't be so automatic:

```
x <- c(1, 2, 3, 4, 5)

# Vectorized - no explicit iteration needed
x * 2

[1] 2 4 6 8 10

sqrt(x)

[1] 1.000000 1.414214 1.732051 2.000000 2.236068
```

But not everything can be vectorized so elegantly. When you want to read 50 CSV files, create 20 plots, or fit a model to each group of your data, you need explicit iteration. There are two main approaches: **for loops** (imperative) and **map functions** (functional).

💡 Further Resources

This chapter is based on Chapter 26: Iteration from “R for Data Science” (2nd edition). For a more comprehensive treatment of purrr, we recommend Jenny Bryan’s purrr Tutorial and the purrr documentation.

Implicit Iteration with `across()`

Before we get to explicit iteration, you should know: for many column-based operations you don't need loops or map functions at all. The `across()` function from dplyr handles this elegantly:

```
# Without across() - repetitive
mtcars %>%
  summarize(
    mpg_mean = mean(mpg),
    hp_mean = mean(hp),
    wt_mean = mean(wt)
  )
```

```
mpg_mean hp_mean wt_mean
1 20.09062 146.6875 3.21725
```

```
# With across() - compact
mtcars %>%
  summarize(across(c(mpg, hp, wt), mean))
```

```
mpg      hp      wt
1 20.09062 146.6875 3.21725
```

With `where()` you can select columns by type:

```
# Mean of all numeric columns
mtcars %>%
  summarize(across(where(is.numeric), \(x) mean(x, na.rm = TRUE)))
```

```
mpg      cyl      disp      hp      drat      wt      qsec      vs      am
1 20.09062 6.1875 230.7219 146.6875 3.596563 3.21725 17.84875 0.4375 0.40625
  gear      carb
1 3.6875 2.8125
```

And with the `.names` argument you control the column names in the output:

```
mtcars %>%
  summarize(across(
    c(mpg, hp, wt),
    list(mean = \(x) mean(x, na.rm = TRUE),
         sd = \(x) sd(x, na.rm = TRUE)),
    .names = "{.col}_{.fn}"
  ))
```

```
mpg_mean  mpg_sd  hp_mean  hp_sd  wt_mean  wt_sd
1 20.09062 6.026948 146.6875 68.56287 3.21725 0.9784574
```

! Syntax Change in dplyr 1.1.0

The old syntax `across(a:b, mean, na.rm = TRUE)` is deprecated. Use an anonymous function instead: `across(a:b, \(x) mean(x, na.rm = TRUE))`.

💡 Exercise: `across()` with Multiple Functions

Calculate the mean and standard deviation of all numeric columns in the `iris` dataset, grouped by `Species`. Use `across()` with the `.names` argument.

i Solution

```
iris %>%
  group_by(Species) %>%
  summarize(across(
    where(is.numeric),
    list(mean = \(x) mean(x), sd = \(x) sd(x)),
    .names = "{.col}_{.fn}"
  ))
# A tibble: 3 × 9
  Species Sepal.Length_mean Sepal.Length_sd Sepal.Width_mean Sepal.Width_sd
  <fct>     <dbl>        <dbl>        <dbl>        <dbl>
1 setosa     5.01        0.352        3.43        0.379
2 versicolor 5.94        0.516        2.77        0.314
3 virginica  6.59        0.636        2.97        0.322
# i 4 more variables: Petal.Length_mean <dbl>, Petal.Length_sd <dbl>,
#   Petal.Width_mean <dbl>, Petal.Width_sd <dbl>
```

for Loops

Basic Syntax

A for loop repeats a code block for each element of a vector or list:

```
# Simple for loop
for (i in 1:5) {
  print(glue:::glue("Iteration {i}"))
```

```
Iteration 1
Iteration 2
Iteration 3
Iteration 4
Iteration 5
```

The structure is always the same: `for (variable in sequence) { ... }`. In each iteration, `variable` takes the next value from `sequence`.

Storing Results

When you want to store results from a loop, **you should pre-allocate the output container**. This is important for performance:

```
# Good: Pre-allocate vector
n <- 10
results <- vector("double", n)

for (i in 1:n) {
  results[i] <- i^2
}

results
```

```
[1] 1 4 9 16 25 36 49 64 81 100
```

```
# Bad: "Growing" the vector in the loop
results <- c()
```

```

for (i in 1:n) {
  results <- c(results, i^2)
}

```

The second example is slow because R has to copy the entire vector with each `c()`. With large datasets this can make an enormous difference.

seq_along() Instead of 1:length()

It's better to use `seq_along()` instead of `1:length()` to avoid problems with empty vectors:

```

x <- c("a", "b", "c")
y <- character(0)

# seq_along() is safe
for (i in seq_along(x)) {
  print(x[i])
}

[1] "a"
[1] "b"
[1] "c"

seq_along(y)

integer(0)

# 1:length() has a problem with empty vectors
1:length(y)

[1] 1 0

```

When for Loops Are Useful

for loops are especially useful when:

- The iteration has side effects (writing files, displaying plots)
- Each iteration depends on the result of the previous one
- The logic is very complex and you need maximum control

```

# Iteration with dependency: Cumulative sum
x <- c(3, 1, 4, 1, 5)
cumsum_manual <- vector("double", length(x))
cumsum_manual[1] <- x[1]

for (i in 2:length(x)) {
  cumsum_manual[i] <- cumsum_manual[i - 1] + x[i]
}

cumsum_manual

[1] 3 4 8 9 14

cumsum(x)

[1] 3 4 8 9 14

```

💡 Exercise: Column Means with for Loop

Calculate the means of the first four columns of `mtcars` using a for loop. Store the results in a pre-allocated vector.

💡 Solution

```
# Pre-allocate vector
means <- vector("double", 4)
names(means) <- names(mtcars)[1:4]

for (i in 1:4) {
  means[i] <- mean(mtcars[[i]])
}

means
```

```
mpg      cyl      disp      hp
20.09062  6.18750 230.72188 146.68750
```

The map Family from purrr

The Basic Principle

The `map()` function from the `purrr` package is the functional alternative to the for loop. The principle: you provide a list (or vector) and a function — `map()` applies the function to each element and returns a list.

```
# Apply a function to each element
numbers <- list(1:3, 4:6, 7:9)

map(numbers, mean)
```

```
[[1]]
[1] 2

[[2]]
[1] 5

[[3]]
[1] 8
```

The advantage over for loops: the code is more compact and expresses more clearly *what* happens (apply function to all elements), not *how* it happens (loop variable, index, etc.).

Type-Safe Variants

`map()` always returns a list. But often you know what type to expect. The variants `map_dbl()`, `map_chr()`, `map_lgl()`, and `map_int()` return vectors of the corresponding type — and throw an error if the result doesn't match:

```
# map() returns a list
map(numbers, mean)
```

```

[[1]]
[1] 2

[[2]]
[1] 5

[[3]]
[1] 8

# map_dbl() returns a numeric vector
map_dbl(numbers, mean)

[1] 2 5 8

# map_chr() returns a character vector
map_chr(numbers, \(x) glue::glue("Mean: {mean(x)}"))

[1] "Mean: 2" "Mean: 5" "Mean: 8"

# Error when type doesn't match
map_chr(numbers, mean)

Warning: Automatic coercion from double to character was deprecated in purrr 1.0.0.
  i Please use an explicit call to `as.character()` within `map_chr()` instead.

[1] "2.000000" "5.000000" "8.000000"

```

Specifying Functions

There are several ways to specify the function to apply:

```

# 1. Named function
map_dbl(numbers, mean)

[1] 2 5 8

# 2. Anonymous function (modern syntax)
map_dbl(numbers, \(x) mean(x, na.rm = TRUE))

[1] 2 5 8

# 3. Anonymous function (classic syntax)
map_dbl(numbers, function(x) mean(x, na.rm = TRUE))

[1] 2 5 8

# 4. purrr formula (legacy, but still common)
map_dbl(numbers, ~ mean(.x, na.rm = TRUE))

[1] 2 5 8

```

The modern `\(x)` syntax (since R 4.1) is clearest. But you'll often see the formula syntax with `~` and `.x` in older code.

Extraction by Name or Position

A particularly practical feature: you can pass `map()` a string or number to extract elements:

```

# List with named elements
people <- list(

```

```

list(name = "Anna", age = 25),
list(name = "Bob", age = 30),
list(name = "Clara", age = 28)
)

# Extract by name
map_chr(people, "name")

```

```
[1] "Anna" "Bob" "Clara"
```

```

# Extract by position
map_int(people, 2)

```

```
[1] 25 30 28
```

💡 Exercise: Applying map_dbl()

Given a list of vectors. Calculate the range (maximum minus minimum) for each vector using `map_dbl()`.

```

data <- list(
  a = c(1, 5, 3),
  b = c(10, 20, 15, 25),
  c = c(-5, 0, 5)
)

```

💡 Solution

```
map_dbl(data, \(x) max(x) - min(x))
```

```
a b c
4 15 10
```

```
# Or with range()
map_dbl(data, \(x) diff(range(x)))
```

```
a b c
4 15 10
```

map2 and pmap: Multiple Inputs

Sometimes you need to iterate over multiple lists in parallel. `map2()` takes two lists, `pmap()` takes any number:

```

# Two lists in parallel
x <- list(1, 2, 3)
y <- list(10, 20, 30)

map2_dbl(x, y, \(a, b) a + b)

```

```
[1] 11 22 33
```

```

# Multiple lists with pmap()
params <- list(
  n = c(10, 20, 30),
  mean = c(0, 5, 10),
  sd = c(1, 2, 3)
)

```

```

)
set.seed(42)
pmap(params, \(n, mean, sd) rnorm(n, mean, sd)) %>%
  map_dbl(mean)

[1] 0.5472968 4.6584637 9.6342745

```

imap: With Index or Names

`imap()` is shorthand for `map2(x, names(x), ...)` — useful when you need both the value and the index/name:

```

x <- c(a = 10, b = 20, c = 30)

imap_chr(x, \(value, name) glue::glue("{name}: {value}"))

a      b      c
"a: 10" "b: 20" "c: 30"

```

💡 Exercise: Robust Division with map2()

Write a function `safe_divide()` that returns `NA` for division by zero (instead of `Inf`).

Then apply it with `map2_dbl()` to two vectors.

```

numerator <- c(10, 20, 30, 40)
denominator <- c(2, 0, 5, 0)

# Desired result: c(5, NA, 6, NA)

```

💡 Solution

```

safe_divide <- function(x, y) {
  if (y == 0) return(NA_real_)
  x / y
}

numerator <- c(10, 20, 30, 40)
denominator <- c(2, 0, 5, 0)

map2_dbl(numerator, denominator, safe_divide)

[1] 5 NA 6 NA

# Alternative with possibly()
map2_dbl(numerator, denominator, possibly(\(x, y) x / y, otherwise = NA_real_))

[1] 5 Inf 6 Inf

```

walk: Iteration for Side Effects

When you're not interested in the return value but in side effects (writing files, displaying plots), use `walk()` instead of `map()`. It invisibly returns the input, making it ideal for pipe chains:

```
# Save multiple plots
plots <- list(
  ggplot(mtcars, aes(mpg)) + geom_histogram(),
  ggplot(mtcars, aes(hp)) + geom_histogram(),
  ggplot(mtcars, aes(wt)) + geom_histogram()
)

filenames <- c("mpg.png", "hp.png", "wt.png")

walk2(plots, filenames, \(plot, file) {
  ggsave(file, plot, width = 6, height = 4)
})
```

`walk()` exists in the same variants as `map()`: `walk2()`, `pwalk()`, `iwalk()`.

Robust Iteration: Catching Errors

The Problem

When iterating over many elements, a single error can abort the entire operation:

```
# One element causes an error
inputs <- list(1, "a", 3)

map_dbl(inputs, log)

Error in `map_dbl()`:
i In index: 2.
Caused by error:
! Nicht-numerisches Argument für mathematische Funktion
```

Element 2 is not a number, and the whole operation fails. With 1000 files this would be annoying — you want to know which files had problems while still processing the others.

safely(): Errors as Data

`safely()` is a “wrapper” (adverb) that modifies a function so it never aborts. Instead, it returns a list with `$result` and `$error`:

```
safe_log <- safely(log)

safe_log(10)

$result
[1] 2.302585

$error
NULL

safe_log("a")

$result
NULL

$error
<simpleError in .Primitive("log") (x, base): Nicht-numerisches Argument für
mathematische Funktion>
```

Combined with `map()`:

```

inputs <- list(1, "a", 3, -1)
results <- map(inputs, safe_log)

Warning in .Primitive("log")(x, base): NaNs wurden erzeugt

results

[[1]]
[[1]]$result
[1] 0

[[1]]$error
NULL

[[2]]
[[2]]$result
NULL

[[2]]$error
<simpleError in .Primitive("log")(x, base): Nicht-numerisches Argument für
mathematische Funktion>

[[3]]
[[3]]$result
[1] 1.098612

[[3]]$error
NULL

[[4]]
[[4]]$result
[1] NaN

[[4]]$error
NULL

```

With `transpose()` you can restructure the results:

```

results_t <- results %>% transpose()

results_t$result

[[1]]
[1] 0

[[2]]
NULL

[[3]]
[1] 1.098612

[[4]]
[1] NaN

results_t$error

[[1]]
NULL

[[2]]
<simpleError in .Primitive("log")(x, base): Nicht-numerisches Argument für
mathematische Funktion>

```

```
[[3]]
NULL

[[4]]
NULL
```

possibly(): Replace Errors with Default

Often a simpler approach suffices: replace errors with a default value. For this there's

```
possibly() :
```

```
# Errors become NA
map_dbl(inputs, possibly(log, otherwise = NA_real_))
```

```
Warning in .Primitive("log")(x, base): NaNs wurden erzeugt
```

```
[1] 0.000000      NA 1.098612      NaN
```

This is especially practical with `map_dbl()`, since you get a vector directly instead of a nested list.

Inspecting Errors

After iteration you often want to know which elements failed:

```
# Which had errors?
results <- map(inputs, safe_log)
```

```
Warning in .Primitive("log")(x, base): NaNs wurden erzeugt
```

```
failed <- map_lgl(results, \ (x) !is.null(x$error))
failed
```

```
[1] FALSE  TRUE FALSE FALSE
```

```
# The failed inputs
inputs[failed]
```

```
[[1]]
[1] "a"
```

```
# Only the successful results
successful <- map(results, "result") %>%
  compact() %>%
  map_dbl(identity)

successful
```

```
[1] 0.000000 1.098612      NaN
```

💡 Exercise: Identifying Errors

Given a list of file paths, some of which don't exist. Use `safely()` to read all existing files and find out which files were not found.

```
# Prepare test data
temp_dir <- tempdir()

for (i in 1:2) {
  tibble(id = 1:3, value = rnorm(3)) %>%
    write_csv(file.path(temp_dir, glue::glue("test_{i}.csv")))
}

file_paths <- c(
  file.path(temp_dir, "test_1.csv"),
  "not_found.csv",
  file.path(temp_dir, "test_2.csv"),
  "also_missing.csv"
)
```

i Solution

```

safe_read <- safely(read_csv)

results <- file_paths %>%
  set_names() %>%
  map(\(f) safe_read(f, show_col_types = FALSE))

# Which succeeded?
success <- map_lgl(results, \(x) is.null(x$error))

cat("Successfully read:\n")

Successfully read:

names(results)[success]

[1] "C:\\\\Users\\\\BIOMAT~1\\\\AppData\\\\Local\\\\Temp\\\\RtmpqKrC2J/test_1.csv"
[2] "C:\\\\Users\\\\BIOMAT~1\\\\AppData\\\\Local\\\\Temp\\\\RtmpqKrC2J/test_2.csv"

cat("\nNot found:\n")

Not found:

names(results)[!success]

[1] "not_found.csv"      "also_missing.csv"

# Combine only successful data
data <- results[success] %>%
  map("result") %>%
  list_rbind(names_to = "source")

data

# A tibble: 6 × 3
#>   source          id  value
#>   <chr>        <dbl> <dbl>
#> 1 "C:\\\\Users\\\\BIOMAT~1\\\\AppData\\\\Local\\\\Temp\\\\RtmpqKrC2J/test_1.csv" 1 -0.367
#> 2 "C:\\\\Users\\\\BIOMAT~1\\\\AppData\\\\Local\\\\Temp\\\\RtmpqKrC2J/test_1.csv" 2  0.185
#> 3 "C:\\\\Users\\\\BIOMAT~1\\\\AppData\\\\Local\\\\Temp\\\\RtmpqKrC2J/test_1.csv" 3  0.582
#> 4 "C:\\\\Users\\\\BIOMAT~1\\\\AppData\\\\Local\\\\Temp\\\\RtmpqKrC2J/test_2.csv"   1  1.40
#> 5 "C:\\\\Users\\\\BIOMAT~1\\\\AppData\\\\Local\\\\Temp\\\\RtmpqKrC2J/test_2.csv"   2 -0.727
#> 6 "C:\\\\Users\\\\BIOMAT~1\\\\AppData\\\\Local\\\\Temp\\\\RtmpqKrC2J/test_2.csv"   3  1.30

```

Practical Applications

Batch Import: Reading Multiple Files

A common use case: you have a folder full of CSV files and want to read and combine them all.

```

# Find all CSV files in folder
files <- list.files("data/", pattern = "\\\\.csv$", full.names = TRUE)

# Read all and combine into one dataframe
all_data <- files %>%
  map(\(f) read_csv(f, show_col_types = FALSE)) %>%
  list_rbind()

```

```
# With filename as column
all_data <- files %>%
  set_names() %>%
  map(\(f) read_csv(f, show_col_types = FALSE)) %>%
  list_rbind(names_to = "source")
```

The trick with `set_names()` without an argument makes the file paths the names of the list, which then get transferred to the `source` column.

Batch Export: Writing Multiple Files

The counterpart: split data and write to separate files.

```
# Split data by group
mtcars_split <- mtcars %>%
  group_by(cyl) %>%
  group_split()

# Generate filenames
filenames <- mtcars %>%
  distinct(cyl) %>%
  pull(cyl) %>%
  map_chr(\(x) glue::glue("output/mtcars_cyl{x}.csv"))

# Write all files
walk2(mtcars_split, filenames, \(data, file) {
  write_csv(data, file)
})
```

💡 Exercise: Simulating Batch Import

First create three temporary CSV files, then read them with `map()` and combine them into a dataframe.

```
# Create temporary files
batch_dir <- tempdir()

for (i in 1:3) {
  tibble(
    id = 1:5,
    value = rnorm(5),
    group = i
  ) %>%
    write_csv(file.path(batch_dir, glue::glue("batch_{i}.csv")))
}
```

i Solution

```
files <- list.files(batch_dir, pattern = "batch_.*\\.csv$", full.names = TRUE)

all_data <- files %>%
  set_names() %>%
  map(\(f) read_csv(f, show_col_types = FALSE)) %>%
  list_rbind(names_to = "source")

all_data

# A tibble: 15 × 4
# Groups:   source [5]
  source                               id   value  group
  <chr>                               <dbl> <dbl> <dbl>
1 "C:\\\\Users\\\\BIOMAT~1\\\\AppData\\\\Local\\\\Temp\\\\RtmpqKrC2J/b..." 1  0.336  1
2 "C:\\\\Users\\\\BIOMAT~1\\\\AppData\\\\Local\\\\Temp\\\\RtmpqKrC2J/b..." 2  1.04   1
3 "C:\\\\Users\\\\BIOMAT~1\\\\AppData\\\\Local\\\\Temp\\\\RtmpqKrC2J/b..." 3  0.921  1
4 "C:\\\\Users\\\\BIOMAT~1\\\\AppData\\\\Local\\\\Temp\\\\RtmpqKrC2J/b..." 4  0.721  1
5 "C:\\\\Users\\\\BIOMAT~1\\\\AppData\\\\Local\\\\Temp\\\\RtmpqKrC2J/b..." 5 -1.04   1
6 "C:\\\\Users\\\\BIOMAT~1\\\\AppData\\\\Local\\\\Temp\\\\RtmpqKrC2J/b..." 1 -0.0902 2
7 "C:\\\\Users\\\\BIOMAT~1\\\\AppData\\\\Local\\\\Temp\\\\RtmpqKrC2J/b..." 2  0.624  2
8 "C:\\\\Users\\\\BIOMAT~1\\\\AppData\\\\Local\\\\Temp\\\\RtmpqKrC2J/b..." 3 -0.954  2
9 "C:\\\\Users\\\\BIOMAT~1\\\\AppData\\\\Local\\\\Temp\\\\RtmpqKrC2J/b..." 4 -0.543  2
10 "C:\\\\Users\\\\BIOMAT~1\\\\AppData\\\\Local\\\\Temp\\\\RtmpqKrC2J/b..." 5  0.581  2
11 "C:\\\\Users\\\\BIOMAT~1\\\\AppData\\\\Local\\\\Temp\\\\RtmpqKrC2J/b..." 1  0.768  3
12 "C:\\\\Users\\\\BIOMAT~1\\\\AppData\\\\Local\\\\Temp\\\\RtmpqKrC2J/b..." 2  0.464  3
13 "C:\\\\Users\\\\BIOMAT~1\\\\AppData\\\\Local\\\\Temp\\\\RtmpqKrC2J/b..." 3 -0.886  3
14 "C:\\\\Users\\\\BIOMAT~1\\\\AppData\\\\Local\\\\Temp\\\\RtmpqKrC2J/b..." 4 -1.10   3
15 "C:\\\\Users\\\\BIOMAT~1\\\\AppData\\\\Local\\\\Temp\\\\RtmpqKrC2J/b..." 5  1.51   3
```

Fitting Models to Groups

With `nest()` you can nest dataframes and then fit models per group:

```
# Nest data
mtcars_nested <- mtcars %>%
  group_by(cyl) %>%
  nest()

mtcars_nested

# A tibble: 3 × 2
# Groups:   cyl [3]
  cyl data
  <dbl> <list>
1     6 <tibble [7 × 10]>
2     4 <tibble [11 × 10]>
3     8 <tibble [14 × 10]>

# Fit model per group
mtcars_models <- mtcars_nested %>%
  mutate(
    model = map(data, \((df) lm(mpg ~ wt, data = df))),
    tidied = map(model, broom::tidy)
  )

# Extract results
mtcars_models %>%
  select(cyl, tidied) %>%
  unnest(tidied)

# A tibble: 6 × 6
# Groups:   cyl [3]
```

	cyl	term	estimate	std.error	statistic	p.value
1	6	(Intercept)	28.4	4.18	6.79	0.00105
2	6	wt	-2.78	1.33	-2.08	0.0918
3	4	(Intercept)	39.6	4.35	9.10	0.00000777
4	4	wt	-5.65	1.85	-3.05	0.0137
5	8	(Intercept)	23.9	3.01	7.94	0.00000405
6	8	wt	-2.19	0.739	-2.97	0.0118

Creating and Saving Multiple Plots

A complete example combining `nest()`, `map()`, and `walk()`:

```
# Prepare data
plot_data <- mtcars %>%
  group_by(cyl) %>%
  nest() %>%
  mutate(
    plot = map2(data, cyl, \(df, cyl_val) {
      ggplot(df, aes(x = wt, y = mpg)) +
      geom_point() +
      geom_smooth(method = "lm", se = FALSE) +
      labs(title = glue:::glue("{cyl_val} Cylinders: MPG vs. Weight"))
    }),
    filename = glue:::glue("plots/scatter_cyl{cyl}.png")
  )

# Save all plots
walk2(plot_data$plot, plot_data$filename, \(p, f) {
  ggsave(f, p, width = 6, height = 4)
})
```

💡 Exercise: Summary Statistics per Group

Use `nest()` and `map()` to calculate the mean and standard deviation of `mpg` for each value of `cyl` in the `mtcars` dataset. The result should be a tidy dataframe.

💡 Solution

```
mtcars %>%
  group_by(cyl) %>%
  nest() %>%
  mutate(
    mean_mpg = map_dbl(data, \(df) mean(df$mpg)),
    sd_mpg = map_dbl(data, \(df) sd(df$mpg))
  ) %>%
  select(cyl, mean_mpg, sd_mpg)
```

```
# A tibble: 3 × 3
# Groups:   cyl [3]
  cyl  mean_mpg  sd_mpg
  <dbl>     <dbl>   <dbl>
1     6      19.7   1.45
2     4      26.7   4.51
3     8      15.1   2.56
```

List-Columns: Dataframes with Lists as Columns

The previous examples already used `nest()` to create “list-columns” — columns that contain lists instead of atomic vectors. This is a powerful concept that we’ll briefly introduce here.

```
# nest() creates a list-column
nested <- mtcars %>%
  group_by(cyl) %>%
  nest()

nested

# A tibble: 3 × 2
# Groups: cyl [3]
  cyl data
  <dbl> <list>
1     6 <tibble [7 × 10]>
2     4 <tibble [11 × 10]>
3     8 <tibble [14 × 10]>

# The data column contains dataframes
nested$data[[1]]
```

```
# A tibble: 7 × 10
  mpg   disp    hp  drat    wt  qsec    vs    am  gear  carb
  <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 21.0 160.   110. 3.90 2.62 16.5   0.0  1.0  4.0  4
2 21.0 160.   110. 3.90 2.88 17.0   0.0  1.0  4.0  4
3 21.4 258.   110. 3.08 3.22 19.4   1.0  0.0  3.0  1
4 18.1 225.   105. 2.76 3.46 20.2   1.0  0.0  3.0  1
5 19.2 168.   123. 3.92 3.44 18.3   1.0  0.0  4.0  4
6 17.8 168.   123. 3.92 3.44 18.9   1.0  0.0  4.0  4
7 19.7 145.   175. 3.62 2.77 15.5   0.0  1.0  5.0  6
```

With `unnest()` you can “unpack” list-columns:

```
nested %>%
  unnest(data)

# A tibble: 32 × 11
# Groups: cyl [3]
  cyl   mpg   disp    hp  drat    wt  qsec    vs    am  gear  carb
  <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 6.0 21.0 160.   110. 3.90 2.62 16.5   0.0  1.0  4.0  4
2 6.0 21.0 160.   110. 3.90 2.88 17.0   0.0  1.0  4.0  4
3 6.0 21.4 258.   110. 3.08 3.22 19.4   1.0  0.0  3.0  1
4 6.0 18.1 225.   105. 2.76 3.46 20.2   1.0  0.0  3.0  1
5 6.0 19.2 168.   123. 3.92 3.44 18.3   1.0  0.0  4.0  4
6 6.0 17.8 168.   123. 3.92 3.44 18.9   1.0  0.0  4.0  4
7 6.0 19.7 145.   175. 3.62 2.77 15.5   0.0  1.0  5.0  6
8 4.0 22.8 108.   93. 3.85 2.32 18.6   1.0  1.0  4.0  1
9 4.0 24.4 147.   62. 3.69 3.19 20.0   1.0  0.0  4.0  2
10 4.0 22.8 141.   95. 3.92 3.15 22.9   1.0  0.0  4.0  2
# i 22 more rows
```

List-columns are especially useful in combination with `map()` inside `mutate()`. They allow organizing complex workflows (like fitting many models) in a clear, tabular format.

Further Reading

List-columns and advanced applications of `nest()` / `unnest()` are a large topic on their own. For more details we recommend Chapter 23: Hierarchical Data and Chapter 25: Many Models (from the 1st edition of R4DS).

for vs. map: Decision Guide

When should you use for loops, when map functions? Here's some guidance:

for loops are often better when:

- The logic is complex and you need maximum control
- Each iteration depends on the result of the previous one
- You're just learning to program and the explicit notation helps

map functions are often better when:

- You're applying the same operation to many elements (the standard case)
- You want to use the code in a pipe chain
- You want type safety (`map_dbl`, `map_chr`, etc.)
- You prefer the functional, declarative style

The most important advice: **use what you understand**. Both approaches are legitimate. for loops are not “bad” or “slow” (this prejudice is outdated). map functions are not “better”, just different. Over time you'll develop a feel for which approach fits more naturally in which situation.

```
# Same result, different styles

# for loop
results_for <- vector("double", 3)
for (i in 1:3) {
  results_for[i] <- mean(mtcars[[i]])
}
results_for
```

```
[1] 20.09062 6.18750 230.72188
```

```
# map
results_map <- map_dbl(mtcars[1:3], mean)
results_map
```

```
mpg      cyl      disp
20.09062 6.18750 230.72188
```

Bibliography