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1. Einfaktorielle ANOVA in einem CRD

Varianzanalyse (ANOVA); Vollstandig randomisiertes Versuchsdesign (CRD)
Dr. Paul Schmidt

Um alle in diesem Kapitel verwendeten Pakete zu installieren und zu laden, fihren Sie
folgenden Code aus:

for (pkg in c("desplot", "emmeans", "here", "multcomp", "multcompView",
"tidyverse")) {

if (!require (pkg, character.only = TRUE)) install.packages (pkg)
}
library (desplot)
emmeans)
here)
multcomp)
multcompView)
tidyverse)

library
library
library
library

library

Zwei neue Aspekte

In diesem und dem néachsten Kapitel unterscheiden sich zwei Dinge fundamental von
unseren bisherigen Kapiteln/Analysen:

1. Einerseits haben wir nun Daten aus einem geplanten Experiment, bei dem wir bewusst
einen Behandlungsfaktor gewanhlt, das Experiment auf eine bestimmte Weise angeordnet
und dann die Zielvariable gemessen haben. In unseren bisherigen Datensatzen haben wir
mehr oder weniger eine spontane Bestandsaufnahme der Welt um uns herum gemacht.

2. Andererseits werden wir kategoriale Pradiktoren (Faktoren) anstelle von kontinuierlichen
Pradiktoren analysieren. Somit ist unsere Zielvariable (y) nach wie vor kontinuierlich, aber
unsere Pradiktorvariable (z) ist kategorial. Dementsprechend sind Korrelation und
einfache lineare Regression nicht mehr geeignet. Stattdessen werden wir die
Varianzanalyse (ANOVA) und Post-hoc-Tests (t-Test, Tukey-Test) zur Datenanalyse
verwenden.

Der einzige Unterschied zwischen diesem und dem nachsten Kapitel liegt im verwendeten
Versuchsdesign. In diesem Kapitel analysieren wir Daten aus einem vollstandig
randomisierten Versuchsdesign (CRD), dem einfachstmdglichen Design, wahrend wir im
nachsten Kapitel Daten aus einem randomisierten vollstandigen Blockdesign (RCBD)
analysieren werden. Dementsprechend werden wir uns in diesem Kapitel mehr auf den
Wechsel zur Analyse kategorialer Pradiktoren konzentrieren, wahrend das nachste Kapitel
mehr auf das Versuchsdesign und die Unterschiede zwischen CRD und RCBD fokussiert.

Von der Regression zur ANOVA

Bisher haben wir Beziehungen zwischen kontinuierlichen Variablen mithilfe von Korrelation
und Regression untersucht. Im Gegensatz dazu untersuchen wir in diesem Kapitel den Effekt
kategorialer Pradiktoren (Faktoren) auf eine kontinuierliche Zielvariable. Beispielsweise
koénnten wir fragen: “Erzeugen verschiedene Pflanzensorten signifikant unterschiedliche
Ertrage?”
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Dieser Wechsel von kontinuierlichen zu kategorialen Pradiktoren erfordert die Verwendung
der Varianzanalyse (ANOVA) anstelle der einfachen linearen Regression, obwohl beide
Techniken tatsachlich verwandt sind und auf demselben zugrunde liegenden Rahmen
basieren: einem allgemeinen linearen Modell.

Daten

Fir dieses Beispiel verwenden wir Daten aus einem Melonen-Sortenversuch. Vier
verschiedene Melonensorten wurden getestet, wobei jede Sorte in sechs zufallig
zugewiesenen Parzellen auf einem Feld angepflanzt wurde. Da die Zuweisung der Sorten zu
den Parzellen vollkommen zuféllig erfolgte, folgt dieses Experiment einem vollstandig
randomisierten Versuchsdesign (CRD).

Importieren wir die Daten:

dat <- read csv(here("data", "Meadl993.csv"))
dat

Rows: 24 Columns: 4

— Column specification
Delimiter: ","

chr (1): variety

dbl (3): yield, row, col

i Use “spec()  to retrieve the full column specification for this data.
i Specify the column types or set “show col types = FALSE' to quiet this message.

# A tibble: 24 x 4
variety yield row col
<chr> <dbl> <dbl> <dbl>

1 vl 25.1 4

2 vl 17.2 1 6
3 vl 26.4 4 1
4 vl 16.1 1 4
5 vl 22.2 1 2
6 vl 15,9 2 4
7 v2 40.2 4 4
8 v2 35.2 3 1
9 v2 32.0 4 6
10 v2 36.5 2 1

# i 14 more rows

Der Datensatz enthalt Informationen Uber:

variety : Die Melonensorte (v1, v2, v3 und v4)
* yield: Die Ertragsmessung fur jede Parzelle

* row und col: Die Reihen- und Spaltenkoordinaten jeder Parzelle im Feldlayout. Diese
Informationen sind fir die Analyse nicht notwendig, sondern nur erforderlich, wenn man
einen Feldplan mit desplot () darstellen méchte (siehe unten)

Formatierung

Ein wichtiger erster Schritt beim Arbeiten mit kategorialen Variablen ist sicherzustellen, dass
sie ordnungsgemal als Faktoren codiert sind. StandardmaRig hat R Spalten mit Text als

Datentyp chr (character) importiert, aber es ist besser, sie sofortin fct (factor) fur
kategoriale Variablen zu konvertieren. Wir kdnnen diese Formatierung erreichen, indem wir
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die mutate () -Funktion aus dem dplyr -Paket verwenden und die urspringliche variety -
Spalte mit sich selbst Uberschreiben, jedoch in einen Faktor konvertiert:

dat <- dat %>%

dat

# A tibble: 24 x 4
variety yield row col
<fct> <dbl> <dbl> <dbl>

1 vl 25,1 4

2 vl 17.2 1 6
3 vl 26.4 4 1
4 vl 16.1 1 4
5 vl 22.2 1 2
6 vl 15.9 2 4
7 v2 40.2 4 4
8 v2 35,2 3 1
9 v2 32.0 4 6
10 v2 36.5 2 1

# i 14 more rows

Dieser Schritt ist vorteilhaft, weil Rs statistische Funktionen Faktoren mdglicherweise anders
behandeln als Zeichenvariablen. Mit Faktoren versteht R, dass wir es mit unterschiedlichen

mutate (variety = as.factor (variety))

Stufen einer kategorialen Variablen zu tun haben.

Erkunden

Bevor wir mit der formalen Analyse beginnen, erkunden wir unsere Daten, um zu verstehen,

womit wir arbeiten:

dat %>%
group by (variety) %>%
summarize (
count = n{(),
mean yield = mean(yield),
sd _yield = sd(yield),
min yield = min(yield),
max yield = max(yield)
) $>%
arrange (desc (mean yield))

# A tibble: 4 x 6

<fct> <int> <dbl>
1 v2 6 37.4
2 v4 6 29.9
3 vl 6 20.5
4 v3 6 19.5

Offensichtlich hat Sorte v2 den héchsten mittleren Ertrag, gefolgt von v4, v1 und v3. Sogar
der niedrigste Wert von v2 ist héher als alle Werte von v1 und v3. Visualisieren wir auch die

Daten:

myplot <- ggplot (data = dat)
aes(y = yileld, x = variety)
geom point () +
scale x discrete (
name = "Sorte"
) +
scale y continuous (

uE

<dbl>
3.95
2.23
4.69
5.56

uE

<dbl>
32.0
27.6
15.9
11.4

variety count mean yield sd yield min yield max yield

<dbl>
43.3
33.2
26.4
25.9
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name = "Ertrag",
limits = c (0, NA),
expand = expansion (mult = c(0, 0.1))

) +
theme classic()

myplot
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Beachten Sie, dass wir, obwohl wir nun eine kategoriale x-Variable haben, grofitenteils
denselben ggplot-Code wie zuvor verwendet haben. Der einzige Unterschied ist, dass wir
nun scale x discrete() anstelle von scale x continuous() verwenden muissen, um
die x-Achse anzupassen. Die y-Achse ist nach wie vor kontinuierlich, sodass wir
weiterhin scale y continuous() verwenden konnen.

Entsprechend ist die resultierende Darstellung immer noch ein Streudiagramm mit einem
Punkt pro Beobachtung. Da wir jedoch eine kategoriale x-Variable haben, sind die Punkte
nun nach Sorte gruppiert. Aulerdem kann es zwischen den Sorten niemals Punkte
geben, und daher ware es auch unsinnig, beispielsweise eine Regressionslinie an die
Daten anzupassen.

Je nach lhrem Hintergrund und lhren Betreuern sind Sie mdglicherweise daran gewéhnt,
Boxplots anstelle von Streudiagrammen zu sehen. Boxplots sind eine groRRartige Méglichkeit,
die Verteilung der Daten innerhalb jeder Kategorie zu visualisieren. Verwenden wir jedoch
tatsachlich nicht Boxplots anstelle von Streudiagrammen, sondern zusatzlich zu
Streudiagrammen. Auf diese Weise kdnnen wir die einzelnen Datenpunkte und die
Verteilung der Daten gleichzeitig sehen. Das ist durchaus erlaubt und ich empfehle es sehr.
Da wir unser ggplot von oben in myplot gespeichert haben, kdnnen wir einfach eine weitere

Schicht zu dieser Darstellung hinzufiigen:

myplot +
geom boxplot ()
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Da wir jedoch geom boxplot () nach geom point () hinzugeflgt haben (und weil es dieselbe
aes() verwendet), werden die Boxen direkt Giber den Punkten gezeichnet und verdecken
daher einige von ihnen. Wir kdnnen stattdessen die Boxen dinner machen und zur Seite
verschieben fir eine noch bessere Darstellung:

myplot +

geom boxplot (
width = 0.1,

position = position nudge(x = -0.15)
)
.
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Wie oft der Fall, gibt uns diese Darstellung ein besseres Gefuhl fur die Daten als nur
Tabellen, obwohl beispielsweise die vier Mittelwerte hier nicht einmal gezeigt werden.

Da dies auflerdem ein Feldversuch mit einem spezifischen Layout ist, visualisieren wir den
Feldplan, um zu verstehen, wie die Sorten raumlich verteilt waren. Dies kann sehr schén
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gemacht werden, solange man die Koordinaten jeder Versuchseinheit (d.h. Feldparzelle) auf
dem Feld hat, wie wir sie in den Spalten row und col haben. Man kann dann die

desplot () -Funktion aus dem {desplot}-Paket verwenden:

desplot (
data = dat,
flip = TRUE,
form = variety ~ col + row,
text = variety,
cex = 1,

Feldlayout
v3 Al v4 Al v4 Al
v2 v3 v4 Al v2 v4
v2 v3 v4 v4 v3 v2
Al Al v3 v2 v3 v2

Diese Darstellung bestatigt, dass die Sorten zufallig Gber das Feld verteilt wurden, was
charakteristisch fur ein vollstandig randomisiertes Versuchsdesign (CRD) ist. Wir kbnnen
eine zweite Version dieses Feldplans erstellen, in der wir die Parzellen nach ihrem Ertrag

anstatt nach ihrer Sorte einfarben. Dies kann durch einfaches Andern des form -Arguments

in der desplot () -Funktion erreicht werden:

main =

desplot (
data = dat,
flip = TRUE,
form = yield ~ col + row,
text = variety,
cex = 1,

"Feldlayout",

show.key = FALSE

BioMath
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https://kwstat.github.io/desplot/
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Feldlayout

Wir haben nun genug deskriptive Statistiken und Visualisierungen erstellt. Der nachste
Schritt ist die Datenanalyse und der Test, ob die Ertragsunterschiede zwischen den Sorten
statistisch signifikant sind. Hier kommt die Varianzanalyse (ANOVA) ins Spiel.
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Modell und ANOVA
Verstehen der einfaktoriellen ANOVA

Die Varianzanalyse (ANOVA) ist eine statistische Methode, die verwendet wird, um
Unterschiede zwischen Gruppenmittelwerten zu testen. In unserem Fall méchten wir
bestimmen, ob es signifikante Ertragsunterschiede zwischen den vier Melonensorten gibt.

Die einfaktorielle ANOVA behandelt die Frage: “Gibt es einen signifikanten Unterschied
zwischen den Gruppenmittelwerten?” Sie wird “einfaktoriell” genannt, weil sie nur einen
kategorialen Pradiktor (die Sorte) umfasst. Die Nullhypothese ist, dass alle
Gruppenmittelwerte gleich sind:

Hy:pa=pp=tc=kp

Die Alternativhypothese ist, dass sich mindestens ein Gruppenmittelwert von den anderen
unterscheidet. Beachten Sie, dass wir den griechischen Buchstaben p verwenden, um den
wahren Mittelwert jeder Sorte zu bezeichnen. In diesem Fall haben wir vier Sorten (A, B, C
und D), also haben wir vier Mittelwerte. Die Schatzungen fur diese Mittelwerte basierend auf
unseren Stichproben-/Versuchsdaten werden stattdessen mit y 4, ¥, ¥y und y, bezeichnet.
Dies ist analog dazu, wie wir den griechischen Buchstaben p verwendet haben, um den
wahren/Populations-Korrelationskoeffizienten zu bezeichnen, aber den Buchstaben r fir den
Stichproben-Korrelationskoeffizienten verwendet haben.

Unter der Haube funktioniert ANOVA durch den Vergleich von:

1. Die Variation zwischen Gruppen (wie unterschiedlich die Gruppenmittelwerte
voneinander sind)

2. Die Variation innerhalb Gruppen (wie viel Streuung/Rauschen innerhalb jeder Gruppe
existiert)

Wenn die Variation zwischen den Gruppen viel gréRer ist als die Variation innerhalb der
Gruppen, haben wir Evidenz dafir, dass sich die Gruppenmittelwerte signifikant
unterscheiden.

Anpassung des Modells

In R passen wir ein lineares Modell mit der 1m () -Funktion an, genau wie wir es bei der

Regression getan haben. Der wesentliche Unterschied ist, dass unser Pradiktor x nun ein
kategorialer Faktor und keine kontinuierliche Variable ist. R weif} dies, wegen der

Formatierung der variety -Spalte - als Faktor. Obwohl wir also im Grunde dieselbe Formel
wie zuvor schreiben (v ~ x ), ist die Interpretation anders. Dies sieht man sofort beim
Betrachten der Ergebnisse:

mod <- Im(yield ~ variety, data = dat)
mod

Call:
Im(formula = yield ~ variety, data = dat)

Coefficients:
(Intercept) varietyv2 varietyv3 varietyvé
20.4900 16.9133 -0.9983 9.4067
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Sicher, es gibt wieder einen Achsenabschnitt, aber dann gibt es nicht eine Steigung, sondern
stattdessen drei weitere Koeffizienten fiir die Sorten v2, v3 und v4. Offensichtlich kbnnen wir
hier keine Steigung haben, da wir keine Zahl mit dem Namen einer Sorte multiplizieren
konnen. Stattdessen erhalt jede Sorte ihren eigenen zusatzlichen Achsenabschnitt. Nun,
jede Sorte aulder einer - v1 scheint zu fehlen. Sie fehlt nicht wirklich. Stattdessen wird v1 auf
0 gesetzt und ist somit die Referenzstufe, mit der alle anderen Sorten verglichen werden.

Beachten Sie, dass wir uns bei faktoriellen Experimenten typischerweise auf die ANOVA-
Tabelle anstatt auf diese Koeffizienten konzentrieren. Siehe jedoch die Videoerklarung fur
eine detailliertere Diskussion der Koeffizienten und ihrer Interpretation.

Modellannahmen erfullt?

An dieser Stelle (d.h. nach dem Modell-Fit und vor der ANOVA-Interpretation) sollte man
prifen, ob die Modellannahmen erfiillt sind. Mehr dazu im Anhang A1: Modelldiagnostik.

Durchfuhrung der ANOVA

Wir konnen aus unserem Modell eine ANOVA-Tabelle mit der anova () -Funktion erstellen:

ANOVA <- anova (mod)
ANOVA

Analysis of Variance Table

Response: yield

Df Sum Sg Mean Sg F value Pr (>F)
variety 3 1291.48 430.49 23.418 9.439e-07 ***
Residuals 20 367.65 18.38

Signif. codes: 0 'x**' (0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Die ANOVA-Tabelle liefert:

» Df: Freiheitsgrade flr den Faktor (Sorten) und Residuen

* Sum Sq: Quadratsummen, die die Variation messen

* Mean Sq: Mittlere Quadratsummen (Sum Sq / Df)

» F value: F-Statistik (Verhaltnis der Variation zwischen Gruppen zur Variation innerhalb der
Gruppen)

* Pr(>F): p-Wert fiir den F-Test

1 Weitere Quellen

Wie bereits gesagt, vergleicht diese Tabelle die Variation zwischen Gruppen (Sorten) mit
der Variation innerhalb der Gruppen (Residuen). Wenn die F-Statistik gro3 und der p-
Wert klein ist, verwerfen wir die Nullhypothese und schlieRen, dass sich mindestens ein
Gruppenmittelwert signifikant von den anderen unterscheidet. Wir werden jedoch nicht
ins Detail gehen, wie diese einzelnen Werte berechnet werden, aber graben Sie gerne
tiefer, beispielsweise Uber die nachstehenden Quellen.

» Using Linear Models for t tests and ANOVA, Clearly Explained!!!
« ANOVA: Crash Course Statistics #33

BioMath
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a1_modeldiagnostics.de.qmd
https://youtu.be/R7xd624pR1A?si=B2mOBLIvDG-naaJz
https://youtu.be/oOuu8IBd-yo?si=C3CdyN6zUTdp3pRk
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Der p-Wert ist sehr klein und < 0,05, was uns dazu fihrt, die Nullhypothese zu verwerfen und
somit darauf hinweist, dass es statistisch signifikante Ertragsunterschiede zwischen den
Sorten gibt. Die ANOVA sagt uns jedoch nur, dass es Unterschiede gibt, nicht welche
spezifischen Sorten sich voneinander unterscheiden. Dafir kénnen wir die Mittelwerte Gber

Post-hoc-Tests vergleichen.
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Mittelwertvergleiche

Verstehen von Post-hoc-Tests

Sobald wir durch die ANOVA festgestellt haben, dass es signifikante Unterschiede zwischen
den Gruppen gibt, moéchten wir typischerweise wissen, welche spezifischen Gruppen sich
voneinander unterscheiden. Hier kommen Post-hoc-Tests ins Spiel.

Gangige Post-hoc-Tests umfassen Fishers LSD-Test, Tukeys HSD-Test und die Bonferroni-
Holm-Korrektur. Fishers LSD ist im Wesentlichen ein Standard-t-Test, verwendet jedoch die
gepoolte Standardabweichung aus der Modellresidualvarianz fir alle Vergleiche.

Allen ist gemeinsam, dass ein Test fir jedes Gruppenpaar durchgefihrt wird. Wenn wir
beispielsweise drei Gruppen (A, B & C) haben, wiirden wir drei Tests durchfihren (A vs B, B
vs C und A vs C). Post-hoc-Tests werden “post hoc” (“nach diesem”) genannt, weil sie nach
der anfanglichen Analyse durchgeflhrt werden, die angezeigt hat, dass Unterschiede
existieren, und es Forschern ermdéglichen zu bestimmen, wo genau diese Unterschiede
zwischen mehreren Gruppen liegen.

1 Weitere Quellen

Fur den Moment reicht es zu verstehen, dass diese Tests verwendet werden, um zu
bestimmen, ob sich spezifische Gruppenmittelwerte signifikant voneinander
unterscheiden, aber graben Sie gerne tiefer, beispielsweise lber die nachstehenden
Quellen.

* Multiplicity Adjustments: Understanding the Nuance of Post hoc Tests
* Why are the StdErr all the same?

Verwendung des emmeans-Pakets

Wir werden tatsachlich nicht Funktionen wie t.test() verwenden, die die Rohdaten als
Input verwenden wirden, um einen einzelnen t-Test zu berechnen. Stattdessen werden wir
die emmeans () -Funktion aus dem emmeans -Paket verwenden, die automatisch geschétzte

Randmittelwerte (EMMs; auch bekannt als kleinste-Quadrate-Mittelwerte oder adjustierte
Mittelwerte) flr jede Gruppe berechnet, unter Beriicksichtigung der Modellstruktur und
Residualvarianz:

means <- emmeans (mod, specs = ~ variety)
means

variety emmean SE df lower.CL upper.CL

vl 20.5 1.75 20 16.8 24.1
v2 37.4 1.75 20 33.8 41.1
v3 19.5 1.75 20 15.8 23.1
v 29.9 1.75 20 26.2 33.5

Confidence level used: 0.95

Dies sind die geschatzten mittleren Ertrage flir jede Sorte, adjustiert fiir das Modell. Bei
einem einfachen einfaktoriellen Design wie unserem entsprechen diese den arithmetischen
Mittelwerten, aber bei komplexeren Designs kdnnen sie sich unterscheiden. Mit anderen
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Worten: Da unser Modell so sehr einfach ist, wurden diese adjustierten Mittelwerte
tatsachlich gar nicht adjustiert und sind identisch mit den Sortenmittelwerten, die wir oben
berechnet haben. In komplexeren Modellen und mit unausgewogenen Daten ist das jedoch
moglicherweise nicht der Fall. In jedem Fall ist ein weiterer Vorteil der Verwendung von

emmeans () , dass es automatisch jeden Mittelwert mit jedem anderen Mittelwert vergleicht:

pairs <- pairs(means, adjust = "tukey")
pairs

contrast estimate SE df t.ratio p.value

vl - v2 -16.913 2.48 20 -6.833 <0.0001
vl - v3 0.998 2.48 20 0.403 0.9772
vl - v4 -9.407 2.48 20 -3.800 0.0057
v2 - v3 17.912 2.48 20 7.236 <0.0001
v2 - v4 7.507 2.48 20 3.033 0.0307
v3 - v4 -10.405 2.48 20 -4.203 0.0023

P value adjustment: tukey method for comparing a family of 4 estimates

Diese Ausgabe zeigt alle paarweisen Vergleiche zwischen Sorten. Zum Beispiel: Der
Vergleich zwischen v1 und v2 zeigt einen Unterschied von —16.913. Sie kdnnen dies leicht
Uberprifen, indem Sie die obige Mittelwerttabelle betrachten. Der Mittelwert fir v1 ist 20,5
und fir v2 ist 37,4, also ist v1 - v2 tatsachlich —16,9. Neben diesem absoluten Unterschied
zeigt die Tabelle jedoch auch den Standardfehler, die Freiheitsgrade, das t-Verhaltnis und

den p-Wert, die zu diesem Unterschied gehdren. Da wir adjust = "tukey" geschrieben

haben, entspricht jeder p-Wert einem Tukey-Test (verwenden Sie adjust = "none" fir

Fishers LSD-Test). Dementsprechend liegen alle p-Werte aufder einem unter 0,05, was
darauf hinweist, dass sich alle Sorten signifikant voneinander unterscheiden, aufer v1 - v3.

Kompakte Buchstabendarstellung

Warnung

Es ist wahrscheinlich, dass das Ausfiihren des nachstehenden Codes zum ersten Mal
einen FEHLER verursacht. Dies liegt wahrscheinlich an einem seltsamen Bug mit der

cld () -Funktion. Er kann normalerweise behoben werden, indem R neu gestartet und
der Code erneut ausgefiihrt wird. Mit anderen Worten: Der FEHLER erscheint nur beim
allerersten Mal, wenn Sie c1d() ausflhren. Wenn Sie es erneut ausflihren, sollte es
funktionieren. Wenn Sie also diesen FEHLER sehen, schlieen und 6ffnen Sie entweder
RStudio vollstandig oder klicken Sie session > Restart R in der Menileiste. Denken

Sie daran, dass Sie danach den gesamten Code ab dem Laden der Pakete und dem
Importieren der Daten erneut ausfiihren missen.

Eine gangige Methode, solche Mittelwertvergleichsergebnisse zu prasentieren, ist eine
‘kompakte Buchstabendarstellung” (CLD), bei der Mittelwerte, die sich nicht signifikant
unterscheiden, denselben Buchstaben teilen:

mean comp <- cld(means, Letters = letters, adjust = "tukey")
mean comp
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variety emmean SE df lower.CL upper.CL .group

v3 19.5 1.75 20 14.7 24.3 a
vl 20.5 1.75 20 15.7 25.3 a
v 29.9 1.75 20 25,1 34.7 b
v2 37.4 1.75 20 32.6 42.2 €

Confidence level used: 0.95
Conf-level adjustment: sidak method for 4 estimates
P value adjustment: tukey method for comparing a family of 4 estimates
significance level used: alpha = 0.05
NOTE: If two or more means share the same grouping symbol,
then we cannot show them to be different.
But we also did not show them to be the same.

Sorten, die denselben Buchstaben in der .group -Spalte teilen, unterscheiden sich nicht
signifikant voneinander. Zum Beispiel sind Sorten, die beide den Buchstaben “a” haben, nicht
signifikant voneinander verschieden. Diese Darstellung ist also kompakt, weil sie die
allgemeinen Befunde all unserer sechs Tukey-Tests (statistisch signifikant oder nicht) tiber
eine kurze Kombination von Buchstaben neben unseren vier Mittelwerten anzeigt.

1 Weitere Quellen

Falls Sie sich wegen der Notiz wundern, die wir beim Ausflihren des Codes erhalten

Note: adjust = "tukey" was changed to "sidak" because "tukey" is only

haben appropriate for one set of pairwise comparison ,

besuchen Sie bitte das Kapitel “kompakte Buchstabendarstellung” (CLD). Dort finden Sie
auch andere Informationen zu all dem, die Uber diese Einfiihrung hinausgehen.

Kombination der Schritte

Beachten Sie, dass wir diese Ergebnisse zwar gerade in mehreren Schritten erhalten haben,
dies jedoch nur getan wurde, um das Verstandnis zu erleichtern. In der Praxis kdnnen wir all
dies in einem Befehl kombinieren:

mean comp <- mod %>%

emmeans (specs = ~ variety) %>%
cld(adjust = "tukey", Letters = letters)

| mean_comp

variety emmean SE df lower.CL upper.CL .group

v3 19.5 1.75 20 14.7 24.3 a
vl 20.5 1.75 20 15.7 25.3 a
v4 29.9 1.75 20 25,1 34.7 b
v2 37.4 1.75 20 32.6 42.2 €

Confidence level used: 0.95
Conf-level adjustment: sidak method for 4 estimates
P value adjustment: tukey method for comparing a family of 4 estimates
significance level used: alpha = 0.05
NOTE: If two or more means share the same grouping symbol,
then we cannot show them to be different.
But we also did not show them to be the same.
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https://schmidtpaul.github.io/dsfair_quarto/ch/summaryarticles/compactletterdisplay.html

Visualisierung der Ergebnisse

Erstellen wir schlie8lich eine Darstellung, die die Rohdaten mit unseren statistischen
Ergebnissen kombiniert.

ggplot () +
aes (x = variety) +
# schwarze Punkte reprasentieren die Rohdaten
geom point (
data = dat,
aes(y = yield)
)+
# schwarze Boxen reprédsentieren die Verteilung der Rohdaten
geom boxplot (
data = dat,
aes(y = yield),
width = 0.1, # 10% Breite
position = position nudge(x = -0.15) # nach links verschieben
) +
# rote Punkte reprdsentieren die adjustierten Mittelwerte
geom point (
data = mean comp,

aes (y = emmean),

color = "red",

position = position nudge(x = 0.1)
) +

# rote Fehlerbalken repréadsentieren die Konfidenzgrenzen der adjustierten
Mittelwerte
geom_errorbar (
data = mean comp,
aes (ymin = lower.CL, ymax = upper.CL),
color = "red",
width = 0.1,
position = position nudge(x = 0.1)
) +
# rote Buchstaben
geom text (
data = mean comp,

aes (y = emmean, label = .group),
color = "red",
position = position nudge(x = 0.2),
hjust = 0
)+
scale x discrete(
name = "Sorte"
)+
scale y continuous (
name = "Ertrag",
limits = c (0, NA),
expand = expansion (mult = c(0, 0.1))
)+

theme classic ()

14
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Wir werden im nachsten Kapitel mehr darlber sprechen, wie man diesen ggplot erstellt.
Seien Sie sich vorerst bewusst, dass

» schwarze Punkte Rohdaten reprasentieren,
» schwarze Boxen die Verteilung der Rohdaten reprasentieren,
+ rote Punkte und Fehlerbalken adjustierte Mittelwerte mit 95%-Konfidenzgrenzen

reprasentieren und

» Mittelwerte, denen ein gemeinsamer Buchstabe folgt, sich laut Tukey-Test nicht signifikant
unterscheiden.
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Zusammenfassung

Glickwunsch! Du hast deine erste Varianzanalyse und Mittelwertvergleiche fiir ein
vollstandig randomisiertes Versuchsdesign durchgeflihrt. Dies ist eine fundamentale Technik
in der experimentellen Datenanalyse, die Sie in vielen verschiedenen Kontexten verwenden
koénnen.

| Wichtig

1. Volistindig randomisiertes Versuchsdesign (CRD) ist das einfachste
Versuchsdesign, bei dem Behandlungen zufallig den Versuchseinheiten zugeordnet
werden.

2. Einfaktorielle ANOVA testet, ob es signifikante Unterschiede zwischen
Gruppenmittelwerten gibt:

* Die Modellformel ist response ~ factor
» Die ANOVA-Tabelle zeigt, ob es insgesamt signifikante Unterschiede gibt

3. Post-hoc-Tests bestimmen, welche spezifischen Gruppen sich voneinander
unterscheiden:

» Geschatzte Randmittelwerte (emmeans) liefern adjustierte Mittelwerte fiur jede
Gruppe

» Paarweise Vergleiche zwischen allen Mittelwerten/Gruppen werden durchgefihrt

* Die kompakte Buchstabendarstellung (CLD) prasentiert Ergebnisse mit Buchstaben
fur einfache Interpretation

Im nachsten Kapitel werden wir das randomisierte vollstandige Blockdesign (RCBD)
erkunden, das auf dem CRD aufbaut, indem es bekannte Variationsquellen in lhren
Versuchseinheiten berlcksichtigt.

Bibliography
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