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2. Einfaktorielle ANOVA in einem RCBD

Varianzanalyse (ANOVA); Randomisierte vollstandige Blockanlage (RCBD)
Dr. Paul Schmidt

Um alle in diesem Kapitel verwendeten Pakete zu installieren und zu laden, fihre folgenden
Code aus:

for (pkg in c("desplot", "emmeans", "ggtext", "here", "multcomp", "multcompView",
"tidyverse")) {

if (!require (pkg, character.only = TRUE)) install.packages (pkg)
}

library (desplot)
library (emmeans)
library (ggtext)
library (here)

library (multcomp)
library (multcompView)
(

library (tidyverse)

Von CRD zu RCBD

Im vorherigen Kapitel analysierten wir Daten aus einem Melonensorten-Versuch mit einem
vollstandig randomisierten Design (CRD). In einem CRD werden Behandlungen zufallig den
Versuchseinheiten (Parzellen) ohne Einschrankungen zugeordnet. Obwohl dies das
einfachste Design ist, wird angenommen, dass alle Versuchseinheiten gleich variabel sind.

In landwirtschaftlichen Versuchen stehen wir jedoch oft vor Situationen, in denen unsere
Versuchseinheiten nicht homogen sind:

» Felder kénnen Gradienten in der Bodenfruchtbarkeit aufweisen

» Gewachshaustische konnen unterschiedliche Licht- oder Temperaturverhaltnisse haben

 Laborarbeiten kénnen sich Uber mehrere Tage mit unterschiedlichen Bedingungen
erstrecken

Warum Blocke verwenden?

Eine Randomisierte volistindige Blockanlage (RCBD) begegnet dem, indem
Versuchseinheiten in “Blocke” gruppiert werden, wobei Einheiten innerhalb jedes Blocks
einander ahnlicher sind als Einheiten in anderen Blocken. Dann erscheint jede Behandlung
genau einmal in jedem Block (daher “vollstdndige” Blockanlage).

Die Vorteile des Blockens umfassen:

1. Erhdhte Prézision: Durch Berlcksichtigung bekannter Variationsquellen tber die Blocke
reduzieren wir unerklarte Variation (Rauschen/Fehler)

2. Bessere Schatzungen: Als Folge werden Behandlungseffekte praziser geschatzt

3. Giiltige Vergleiche: Jede Behandlung ist denselben Bedingungen uber alle Blécke
hinweg ausgesetzt

Man kann es so betrachten: In einem CRD wird alle Variation entweder durch Behandlungen
erklart oder als zufalliger Fehler betrachtet. In einem RCBD wird alle Variation entweder
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durch Behandlungen oder durch Bloécke erklart, wodurch weniger unerklarte Variation tbrig
bleibt.

Daten

Fir dieses Beispiel verwenden wir Daten aus einem Sortenversuch von Clewer & Scarisbrick
(2001). Das Experiment testete vier Sorten in drei Bloécken. Die Zielvariable ist der Ertrag (t/
ha).

dat <- read csv(here("data", "ClewerScarisbrick2001l.csv"))
dat

Rows: 12 Columns: 5

— Column specification
Delimiter: ","

chr (2): block, cultivar
dbl (3): yield, row, col

i Use "spec()  to retrieve the full column specification for this data.
i Specify the column types or set “show col types = FALSE' to quiet this message.

# A tibble: 12 x 5
block cultivar yield row col
<chr> <chr> <dbl> <dbl> <dbl>

1 Bl Cl 7.4 2 1
2 Bl C2 9.8 3 1
3 Bl C3 703 1 1
4 Bl c4 9.5 4 1
5 B2 Cl 6.5 1 2
6 B2 C2 6.8 4 2
7 B2 €3 6.1 3 2
8 B2 c4 8 2 2
9 B3 Cl 5.6 2 3
10 B3 C2 6.2 1 3
11 B3 C3 6.4 3 3
12 B3 c4 7.4 4 3

Der Datensatz enthalt:

* cultivar : Vier Sorten mit den Bezeichnungen C1 bis C4
* block : Drei Blocke mit den Bezeichnungen B1 bis B3
* yield: Ernteertrag in Tonnen pro Hektar

* row und col : Feldparzellenkoordinaten fur die Visualisierung mit desplot

Format

Wie bei der vorherigen Analyse mussen wir sicherstellen, dass unsere kategorialen Variablen
ordnungsgemal als Faktoren formatiert sind. Hier bedeutet das die Formatierung von zwei

Variablen: block und cultivar . Unten sind zwei verschiedene Wege dafir gezeigt.

dat <- dat %>%
mutate (
block = as.factor (block),

cultivar as.factor (cultivar)
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dat <- dat %>%
mutate (across (c(block, cultivar), ~ as.factor(.x)))

dat
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Erkunden

Schauen wir uns zunachst die zusammenfassenden Statistiken sowohl nach Sorte als auch
nach Block an, um die Datenstruktur zu verstehen:

# Zusammenfassung nach Sorte
dat %>%
group by (cultivar) $%>%
summarize (
count = n{(),
mean_yield = mean(yield),
sd_yield = sd(yield),
min yield = min(yield),
max yield = max(yield)
) $>%
arrange (desc (mean_yield))

# A tibble: 4 x 6
cultivar count mean yield sd yield min yield max yield

<fct> <int> <dbl> <dbl> <dbl> <dbl>
1 C4 3 8.3 1.08 7.4 9.5
2 C2 3 7.6 1.93 6.2 9.8
3 C3 3 6.6 0.624 6.1 7.3
4 C1 3 6.5 0.9 5.6 7.4
# Zusammenfassung nach Block
dat %>%

group by (block) %>%
summarize (
count = n{(),
mean_yield = mean(yield),
sd_yield = sd(yield),
min yield = min(yield),
max yield = max(yield)
) $>%
arrange (desc (mean_yield))

# A tibble: 3 x 6
block count mean yield sd yield min yield max yield

<fct> <int> <dbl> <dbl> <dbl> <dbl>
1 B1 4 8.5 1.33 To3 9.8
2 B2 4 6.85 0.819 6.1 8
3 B3 4 6.4 0.748 5.6 7.4

Wir sehen, dass:

» Sorte C4 den hdchsten mittleren Ertrag hat
» Block B1 deutlich héhere Ertrage als B2 und B3 aufweist

Um es klarzustellen: Alles scheint in Block B1 besser zu wachsen. Das ist kein Sorteneffekt -
es ist ein Blockeffekt. Es kann nicht an einer Sorte liegen, weil alle Sorten in jedem Block
vorhanden sind. Genau deshalb verwenden wir Blécke - es gibt systematische Unterschiede
zwischen Blocken, die wir berucksichtigen wollen.

Visualisieren wir die Daten, um die Beziehung zwischen Sorten und Blécken zu sehen:

ggplot (data = dat) +
aes(y = yield, x = cultivar, color = block) +
geom point () +
scale x discrete(

name = "Sorte"
) +
scale y continuous (
name = "Ertrag",
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limits = ¢ (0, NA),
expand = expansion (mult = c(0, 0.1))
) +
scale color discrete(
name = "Block"
) +
theme classic()
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Diese Grafik zeigt, wie sich Ertrage sowohl nach Sorte (x-Achse) als auch nach Block
(Farbe) unterscheiden. Beachte, dass jede Sorte ihren héchsten Ertrag in Block B1 hatte.
Das ist wieder ein klarer Hinweis auf den Blockeffekt. Etwas an Block B1 Idsst alles besser

wachsen.

Jetzt visualisieren wir die Versuchsanlage, um die rdumliche Anordnung zu verstehen:

desplot (

data = dat,

flip = TRUE, # Reihe 1 oben, nicht unten

form = cultivar ~ col + row, # Fullfarbe je Sorte
outl = block, # Linie zwischen Blocken

text = cultivar, # Sor 7 rzelle

cex = 1, # Sortennamen: SchriftgroBe

shorten = FALSE, # Sortennamen: nicht abkiirzen
main = "Feld-Layout: Sorten", # Titel der Grafik
show.key = FALSE # Legende ausblenden
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Feld-Layout: Sorten
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C1 C4
C2 C3
C4 C2
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desplot (
data = dat,
flip = TRUE, # Reihe 1 oben, nicht unten

outl = block, # Linie zwischen Bloécken

show.key = FALSE # Legende ausblenden

Ertrag pro Parzelle

form = yield ~ col + row, # Fullfarbe nach Ertrag

text = cultivar, # Sortennamen je Parzelle

cex = 1, # Sortennamen: SchriftgroBe

shorten = FALSE, # Sortennamen: nicht abkiirzen
main = "Ertrag pro Parzelle", # Titel der Grafik

C3 C1

C1 C4

C3

C2

C3

C4

Die Feld-Layouts bestatigen:
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~- 8.0
- 7.5
- 7.0

- 6.5

e

1. Jede Sorte erscheint genau einmal in jedem Block (vollstandige Blockanlage)

2. Block B1 (links) hat generell héhere Ertrage als die anderen Blocke
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3. Innerhalb jedes Blocks hat Sorte C4 entweder den héchsten oder zweithdchsten Ertrag
verglichen mit den anderen Sorten
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Modell und ANOVA
Das RCBD-Modell verstehen

Der Hauptunterschied zwischen CRD und RCBD in Bezug auf die Modellformulierung ist ein
zusatzlicher Effekt fir Blocke. In einem CRD schliefsen wir nur den Behandlungseffekt ein:

yield ~ cultivar

In einem RCBD fugen wir den Blockeffekt hinzu:
yield ~ cultivar + block

Fitten wir dieses Modell:

mod <- Im(yield ~ cultivar + block, data = dat)
mod

Call:
Im(formula = yield ~ cultivar + block, data = dat)

Coefficients:
(Intercept) cultivarC2 cultivarC3 cultivarC4 blockB2 blockB3
7.75 1.10 0.10 1.80 -1.65 -2.10

Beachte, dass die Koeffizienten jetzt sowohl Sorten- als auch Blockeffekte einschliel3en und
beide wieder ihre erste Stufe “vermissen”. Die Blockeffekte (blockB2 und blockB3) sind beide
negativ, was niedrigere Ertrage in diesen Blocken verglichen mit Block B1 (der als
Referenzstufe auf 0 gesetzt ist) anzeigt. Die Sorteneffekte (cultivarC2, cultivarC3 und
cultivarC4) sind alle positiv, was hohere Ertrage verglichen mit Sorte C1 (der als
Referenzstufe auf 0 gesetzt ist) anzeigt. Das ist jedoch Zufall, da diese Stufen nicht in einer
bestimmten Reihenfolge sortiert sind und es immer die erste Stufe ist, die auf O gesetzt wird.

Die gute Nachricht ist, dass ab hier alles gleich wie bei der CRD-Analyse ist. Wir kdnnen
immer noch die anova () -Funktion verwenden, um eine ANOVA auf diesem Modell
durchzufiihren, und wir kbnnen immer noch emmeans () verwenden, um geschatzte
Randmittel (adjustierte Mittel) fir unsere Sorten zu erhalten. Abgesehen davon, dass unser

Faktor cultivar statt variety heifldst, miissen wir nicht einmal den Code aus dem

vorherigen Kapitel andern. Die wichtige Anderung ist, dass wir jetzt den Blockeffekt in unser
Modell einbezogen haben. Die ANOVA-Tabelle wird daher auch den Blockeffekt enthalten.
Die adjustierten Mittel - oder vielmehr ihre Standardfehler - werden auch fur den Blockeffekt
adjustiert.

Modellannahmen erfullt?

An dieser Stelle (d.h. nach dem Modell-Fit und vor der ANOVA-Interpretation) sollte man
prufen, ob die Modellannahmen erfillt sind. Mehr dazu im Anhang A1: Modelldiagnostik.

Durchfuhrung der ANOVA

ANOVA <- anova (mod)
ANOVA
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Analysis of Variance Table

Response: yield
Df Sum Sg Mean Sg F value Pr (>F)
cultivar 3 6.63 2.21 5.525 0.036730 *

block 2 9.78 4.89 12.225 0.007651 **
Residuals 6 2.40 0.40
Signif. codes: 0 '***' (Q.001 '**' 0.01 '*' 0.05 '.' 0.1 " ' 1

In dieser ANOVA-Tabelle:

1. Beide Effekte erscheinen in der Tabelle: cultivar und block
2. Sowohl Sorten- (p < 0.05) als auch Blockeffekte (p < 0.05) sind statistisch signifikant

Dass der Blockeffekt statistisch signifikant ist, bestatigt, dass das Blocken vorteilhaft war - wir
verwerfen die Nullhypothese, dass es keinen Unterschied zwischen Blécken gibt. Indem wir
also den Blockeffekt in unser Modell einbezogen haben, haben wir diese Variation
berlcksichtigt, die andernfalls dem Fehler/unerklarten Rauschen zugeschrieben worden
ware. Obwohl wir uns hauptsachlich flr Sorteneffekte interessieren, verbessert die
Einbeziehung des Blockeffekts unsere Analyse.

Dass der Sorteneffekt statistisch signifikant ist, zeigt an, dass sich mindestens eine Sorte von
den anderen unterscheidet. Das ist natlrlich unser Hauptinteresse. Wir kénnen nun zu Post-
hoc-Vergleichen tUbergehen, um zu identifizieren, welche Sorten sich signifikant voneinander
unterscheiden.
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Mittelwertvergleiche

Wie in der CRD-Analyse verwenden wir geschatzte Randmittel (emmeans) fir Post-hoc-
Vergleiche:

mean _comp <- mod %>%
emmeans (specs = ~ cultivar) %$>% # adj. Mittel je Sorte
cld(adjust = "none", Letters = letters) # kompakte Buchstabendarstellung (CLD)

mean_comp

cultivar emmean SE df lower.CL upper.CL .group
Cl 6.5 0.365 6 5.61 7.39 a
Cc3 6.6 0.365 6 5.71 7.49 a
C2 7.6 0.365 6 6.71 8.49 ab
c4 8.3 0.365 6 7.41 9.19 b

Results are averaged over the levels of: block

Confidence level used: 0.95

significance level used: alpha = 0.05

NOTE: If two or more means share the same grouping symbol,
then we cannot show them to be different.
But we also did not show them to be the same.

Beachte, dass diese Mittel fur Blockeffekte adjustiert sind. In einem balancierten Design wie
diesem (jede Sorte erscheint einmal in jedem Block) sind die adjustierten Mittel die
Sortendurchschnitte Uber Blécke hinweg. Der emmeans-Ansatz berlcksichtigt die
Blockstruktur bei der Berechnung der Standardfehler.

Ergebnisse visualisieren

Als abschlielender Schritt in diesem Material erstellen wir eine umfassende Grafik, die
sowohl die Rohdaten als auch die statistischen Ergebnisse zeigt. Um jede Komponente der
Grafik zu verstehen, schaue bitte das Video zu diesem Kapitel an.

my caption <- "Schwarze Punkte reprasentieren Rohdaten.

Rote Punkte und Fehlerbalken reprdsentieren adjustierte Mittel mit 95% Konfidenz-
grenzen je Sorte. Mittel, gefolgt von einem gemeinsamen Buchstaben, unterscheiden
sich nicht signifikant nach Fishers LSD-Test."

ggplot () +
aes (x = cultivar) +
# schwarze Punkte fir die Rohdaten

geom point (
data = dat,
aes(y = yield, shape = block)
)+
# rote Punkte fiir die adjustierten Mittel
geom point (
data = mean comp,

aes (y = emmean),
color = "red",
position = position nudge(x = 0.1)
)+
# rote Fehlerbalken fiir die Konfidenzgrenzen der adjustierten Mittel
geom errorbar (
data = mean comp,
aes (ymin = lower.CL, ymax = upper.CL),
color = "red",
width = 0.1,
position = position nudge(x = 0.1)
)+
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# rote Buchstaben
geom_text (
data = mean comp,

aes (y = emmean, label = str trim(.group)),
color = "red",
position = position nudge(x = 0.2),
hjust = 0
) +
scale x discrete(
name = "Sorte"
)+

scale y continuous (
name = "Ertrag",
limits = c (0, NA),
expand = expansion (mult = c(0, 0.1))

) +
scale shape discrete(
name = "Block"
) +
theme classic () +
labs (caption = my caption) +
theme (plot.caption = element textbox simple (margin = margin(t = 5)),
plot.caption.position = "plot")
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Schwarze Punkte reprasentieren Rohdaten. Rote Punkte und Fehlerbalken reprasentieren
adjustierte Mittel mit 95% Konfidenz- grenzen je Sorte. Mittel, gefolgt von einem gemeinsamen
Buchstaben, unterscheiden sich nicht signifikant nach Fishers LSD-Test.
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CRD vs RCBD Vergleich

Fassen wir die wichtigsten Unterschiede zwischen unseren CRD- und RCBD-Analysen
zusammen:

1. Modeliformel:
* CRD: yield ~ cultivar

* RCBD: yield ~ cultivar + block

2. Variationsquellen:

+ CRD: Behandlung und Residualfehler

* RCBD: Behandlung, Blocke und Residualfehler
3. Prazision:

* CRD: Alle unerklarte Variation geht in den Fehler

+ RCBD: Blockvariation wird vom Fehler entfernt, erhoht die Prazision
4. Wann verwenden:

* CRD: Wenn Versuchseinheiten homogen sind

* RCBD: Wenn es bekannte Quellen der Heterogenitat gibt

Abschluss

Du hast nun gelernt, wie man Daten aus einer randomisierten vollstandigen Blockanlage
analysiert und dabei auf den Konzepten aus der vollstandig randomisierten Anlage aufbaust.
Blocken ist ein machtiges Werkzeug, das die Prazision deiner Versuche erhéht, wenn man
mit heterogenen Versuchsbedingungen umgeht.

| Zusammenfassung
1. Randomisierte vollstandige Blockanlage (RCBD) gruppiert ahnliche
Versuchseinheiten in Blocke und reduziert unerklarte Variation.

2. Blocken verbessert die Prazision durch Berticksichtigung bekannter
Variationsquellen und macht Behandlungsvergleiche genauer.

3. Das RCBD-Modell schliel3t sowohl Behandlungs- als auch Blockeffekte ein:
response ~ treatment + block .
4. ANOVA fiir RCBD testet sowohl Behandlungs- als auch Blockeffekte, obwohl wir uns

hauptsachlich fir Behandlungen interessieren.

5. Geschitzte Randmittel in RCBD sind fir Blockeffekte adjustiert und bieten bessere
Behandlungsvergleiche.

Damit schlie3t unsere Einfiihrung in die Analyse von Versuchsanlagen ab. Du hast nun die
Werkzeuge, um sowohl einfache (CRD) als auch komplexere (RCBD) Versuchsanlagen mit
ANOVA und Mittelwertvergleichstechniken in R zu handhaben.
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