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1. Einfaktorielle ANOVA in einem CRD

Varianzanalyse (ANOVA); Vollständig randomisiertes Versuchsdesign (CRD)
Dr. Paul Schmidt

Um alle in diesem Kapitel verwendeten Pakete zu installieren und zu laden, führen Sie
folgenden Code aus:

for (pkg in c("desplot", "emmeans", "here", "multcomp", "multcompView",
"tidyverse")) {
  if (!require(pkg, character.only = TRUE)) install.packages(pkg)
}

library(desplot)
library(emmeans)
library(here)
library(multcomp)
library(multcompView)
library(tidyverse)

Zwei neue Aspekte
In diesem und dem nächsten Kapitel unterscheiden sich zwei Dinge fundamental von
unseren bisherigen Kapiteln/Analysen:

1. Einerseits haben wir nun Daten aus einem geplanten Experiment, bei dem wir bewusst
einen Behandlungsfaktor gewählt, das Experiment auf eine bestimmte Weise angeordnet
und dann die Zielvariable gemessen haben. In unseren bisherigen Datensätzen haben wir
mehr oder weniger eine spontane Bestandsaufnahme der Welt um uns herum gemacht.

2. Andererseits werden wir kategoriale Prädiktoren (Faktoren) anstelle von kontinuierlichen
Prädiktoren analysieren. Somit ist unsere Zielvariable (𝑦) nach wie vor kontinuierlich, aber
unsere Prädiktorvariable (𝑥) ist kategorial. Dementsprechend sind Korrelation und
einfache lineare Regression nicht mehr geeignet. Stattdessen werden wir die
Varianzanalyse (ANOVA) und Post-hoc-Tests (t-Test, Tukey-Test) zur Datenanalyse
verwenden.

Der einzige Unterschied zwischen diesem und dem nächsten Kapitel liegt im verwendeten
Versuchsdesign. In diesem Kapitel analysieren wir Daten aus einem vollständig
randomisierten Versuchsdesign (CRD), dem einfachstmöglichen Design, während wir im
nächsten Kapitel Daten aus einem randomisierten vollständigen Blockdesign (RCBD)
analysieren werden. Dementsprechend werden wir uns in diesem Kapitel mehr auf den
Wechsel zur Analyse kategorialer Prädiktoren konzentrieren, während das nächste Kapitel
mehr auf das Versuchsdesign und die Unterschiede zwischen CRD und RCBD fokussiert.

Von der Regression zur ANOVA
Bisher haben wir Beziehungen zwischen kontinuierlichen Variablen mithilfe von Korrelation
und Regression untersucht. Im Gegensatz dazu untersuchen wir in diesem Kapitel den Effekt
kategorialer Prädiktoren (Faktoren) auf eine kontinuierliche Zielvariable. Beispielsweise
könnten wir fragen: “Erzeugen verschiedene Pflanzensorten signifikant unterschiedliche
Erträge?”
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Dieser Wechsel von kontinuierlichen zu kategorialen Prädiktoren erfordert die Verwendung
der Varianzanalyse (ANOVA) anstelle der einfachen linearen Regression, obwohl beide
Techniken tatsächlich verwandt sind und auf demselben zugrunde liegenden Rahmen
basieren: einem allgemeinen linearen Modell.

Daten
Für dieses Beispiel verwenden wir Daten aus einem Melonen-Sortenversuch. Vier
verschiedene Melonensorten wurden getestet, wobei jede Sorte in sechs zufällig
zugewiesenen Parzellen auf einem Feld angepflanzt wurde. Da die Zuweisung der Sorten zu
den Parzellen vollkommen zufällig erfolgte, folgt dieses Experiment einem vollständig
randomisierten Versuchsdesign (CRD).

Importieren wir die Daten:

dat <- read_csv(here("data", "Mead1993.csv"))
dat

Rows: 24 Columns: 4
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (1): variety
dbl (3): yield, row, col

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

# A tibble: 24 × 4
   variety yield   row   col
   <chr>   <dbl> <dbl> <dbl>
 1 v1       25.1     4     2
 2 v1       17.2     1     6
 3 v1       26.4     4     1
 4 v1       16.1     1     4
 5 v1       22.2     1     2
 6 v1       15.9     2     4
 7 v2       40.2     4     4
 8 v2       35.2     3     1
 9 v2       32.0     4     6
10 v2       36.5     2     1
# ℹ 14 more rows

Der Datensatz enthält Informationen über:

• variety : Die Melonensorte (v1, v2, v3 und v4)
• yield : Die Ertragsmessung für jede Parzelle
• row  und col : Die Reihen- und Spaltenkoordinaten jeder Parzelle im Feldlayout. Diese

Informationen sind für die Analyse nicht notwendig, sondern nur erforderlich, wenn man
einen Feldplan mit desplot()  darstellen möchte (siehe unten)

Formatierung
Ein wichtiger erster Schritt beim Arbeiten mit kategorialen Variablen ist sicherzustellen, dass
sie ordnungsgemäß als Faktoren codiert sind. Standardmäßig hat R Spalten mit Text als
Datentyp chr  (character) importiert, aber es ist besser, sie sofort in fct  (factor) für
kategoriale Variablen zu konvertieren. Wir können diese Formatierung erreichen, indem wir
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die mutate() -Funktion aus dem dplyr -Paket verwenden und die ursprüngliche variety -
Spalte mit sich selbst überschreiben, jedoch in einen Faktor konvertiert:

dat <- dat %>% 
  mutate(variety = as.factor(variety))

dat

# A tibble: 24 × 4
   variety yield   row   col
   <fct>   <dbl> <dbl> <dbl>
 1 v1       25.1     4     2
 2 v1       17.2     1     6
 3 v1       26.4     4     1
 4 v1       16.1     1     4
 5 v1       22.2     1     2
 6 v1       15.9     2     4
 7 v2       40.2     4     4
 8 v2       35.2     3     1
 9 v2       32.0     4     6
10 v2       36.5     2     1
# ℹ 14 more rows

Dieser Schritt ist vorteilhaft, weil Rs statistische Funktionen Faktoren möglicherweise anders
behandeln als Zeichenvariablen. Mit Faktoren versteht R, dass wir es mit unterschiedlichen
Stufen einer kategorialen Variablen zu tun haben.

Erkunden
Bevor wir mit der formalen Analyse beginnen, erkunden wir unsere Daten, um zu verstehen,
womit wir arbeiten:

# Zusammenfassende Statistiken nach Sorte berechnen
dat %>% 
  group_by(variety) %>% 
  summarize(
    count = n(),
    mean_yield = mean(yield),
    sd_yield = sd(yield),
    min_yield = min(yield),
    max_yield = max(yield)
  ) %>%
  arrange(desc(mean_yield))

# A tibble: 4 × 6
  variety count mean_yield sd_yield min_yield max_yield
  <fct>   <int>      <dbl>    <dbl>     <dbl>     <dbl>
1 v2          6       37.4     3.95      32.0      43.3
2 v4          6       29.9     2.23      27.6      33.2
3 v1          6       20.5     4.69      15.9      26.4
4 v3          6       19.5     5.56      11.4      25.9

Offensichtlich hat Sorte v2 den höchsten mittleren Ertrag, gefolgt von v4, v1 und v3. Sogar
der niedrigste Wert von v2 ist höher als alle Werte von v1 und v3. Visualisieren wir auch die
Daten:
myplot <- ggplot(data = dat) +
  aes(y = yield, x = variety) +
  geom_point() +
  scale_x_discrete(
    name = "Sorte"
  ) +
  scale_y_continuous(
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    name = "Ertrag",
    limits = c(0, NA),
    expand = expansion(mult = c(0, 0.1))
  ) +
  theme_classic()

myplot

 Tipp

Beachten Sie, dass wir, obwohl wir nun eine kategoriale x-Variable haben, größtenteils
denselben ggplot-Code wie zuvor verwendet haben. Der einzige Unterschied ist, dass wir
nun scale_x_discrete()  anstelle von scale_x_continuous()  verwenden müssen, um
die x-Achse anzupassen. Die y-Achse ist nach wie vor kontinuierlich, sodass wir
weiterhin scale_y_continuous()  verwenden können.

Entsprechend ist die resultierende Darstellung immer noch ein Streudiagramm mit einem
Punkt pro Beobachtung. Da wir jedoch eine kategoriale x-Variable haben, sind die Punkte
nun nach Sorte gruppiert. Außerdem kann es zwischen den Sorten niemals Punkte
geben, und daher wäre es auch unsinnig, beispielsweise eine Regressionslinie an die
Daten anzupassen.

Je nach Ihrem Hintergrund und Ihren Betreuern sind Sie möglicherweise daran gewöhnt,
Boxplots anstelle von Streudiagrammen zu sehen. Boxplots sind eine großartige Möglichkeit,
die Verteilung der Daten innerhalb jeder Kategorie zu visualisieren. Verwenden wir jedoch
tatsächlich nicht Boxplots anstelle von Streudiagrammen, sondern zusätzlich zu
Streudiagrammen. Auf diese Weise können wir die einzelnen Datenpunkte und die
Verteilung der Daten gleichzeitig sehen. Das ist durchaus erlaubt und ich empfehle es sehr.
Da wir unser ggplot von oben in myplot  gespeichert haben, können wir einfach eine weitere
Schicht zu dieser Darstellung hinzufügen:
myplot + 
  geom_boxplot()
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Da wir jedoch geom_boxplot()  nach geom_point()  hinzugefügt haben (und weil es dieselbe
aes() verwendet), werden die Boxen direkt über den Punkten gezeichnet und verdecken
daher einige von ihnen. Wir können stattdessen die Boxen dünner machen und zur Seite
verschieben für eine noch bessere Darstellung:
myplot + 
  geom_boxplot(
    width = 0.1, # 10% Breite
    position = position_nudge(x = -0.15) # nach links verschieben
  )

Wie oft der Fall, gibt uns diese Darstellung ein besseres Gefühl für die Daten als nur
Tabellen, obwohl beispielsweise die vier Mittelwerte hier nicht einmal gezeigt werden.

Da dies außerdem ein Feldversuch mit einem spezifischen Layout ist, visualisieren wir den
Feldplan, um zu verstehen, wie die Sorten räumlich verteilt waren. Dies kann sehr schön
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gemacht werden, solange man die Koordinaten jeder Versuchseinheit (d.h. Feldparzelle) auf
dem Feld hat, wie wir sie in den Spalten row  und col  haben. Man kann dann die
desplot() -Funktion aus dem {desplot}-Paket verwenden:

desplot(
  data = dat, 
  flip = TRUE, # Reihe 1 oben, nicht unten
  form = variety ~ col + row, # Füllfarbe pro Sorte; Spalten-/Reiheninformation
  text = variety, # Sortennamen pro Parzelle
  cex = 1, # Sortennamen: Schriftgröße
  main = "Feldlayout", # Diagrammtitel
  show.key = FALSE # Legende ausblenden
)

Diese Darstellung bestätigt, dass die Sorten zufällig über das Feld verteilt wurden, was
charakteristisch für ein vollständig randomisiertes Versuchsdesign (CRD) ist. Wir können
eine zweite Version dieses Feldplans erstellen, in der wir die Parzellen nach ihrem Ertrag
anstatt nach ihrer Sorte einfärben. Dies kann durch einfaches Ändern des form -Arguments

in der desplot() -Funktion erreicht werden:

desplot(
  data = dat, 
  flip = TRUE, # Reihe 1 oben, nicht unten
  form = yield ~ col + row, # Füllfarbe pro Sorte; Spalten-/Reiheninformation
  text = variety, # Sortennamen pro Parzelle
  cex = 1, # Sortennamen: Schriftgröße
  main = "Feldlayout", # Diagrammtitel
  show.key = FALSE # Legende ausblenden
)
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Wir haben nun genug deskriptive Statistiken und Visualisierungen erstellt. Der nächste
Schritt ist die Datenanalyse und der Test, ob die Ertragsunterschiede zwischen den Sorten
statistisch signifikant sind. Hier kommt die Varianzanalyse (ANOVA) ins Spiel.
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Modell und ANOVA
Verstehen der einfaktoriellen ANOVA
Die Varianzanalyse (ANOVA) ist eine statistische Methode, die verwendet wird, um
Unterschiede zwischen Gruppenmittelwerten zu testen. In unserem Fall möchten wir
bestimmen, ob es signifikante Ertragsunterschiede zwischen den vier Melonensorten gibt.

Die einfaktorielle ANOVA behandelt die Frage: “Gibt es einen signifikanten Unterschied
zwischen den Gruppenmittelwerten?” Sie wird “einfaktoriell” genannt, weil sie nur einen
kategorialen Prädiktor (die Sorte) umfasst. Die Nullhypothese ist, dass alle
Gruppenmittelwerte gleich sind:

𝐻0 : 𝜇𝐴 = 𝜇𝐵 = 𝜇𝐶 = 𝜇𝐷

Die Alternativhypothese ist, dass sich mindestens ein Gruppenmittelwert von den anderen
unterscheidet. Beachten Sie, dass wir den griechischen Buchstaben 𝜇 verwenden, um den
wahren Mittelwert jeder Sorte zu bezeichnen. In diesem Fall haben wir vier Sorten (A, B, C
und D), also haben wir vier Mittelwerte. Die Schätzungen für diese Mittelwerte basierend auf
unseren Stichproben-/Versuchsdaten werden stattdessen mit ̄𝑦𝐴, ̄𝑦𝐵, ̄𝑦𝐶  und ̄𝑦𝐷 bezeichnet.
Dies ist analog dazu, wie wir den griechischen Buchstaben 𝜌 verwendet haben, um den
wahren/Populations-Korrelationskoeffizienten zu bezeichnen, aber den Buchstaben 𝑟 für den
Stichproben-Korrelationskoeffizienten verwendet haben.

Unter der Haube funktioniert ANOVA durch den Vergleich von:

1. Die Variation zwischen Gruppen (wie unterschiedlich die Gruppenmittelwerte
voneinander sind)

2. Die Variation innerhalb Gruppen (wie viel Streuung/Rauschen innerhalb jeder Gruppe
existiert)

Wenn die Variation zwischen den Gruppen viel größer ist als die Variation innerhalb der
Gruppen, haben wir Evidenz dafür, dass sich die Gruppenmittelwerte signifikant
unterscheiden.

Anpassung des Modells
In R passen wir ein lineares Modell mit der lm() -Funktion an, genau wie wir es bei der
Regression getan haben. Der wesentliche Unterschied ist, dass unser Prädiktor 𝑥 nun ein
kategorialer Faktor und keine kontinuierliche Variable ist. R weiß dies, wegen der
Formatierung der variety -Spalte - als Faktor. Obwohl wir also im Grunde dieselbe Formel

wie zuvor schreiben ( y ~ x ), ist die Interpretation anders. Dies sieht man sofort beim
Betrachten der Ergebnisse:

mod <- lm(yield ~ variety, data = dat)
mod

Call:
lm(formula = yield ~ variety, data = dat)

Coefficients:
(Intercept)    varietyv2    varietyv3    varietyv4  
    20.4900      16.9133      -0.9983       9.4067  
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Sicher, es gibt wieder einen Achsenabschnitt, aber dann gibt es nicht eine Steigung, sondern
stattdessen drei weitere Koeffizienten für die Sorten v2, v3 und v4. Offensichtlich können wir
hier keine Steigung haben, da wir keine Zahl mit dem Namen einer Sorte multiplizieren
können. Stattdessen erhält jede Sorte ihren eigenen zusätzlichen Achsenabschnitt. Nun,
jede Sorte außer einer - v1 scheint zu fehlen. Sie fehlt nicht wirklich. Stattdessen wird v1 auf
0 gesetzt und ist somit die Referenzstufe, mit der alle anderen Sorten verglichen werden.

Beachten Sie, dass wir uns bei faktoriellen Experimenten typischerweise auf die ANOVA-
Tabelle anstatt auf diese Koeffizienten konzentrieren. Siehe jedoch die Videoerklärung für
eine detailliertere Diskussion der Koeffizienten und ihrer Interpretation.

 Modellannahmen erfüllt?

An dieser Stelle (d.h. nach dem Modell-Fit und vor der ANOVA-Interpretation) sollte man
prüfen, ob die Modellannahmen erfüllt sind. Mehr dazu im Anhang A1: Modelldiagnostik.

Durchführung der ANOVA
Wir können aus unserem Modell eine ANOVA-Tabelle mit der anova() -Funktion erstellen:

ANOVA <- anova(mod)
ANOVA

Analysis of Variance Table

Response: yield
          Df  Sum Sq Mean Sq F value    Pr(>F)    
variety    3 1291.48  430.49  23.418 9.439e-07 ***
Residuals 20  367.65   18.38                      
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Die ANOVA-Tabelle liefert:

• Df: Freiheitsgrade für den Faktor (Sorten) und Residuen
• Sum Sq: Quadratsummen, die die Variation messen
• Mean Sq: Mittlere Quadratsummen (Sum Sq / Df)
• F value: F-Statistik (Verhältnis der Variation zwischen Gruppen zur Variation innerhalb der

Gruppen)
• Pr(>F): p-Wert für den F-Test

 Weitere Quellen

Wie bereits gesagt, vergleicht diese Tabelle die Variation zwischen Gruppen (Sorten) mit
der Variation innerhalb der Gruppen (Residuen). Wenn die F-Statistik groß und der p-
Wert klein ist, verwerfen wir die Nullhypothese und schließen, dass sich mindestens ein
Gruppenmittelwert signifikant von den anderen unterscheidet. Wir werden jedoch nicht
ins Detail gehen, wie diese einzelnen Werte berechnet werden, aber graben Sie gerne
tiefer, beispielsweise über die nachstehenden Quellen.

• Using Linear Models for t tests and ANOVA, Clearly Explained!!!
• ANOVA: Crash Course Statistics #33
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Der p-Wert ist sehr klein und < 0,05, was uns dazu führt, die Nullhypothese zu verwerfen und
somit darauf hinweist, dass es statistisch signifikante Ertragsunterschiede zwischen den
Sorten gibt. Die ANOVA sagt uns jedoch nur, dass es Unterschiede gibt, nicht welche
spezifischen Sorten sich voneinander unterscheiden. Dafür können wir die Mittelwerte über
Post-hoc-Tests vergleichen.
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Mittelwertvergleiche
Verstehen von Post-hoc-Tests
Sobald wir durch die ANOVA festgestellt haben, dass es signifikante Unterschiede zwischen
den Gruppen gibt, möchten wir typischerweise wissen, welche spezifischen Gruppen sich
voneinander unterscheiden. Hier kommen Post-hoc-Tests ins Spiel.

Gängige Post-hoc-Tests umfassen Fishers LSD-Test, Tukeys HSD-Test und die Bonferroni-
Holm-Korrektur. Fishers LSD ist im Wesentlichen ein Standard-t-Test, verwendet jedoch die
gepoolte Standardabweichung aus der Modellresidualvarianz für alle Vergleiche.

Allen ist gemeinsam, dass ein Test für jedes Gruppenpaar durchgeführt wird. Wenn wir
beispielsweise drei Gruppen (A, B & C) haben, würden wir drei Tests durchführen (A vs B, B
vs C und A vs C). Post-hoc-Tests werden “post hoc” (“nach diesem”) genannt, weil sie nach
der anfänglichen Analyse durchgeführt werden, die angezeigt hat, dass Unterschiede
existieren, und es Forschern ermöglichen zu bestimmen, wo genau diese Unterschiede
zwischen mehreren Gruppen liegen.

 Weitere Quellen

Für den Moment reicht es zu verstehen, dass diese Tests verwendet werden, um zu
bestimmen, ob sich spezifische Gruppenmittelwerte signifikant voneinander
unterscheiden, aber graben Sie gerne tiefer, beispielsweise über die nachstehenden
Quellen.

• Multiplicity Adjustments: Understanding the Nuance of Post hoc Tests
• Why are the StdErr all the same?

Verwendung des emmeans-Pakets
Wir werden tatsächlich nicht Funktionen wie t.test()  verwenden, die die Rohdaten als
Input verwenden würden, um einen einzelnen t-Test zu berechnen. Stattdessen werden wir
die emmeans() -Funktion aus dem emmeans -Paket verwenden, die automatisch geschätzte
Randmittelwerte (EMMs; auch bekannt als kleinste-Quadrate-Mittelwerte oder adjustierte
Mittelwerte) für jede Gruppe berechnet, unter Berücksichtigung der Modellstruktur und
Residualvarianz:

# Adjustierte Mittelwerte für jede Sorte berechnen
means <- emmeans(mod, specs = ~ variety)
means

 variety emmean   SE df lower.CL upper.CL
 v1        20.5 1.75 20     16.8     24.1
 v2        37.4 1.75 20     33.8     41.1
 v3        19.5 1.75 20     15.8     23.1
 v4        29.9 1.75 20     26.2     33.5

Confidence level used: 0.95 

Dies sind die geschätzten mittleren Erträge für jede Sorte, adjustiert für das Modell. Bei
einem einfachen einfaktoriellen Design wie unserem entsprechen diese den arithmetischen
Mittelwerten, aber bei komplexeren Designs können sie sich unterscheiden. Mit anderen
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Worten: Da unser Modell so sehr einfach ist, wurden diese adjustierten Mittelwerte
tatsächlich gar nicht adjustiert und sind identisch mit den Sortenmittelwerten, die wir oben
berechnet haben. In komplexeren Modellen und mit unausgewogenen Daten ist das jedoch
möglicherweise nicht der Fall. In jedem Fall ist ein weiterer Vorteil der Verwendung von
emmeans() , dass es automatisch jeden Mittelwert mit jedem anderen Mittelwert vergleicht:

# Paarweise Vergleiche
pairs <- pairs(means, adjust = "tukey")
pairs

 contrast estimate   SE df t.ratio p.value
 v1 - v2   -16.913 2.48 20  -6.833 <0.0001
 v1 - v3     0.998 2.48 20   0.403  0.9772
 v1 - v4    -9.407 2.48 20  -3.800  0.0057
 v2 - v3    17.912 2.48 20   7.236 <0.0001
 v2 - v4     7.507 2.48 20   3.033  0.0307
 v3 - v4   -10.405 2.48 20  -4.203  0.0023

P value adjustment: tukey method for comparing a family of 4 estimates 

Diese Ausgabe zeigt alle paarweisen Vergleiche zwischen Sorten. Zum Beispiel: Der
Vergleich zwischen v1 und v2 zeigt einen Unterschied von −16.913. Sie können dies leicht
überprüfen, indem Sie die obige Mittelwerttabelle betrachten. Der Mittelwert für v1 ist 20,5
und für v2 ist 37,4, also ist v1 - v2 tatsächlich −16,9. Neben diesem absoluten Unterschied
zeigt die Tabelle jedoch auch den Standardfehler, die Freiheitsgrade, das t-Verhältnis und
den p-Wert, die zu diesem Unterschied gehören. Da wir adjust = "tukey"  geschrieben

haben, entspricht jeder p-Wert einem Tukey-Test (verwenden Sie adjust = "none"  für
Fishers LSD-Test). Dementsprechend liegen alle p-Werte außer einem unter 0,05, was
darauf hinweist, dass sich alle Sorten signifikant voneinander unterscheiden, außer v1 - v3.

Kompakte Buchstabendarstellung

 Warnung

Es ist wahrscheinlich, dass das Ausführen des nachstehenden Codes zum ersten Mal
einen FEHLER verursacht. Dies liegt wahrscheinlich an einem seltsamen Bug mit der
cld() -Funktion. Er kann normalerweise behoben werden, indem R neu gestartet und
der Code erneut ausgeführt wird. Mit anderen Worten: Der FEHLER erscheint nur beim
allerersten Mal, wenn Sie cld()  ausführen. Wenn Sie es erneut ausführen, sollte es
funktionieren. Wenn Sie also diesen FEHLER sehen, schließen und öffnen Sie entweder
RStudio vollständig oder klicken Sie Session > Restart R  in der Menüleiste. Denken
Sie daran, dass Sie danach den gesamten Code ab dem Laden der Pakete und dem
Importieren der Daten erneut ausführen müssen.

Eine gängige Methode, solche Mittelwertvergleichsergebnisse zu präsentieren, ist eine
“kompakte Buchstabendarstellung” (CLD), bei der Mittelwerte, die sich nicht signifikant
unterscheiden, denselben Buchstaben teilen:

# Kompakte Buchstabendarstellung
mean_comp <- cld(means, Letters = letters, adjust = "tukey")
mean_comp
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 variety emmean   SE df lower.CL upper.CL .group
 v3        19.5 1.75 20     14.7     24.3  a    
 v1        20.5 1.75 20     15.7     25.3  a    
 v4        29.9 1.75 20     25.1     34.7   b   
 v2        37.4 1.75 20     32.6     42.2    c  

Confidence level used: 0.95 
Conf-level adjustment: sidak method for 4 estimates 
P value adjustment: tukey method for comparing a family of 4 estimates 
significance level used: alpha = 0.05 
NOTE: If two or more means share the same grouping symbol,
      then we cannot show them to be different.
      But we also did not show them to be the same. 

Sorten, die denselben Buchstaben in der .group -Spalte teilen, unterscheiden sich nicht
signifikant voneinander. Zum Beispiel sind Sorten, die beide den Buchstaben “a” haben, nicht
signifikant voneinander verschieden. Diese Darstellung ist also kompakt, weil sie die
allgemeinen Befunde all unserer sechs Tukey-Tests (statistisch signifikant oder nicht) über
eine kurze Kombination von Buchstaben neben unseren vier Mittelwerten anzeigt.

 Weitere Quellen

Falls Sie sich wegen der Notiz wundern, die wir beim Ausführen des Codes erhalten

haben 
Note: adjust = "tukey" was changed to "sidak" because "tukey" is only
appropriate for one set of pairwise comparison ,

besuchen Sie bitte das Kapitel “kompakte Buchstabendarstellung” (CLD). Dort finden Sie
auch andere Informationen zu all dem, die über diese Einführung hinausgehen.

Kombination der Schritte
Beachten Sie, dass wir diese Ergebnisse zwar gerade in mehreren Schritten erhalten haben,
dies jedoch nur getan wurde, um das Verständnis zu erleichtern. In der Praxis können wir all
dies in einem Befehl kombinieren:

mean_comp <- mod %>% 
  emmeans(specs = ~ variety) %>% # adj. Mittelwert pro Sorte
  cld(adjust = "tukey", Letters = letters) # kompakte Buchstabendarstellung (CLD)

mean_comp

 variety emmean   SE df lower.CL upper.CL .group
 v3        19.5 1.75 20     14.7     24.3  a    
 v1        20.5 1.75 20     15.7     25.3  a    
 v4        29.9 1.75 20     25.1     34.7   b   
 v2        37.4 1.75 20     32.6     42.2    c  

Confidence level used: 0.95 
Conf-level adjustment: sidak method for 4 estimates 
P value adjustment: tukey method for comparing a family of 4 estimates 
significance level used: alpha = 0.05 
NOTE: If two or more means share the same grouping symbol,
      then we cannot show them to be different.
      But we also did not show them to be the same. 
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Visualisierung der Ergebnisse
Erstellen wir schließlich eine Darstellung, die die Rohdaten mit unseren statistischen
Ergebnissen kombiniert.
ggplot() +
  aes(x = variety) +
  # schwarze Punkte repräsentieren die Rohdaten
  geom_point(
    data = dat,
    aes(y = yield)
  ) +
  # schwarze Boxen repräsentieren die Verteilung der Rohdaten
  geom_boxplot(
    data = dat,
    aes(y = yield),
    width = 0.1, # 10% Breite
    position = position_nudge(x = -0.15) # nach links verschieben
  ) +
  # rote Punkte repräsentieren die adjustierten Mittelwerte
  geom_point(
    data = mean_comp,
    aes(y = emmean),
    color = "red",
    position = position_nudge(x = 0.1)
  ) +
  # rote Fehlerbalken repräsentieren die Konfidenzgrenzen der adjustierten
Mittelwerte
  geom_errorbar(
    data = mean_comp,
    aes(ymin = lower.CL, ymax = upper.CL),
    color = "red",
    width = 0.1,
    position = position_nudge(x = 0.1)
  ) +
  # rote Buchstaben 
  geom_text(
    data = mean_comp,
    aes(y = emmean, label = .group),
    color = "red",
    position = position_nudge(x = 0.2),
    hjust = 0
  ) +
  scale_x_discrete(
    name = "Sorte"
  ) +
  scale_y_continuous(
    name = "Ertrag",
    limits = c(0, NA),
    expand = expansion(mult = c(0, 0.1))
  ) +
  theme_classic()
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Wir werden im nächsten Kapitel mehr darüber sprechen, wie man diesen ggplot erstellt.
Seien Sie sich vorerst bewusst, dass

• schwarze Punkte Rohdaten repräsentieren,
• schwarze Boxen die Verteilung der Rohdaten repräsentieren,
• rote Punkte und Fehlerbalken adjustierte Mittelwerte mit 95%-Konfidenzgrenzen

repräsentieren und
• Mittelwerte, denen ein gemeinsamer Buchstabe folgt, sich laut Tukey-Test nicht signifikant

unterscheiden.
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Zusammenfassung
Glückwunsch! Du hast deine erste Varianzanalyse und Mittelwertvergleiche für ein
vollständig randomisiertes Versuchsdesign durchgeführt. Dies ist eine fundamentale Technik
in der experimentellen Datenanalyse, die Sie in vielen verschiedenen Kontexten verwenden
können.

! Wichtig

1. Vollständig randomisiertes Versuchsdesign (CRD) ist das einfachste
Versuchsdesign, bei dem Behandlungen zufällig den Versuchseinheiten zugeordnet
werden.

2. Einfaktorielle ANOVA testet, ob es signifikante Unterschiede zwischen
Gruppenmittelwerten gibt:

• Die Modellformel ist response ~ factor
• Die ANOVA-Tabelle zeigt, ob es insgesamt signifikante Unterschiede gibt

3. Post-hoc-Tests bestimmen, welche spezifischen Gruppen sich voneinander
unterscheiden:

• Geschätzte Randmittelwerte (emmeans) liefern adjustierte Mittelwerte für jede
Gruppe

• Paarweise Vergleiche zwischen allen Mittelwerten/Gruppen werden durchgeführt
• Die kompakte Buchstabendarstellung (CLD) präsentiert Ergebnisse mit Buchstaben

für einfache Interpretation

Im nächsten Kapitel werden wir das randomisierte vollständige Blockdesign (RCBD)
erkunden, das auf dem CRD aufbaut, indem es bekannte Variationsquellen in Ihren
Versuchseinheiten berücksichtigt.

Bibliography
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