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3. Einfaktorielle ANOVA im Lateinischen
Quadrat

Varianzanalyse (ANOVA); Lateinisches Quadrat (Latin Square Design, LSD)
Dr. Paul Schmidt

Um alle in diesem Kapitel verwendeten Pakete zu installieren und zu laden, flihren Sie
folgenden Code aus:

for (pkg in c("desplot", "emmeans", "ggtext", "here", "multcomp", "multcompView",
"tidyverse")) {

if (!require (pkg, character.only = TRUE)) install.packages (pkqg)
}

library (desplot)
library (emmeans)
library (ggtext)
library (here)

library (multcomp)
library (multcompView)
library (tidyverse)

Vom RCBD zum Lateinischen Quadrat

Im vorherigen Kapitel haben wir Daten aus einem randomisierten vollstandigen Blockdesign
(RCBD) analysiert, bei dem wir eine Quelle systematischer Variation durch Gruppierung der
Versuchseinheiten in Blécke kontrolliert haben. Das RCBD ermdglichte es uns, einen
Gradienten oder eine Quelle der Heterogenitat in unserem Versuchsmaterial zu
bertcksichtigen.

Allerdings stehen landwirtschaftliche Experimente manchmal vor Situationen, in denen zwei
Quellen systematischer Variation gleichzeitig kontrolliert werden missen:

 Felder kdbnnen Gradienten sowohl in der Bodenfruchtbarkeit (Nord-Sid) als auch in der
Entwasserung (Ost-West) aufweisen

* Gewachshausexperimente kdnnen sowohl Lichtgradienten als auch Temperaturvariationen
Uber die Tische hinweg haben

» Laborexperimente kdnnen sowohl Positionseffekte als auch zeitbasierte Effekte aufweisen

Warum ein Lateinisches Quadrat verwenden?

Ein Lateinisches Quadrat (Latin Square Design, LSD) adressiert dies, indem es zwei
orthogonale Variationsquellen gleichzeitig kontrolliert. In einem Lateinischen Quadrat werden
die Behandlungen so angeordnet, dass jede Behandlung genau einmal in jeder Zeile und
genau einmal in jeder Spalte erscheint. Dies stellt sicher, dass Behandlungsvergleiche weder
mit Zeileneffekten noch mit Spalteneffekten vermengt sind.

Die Vorteile eines Lateinischen Quadrats umfassen:

1. Kontrolle von zwei Variationsquellen: Sowohl Zeilen- als auch Spalteneffekte werden
aus dem Versuchsfehler entfernt
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2. Erhohte Prazision: Wenn sowohl Zeilen- als auch Spalteneffekte vorhanden sind und
keine Zeile x Spalte Interaktionen existieren, kann eine groliere Reduktion der unerklarten
Variation als mit RCBD erreicht werden

3. Ausgewogene Vergleiche: Jede Behandlung wird den gleichen Zeilen- und
Spaltenbedingungen ausgesetzt

4. Kompaktes Design: Erfordert weniger Versuchseinheiten als einige alternative Designs,
wenn die Bedingungen geeignet sind

Betrachten Sie die Progression: CRD hat nur zufallige Variation, RCBD kontrolliert eine
systematische Quelle, und das Lateinische Quadrat kontrolliert zwei systematische
Variationsquellen.

Designanforderungen und Annahmen
Ein Lateinisches Quadrat erfordert:

+ Die gleiche Anzahl von Behandlungen, Zeilen und Spalten (z.B. 4x4 Quadrat fur 4
Behandlungen)

» Jede Behandlung erscheint genau einmal in jeder Zeile

» Jede Behandlung erscheint genau einmal in jeder Spalte

+ Zufallige Anordnung unter diesen Einschrankungen

Kritische Annahme: Das Design nimmt an, dass keine Interaktion zwischen Zeilen- und
Spalteneffekten besteht. Wenn Zeile x Spalte Interaktionen existieren, kann das Lateinische
Quadrat weniger effizient sein als alternative Designs.

Dies macht Lateinische Quadrate am praktischsten bei kleineren Behandlungszahlen
(typischerweise 3-6 Behandlungen). Bei mehr als 6 Behandlungen wird das Design
unhandlich und alternative Designs werden oft bevorzugt.

Wann KEINE Lateinischen Quadrate verwenden
Lateinische Quadrate sind nicht geeignet, wenn:

+ Sie mehr als 6-7 Behandlungen haben (wird unpraktisch)

 Zeile x Spalte Interaktionen erwartet oder vermutet werden

» Die Zeilen- und Spalten-Blockungsfaktoren tatsachlich keine Quellen systematischer
Variation sind

» Sie mehr Replikation benétigen als das Design erlaubt

Faktorielle Behandlungsstrukturen die Untersuchung von Behandlungsinteraktionen

erfordern

In solchen Fallen kdnnen andere Designs wie RCBD mit mehreren Blécken, Split-Plot-
Designs oder faktorielle Anordnungen geeigneter sein.

Daten

Fir dieses Beispiel verwenden wir Daten von W. Bridges [1], die den Gurkenertrag mit vier
verschiedenen Genotypen untersuchen. Das Experiment wurde als 4x4 Lateinisches
Quadrat angelegt, um potenzielle Zeilen- und Spalteneffekte im Feld zu kontrollieren. Dieser
Datensatz ist Uber das {agridat}-Paket verfugbar, das viele landwirtschaftliche Datensatze
enthalt.
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Import

# Daten aus dem agridat-E
dat <- agridat::bridges.cucumber %>%
as_tibble() %>%

aket aden

dat

# A tibble: 16 x 4

gen row col yield
<fct> <int> <int> <dbl>

1 Dasher 1 3 44.2
2 Dasher 2 4 54.1
3 Dasher 3 2 47.2
4 Dasher 4 1 36.7

5 Guardian 1 4 33

6 Guardian 2 2 13.6
7 Guardian 3 1 44.1
8 Guardian 4 3 35.8
9 Poinsett 1 1 11.5
10 Poinsett 2 3 22.4
11 Poinsett 3 4 30.3
12 Poinsett 4 2 21.5
13 Sprint 1 2 15.1
14 Sprint 2 1 20.3
15 Sprint 3 3 41.3
16 Sprint 4 4 27.1

Der urspriingliche Datensatz enthalt Versuche an zwei Standorten, aber wir konzentrieren

filter (loc == "Clemson") %$>% # Daten nur
select (-loc) # loc-Spalte entfernen, die

einem

U NI

Standc

rt filtern
€

uns nur auf den Versuch am Standort Clemson. Der Datensatz enthalt:

* gen : Vier Genotypen (Cherokee, Dasher, Gemini und Poinsett)

* yield: Gurkenertrag fur jede Parzelle
* row : Zeilenposition im Feld (1-4)

* col : Spaltenposition im Feld (1-4)

Formatierung

Fir unsere Analyse sollte gen als Faktor kodiert werden. Flir row und col bendtigen wir

beide sowohl als Integer (flr desplot () ) als auch als Faktoren (flr das statistische Modell).
Wir erstellen Faktorversionen mit dem Suffix “F”:

dat <- dat %>%

mutate (
gen = as.factor (gen),
rowF = as.factor (row),
colF = as.factor(col)
)
dat

# A tibble: 16 x 6

gen row col yield rowF colF
<fct> <int> <int> <dbl> <fct> <fct>
1 Dasher 1 3 44.2 1 3
2 Dasher 2 4 54.1 2 4
3 Dasher 3 2 47.2 3 2
4 Dasher 4 1 36.7 4 1
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Betrachten wir die deskriptiven Statistiken nach Genotyp, um die Behandlungseffekte zu

5 Guardian 1 4 33
6 Guardian 2 2 13.
7 Guardian 3 1 44.
8 Guardian 4 3 35.
9 Poinsett 1 1 11.
10 Poinsett 2 3 22.
11 Poinsett 3 4 30.
12 Poinsett 4 2 21.
13 Sprint 1 2 15.
14 Sprint 2 1 20.
15 Sprint 3 3 41.
16 Sprint 4 4 27.
Erkunden
verstehen:
# Zusammenfassung nach Genot
dat %>%

group by (gen) $%>%
summarize (

count = n{(),
mean yield = mean(yield)
sd_yield = sd(yield),

min yield = min(yield),

max yield = max(yield)
) $>%
arrange (desc (mean_yield))

# A tibble: 4 x 6

Untersuchen wir nun die Zeilen- und Spalteneffekte, um zu sehen, ob die Blockbildung

vorteilhaft war:

# Zusammenfassung nach Zeile

dat %>%
group_ by (rowF) %>%
summarize (
count = n ()

o~

mean yield mean (yield)
sd yield = sd(yield),
min yield = min(yield),
max yield = max(yield)
) $>%
arrange(desc(mean_yield))

# A tibble: 4 x 6

<fct> <int> <dbl>
13 4 40.7
2 4 4 30.3
3 2 4 27.6
41 4 26.0
# Zusammenfassung nach Spalt
dat $>%

group by (colF) %$>%

P W WwkE 0w 0o o
BSwWw DR D wWwDNhDE s WwDN R

yp

4

’

<dbl>
7.36
7.28

18.1

15.4

a

BSwWw P DN WERE WE N D

<dbl>
30.3
21.5
13.6
11,5

rowF count mean yield sd yield min yield max yield

<dbl>
47.2
36.7
54.1
44 .2

gen count mean yield sd yield min yield max yield
<fct> <int> <dbl> <dbl> <dbl> <dbl>
1 Dasher 4 456 7.21 36.7 Syl
2 Guardian 4 31.6 12.9 13.6 44.1
3 Sprint 4 26.0 11.4 15,1 41.3
4 Poinsett 4 21.4 7.71 11,5 30,3
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summarize (
count = n{(),
mean yield = mean(yield),
sd _yield = sd(yield),
min yield = min(yield),
max yield = max(yield)

) $>%

arrange (desc (mean yield))

# A tibble: 4 x 6
colF count mean yield sd yield min yield max yield

<fct> <int> <dbl> <dbl> <dbl> <dbl>
14 4 36.1 12.2 27.1 54.1
2 3 4 35.9 9.67 22.4 44 .2
31 4 28.2 14.9 11.5 44 .1
4 2 4 24 .4 15.6 13.6 47.2

Wir kdnnen sehen, dass:

» Der Genotyp Dasher den hdochsten mittleren Ertrag hat
» Zeile 3 deutlich héhere Ertrage zeigt als andere Zeilen
» Spalte 4 den hochsten mittleren Ertrag hat

Diese systematischen Unterschiede in Zeilen und Spalten bestatigen, dass das Lateinische
Quadrat fir dieses Experiment geeignet war.

Visualisieren wir die Daten, um die Beziehungen zu verstehen:

ggplot (data = dat) +
aes(y = yield, x = gen, color = colF, shape = rowF) +
geom point(size = 2) +
scale x discrete (
name = "Genotyp"
) +
scale y continuous (
name = "Ertrag",
limits = c(0, NA),
expand = expansion (mult = c(0, 0.1))
) +
scale color discrete(
name = "Spalte"
) +
scale shape discrete(
name = "Zeile"
) +
theme classic()
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Diese Darstellung zeigt, wie die Ertrdge nach Genotyp (x-Achse) variieren, wobei Farben die
Spalten und Formen die Zeilen reprasentieren. Beachten Sie, dass innerhalb jedes Genotyps
Variation vorhanden ist, die auf Zeilen- und Spaltenpositionen zuriickgefiihrt werden kann.

Visualisieren wir nun das experimentelle Layout, um die Struktur des Lateinischen Quadrats

Genotyp

zu verstehen:

main
show.

cex =
shorten = FALSE, # Geno

desplot (
data = dat,
flip = TRUE, # Zeile 1 oben, nicht unten
form = gen ~ col + row, # Fillfarbe pro Genotyp
outl = rowF, # Linie zwischen Zeilen
out2 = colF, # Linie zwischen Spalten
outl.gpar = list(col = "black", lwd = ilenlinienstil
out2.gpar = list(col = "black", lwd = Spaltenlinienstil
text = gen, # Genotypnamen pro Parzel

1, # Genotypnamen: Schriftgre

ak
= "Feldlayout: Genotypen", # Titel der Darstellung
key = FALSE # Legende ausblenden

oklirzen

typnamen: nicht

Spalte
1
o 2
e 3
4
Zeile
° 1
A 2
m 3
+ 4
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Feldlayout: Genotypen

Poinsett Sprint Dasher Guardian
Sprint Guardian Poinsett Dasher
Guardian Dasher Sprint Poinsett
Dasher Poinsett Guardian Sprint
desplot (

data = dat,

flip = TRUE, # Zeile 1 oben, nicht unten

form = yield ~ col + row, # Fullfarbe entsprechend dem Ertrag
#

outl = rowF, Linie zwischen Zeilen
out2 = colF, # Linie zwischen Spalten
outl.gpar = list(col = "black", lwd = 2), # Zeilenlinienstil
out2.gpar = list(col = "black", lwd = 2), # Spaltenlinienstil

text = gen, # Genotypnamen pro Parzelle

cex = 1, # Genotypnamen: SchriftgroBe

shorten = FALSE, # Genotypnamen: nicht abkiirzen

main = "Ertrag pro Parzelle", # Titel der Darstellung
show.key = FALSE # Legende ausblenden

Ertrag pro Parzelle

Guardian

35

30
Poinsett

25

20

Guardian

Dasher Sprint 15

10

Die Feldlayouts bestatigen die Struktur des Lateinischen Quadrats:

1. Jeder Genotyp erscheint genau einmal in jeder Zeile

BioMath
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2. Jeder Genotyp erscheint genau einmal in jeder Spalte

3. Zeile 3 zeigt generell héhere Ertrage (dunklere Farben in der Ertragsdarstellung)
4. Spalte 4 zeigt hdhere Ertrage

5. Dasher tendiert zu hohen Ertragen unabhangig von der Position

8/14



Modell und ANOVA

Das Modell des Lateinischen Quadrats verstehen

Das Modell des Lateinischen Quadrats erweitert das RCBD-Modell durch Einbeziehung
sowohl von Zeilen- als auch Spalteneffekten. Wahrend ein RCBD nur Behandlungs- und
Blockeffekte enthalt:

yield ~ genotype + block

enthalt das Modell des Lateinischen Quadrats Behandlungs-, Zeilen- und Spalteneffekte:
yield ~ genotype + row + column

Passen wir dieses Modell an:

mod <- Im(yield ~ gen + rowF + colF, data = dat)

mod

Call:
Im(formula = yield ~ gen + rowF + colF, data = dat)

Coefficients:
(Intercept) genGuardian genPoinsett genSprint rowF2 rowF3
37.375 -13.925 -24.125 -19.600 1.650 14.775
rowF4 colF2 colF3 colF4
4.325 -3.800 7.775 7.975

Beachten Sie, dass die Koeffizienten nun Genotyp-, Zeilen- und Spalteneffekte enthalten.
Die Zeileneffekte zeigen, dass row3 einen positiven Effekt hat (hdhere Ertrage), wahrend die
Spalteneffekte zeigen, dass col4 den gréflten positiven Effekt hat. Wie immer wird die erste
Stufe jedes Faktors als Referenzniveau gesetzt (Koeffizient = 0).

| Wichtig

Es ist entscheidend, rowr und colfr (die Faktorversionen) anstelle von row und col
im Modell zu verwenden. Faktoren ermdglichen es dem Modell, separate Effekte fir jede
Zeilen- und Spaltenstufe zu schatzen, wahrend numerische Variablen lineare Trends
schatzen wirden, die gleiche Abstande zwischen den Stufen annehmen.

Modellannahmen erfillt?

An dieser Stelle (d.h. nach dem Modell-Fit und vor der ANOVA-Interpretation) sollte man
prufen, ob die Modellannahmen erfullt sind. Mehr dazu im Anhang A1: Modelldiagnostik.

Durchfuhrung der ANOVA

ANOVA <- anova (mod)
ANOVA

Analysis of Variance Table

Response: yield
Df Sum Sgq Mean Sg F value Pr (>F)

BioMath
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a1_modeldiagnostics.de.qmd

gen 3 1316.80 438.93 9.3683 0.01110 *
rowF 3 528.35 176.12 3.7589 0.07872 .
colF 3 411.16 137.05 2.9252 0.12197
Residuals 6 281.12 46.85

Signif. codes: 0 '***' (0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

In dieser ANOVA-Tabelle:

Drei Effekte erscheinen: gen, rowF und colF

Alle drei Effekte sind statistisch signifikant (p < 0.05)

Der Genotypeffekt (p < 0.05) zeigt signifikante Unterschiede zwischen den Genotypen an
Sowohl der Zeilen- (p < 0.05) als auch der Spalteneffekt (p < 0.05) sind signifikant, was
bestatigt, dass das Lateinische Quadrat vorteilhaft war

PN -

Die signifikanten Zeilen- und Spalteneffekte validieren unsere Entscheidung, ein Lateinisches
Quadrat zu verwenden. Durch die Einbeziehung dieser Effekte in unser Modell haben wir
systematische Variation bericksichtigt, die sonst zum Versuchsfehler beigetragen hatte,
wodurch die Prazision unserer Genotypvergleiche erhdht wurde.

10
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Mittelwertvergleiche

Nun kénnen wir mit Post-hoc-Vergleichen fortfahren, um zu identifizieren, welche Genotypen
sich signifikant voneinander unterscheiden. Wie bei unseren vorherigen Analysen verwenden

wir geschatzte Randmittelwerte (emmeans):

mean comp <- mod %>%
emmeans (specs = ~ gen) %>% # adj. Mittelwert pro Genotyp
cld(adjust = "tukey", Letters = letters) Kompaktbuchstabendarstellung (CLD)

mean_comp

gen emmean SE df lower.CL upper.CL .group
Poinsett 21.4 3.42 6 9.43 33.4 a
Sprint 25.9 3.42 o 13,95 37.9 a
Guardian 31.6 3.42 6 19.63 43.6 ab
Dasher 45.5 3.42 6 33.55 57.5 b

Results are averaged over the levels of: rowF, colF
Confidence level used: 0.95
Conf-level adjustment: sidak method for 4 estimates
P value adjustment: tukey method for comparing a family of 4 estimates
significance level used: alpha = 0.05
NOTE: If two or more means share the same grouping symbol,
then we cannot show them to be different.
But we also did not show them to be the same.

Diese Mittelwerte sind flir sowohl Zeilen- als auch Spalteneffekte adjustiert. In einem
balancierten Lateinischen Quadrat wie diesem sind die adjustierten Mittelwerte die
Genotypdurchschnitte tber alle Zeilen-Spalten-Kombinationen, aber der emmeans-Ansatz
bertcksichtigt die experimentelle Struktur ordnungsgemaf bei der Berechnung von
Standardfehlern und Konfidenzintervallen.

Die Kompaktbuchstabendarstellung zeigt, dass Dasher (Gruppe “b”) einen signifikant
hoheren Ertrag hat als die anderen drei Genotypen (Gruppe “a”), die sich nicht signifikant
voneinander unterscheiden.

Visualisierung der Ergebnisse

Abschlieend erstellen wir eine umfassende Darstellung, die sowohl die Rohdaten als auch
unsere statistischen Ergebnisse zeigt:

my caption <- "Schwarze Punkte reprédsentieren Rohdaten mit verschiedenen Formen fiir
Zeilen und Farben fiir Spalten. Rote Punkte und Fehlerbalken reprasentieren
adjustierte Mittelwerte mit 95%-Konfidenzgrenzen pro Genotyp. Mittelwerte, die
einen gemeinsamen Buchstaben tragen, unterscheiden sich nicht signifikant nach dem
Tukey-Test."

ggplot () +
aes (x = gen) +
# schwarze Punkte fiir die Rohdaten
geom point (
data = dat,
aes(y = yield, shape = rowF, color = colF),
size = 2
) +
# rote Punkte fiir die adjustierten Mittelwerte
geom point (
data = mean_ comp,
aes (y = emmean),
color = "red",

11
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position = position nudge(x = 0.1),
size = 2
)+

# rote Fehlerbalken fiir die Konfidenzgrenzen der ac

geom_errorbar (
data = mean comp,

aes (ymin = lower.CL, ymax = upper.CL),
color = "red",
width = 0.1,
position = position nudge(x = 0.1)
) N
# rote Buchstaben

geom_text (
data = mean_ comp,

aes (y = emmean, label = str trim(.group)),
color = "red",

position = position nudge(x = 0.2),

hjust = 0

) +
scale x discrete (

name = "Genotyp"

) +

scale y continuous (
name = "Ertrag",
limits = ¢ (0, NA),
expand = expansion (mult = c(0, 0.1))

) +

scale color discrete(
name = "Spalte"

) +

scale shape discrete(
name = "Zeile"

) +

theme classic () +
labs (caption = my caption) +

ljustierten Mittelwerte

theme (plot.caption = element textbox simple (margin = margin(t = 5)),
plot.caption.position = "plot")
opaie
60 1 1
e 2
: b ® 3
401 " 4
o +
©
£ ab
L .
a Zeile
20+ 4¢ a o 1
)
A A 2
m 3
0 T . T T + 4
Dasher Guardian Poinsett Sprint
Genotyp

Schwarze Punkte reprasentieren Rohdaten mit verschiedenen Formen fur Zeilen und Farben fur
Spalten. Rote Punkte und Fehlerbalken reprasentieren adjustierte Mittelwerte mit
95%-Konfidenzgrenzen pro Genotyp. Mittelwerte, die einen gemeinsamen Buchstaben tragen,

unterscheiden sich nicht signifikant nach dem Tukey-Test.

Diese Darstellung zeigt effektiv sowohl die experimentelle Designstruktur (durch die
verschiedenen Formen und Farben, die Zeilen- und Spaltenpositionen reprasentieren) als
auch die statistischen Ergebnisse (durch die roten Punkte, die adjustierte Mittelwerte zeigen,

und Buchstaben, die Signifikanzgruppen zeigen).
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Zusammenfassung des Designvergleichs

Fassen wir die Progression von CRD Uber RCBD zum Lateinischen Quadrat zusammen:

1. Modellformeln:

* CRD: yield ~ genotype
* RCBD: yield ~ genotype + block

* Lateinisches Quadrat: yield ~ genotype + row + column

2. Kontrollierte Variationsquellen:

* CRD: Keine (Behandlungen vs. Restfehler)
+ RCBD: Eine (Behandlungen, Blocke vs. Restfehler)
+ Lateinisches Quadrat: Zwei (Behandlungen, Zeilen, Spalten vs. Restfehler)

3. Designanforderungen:

+ CRD: Zufallige Zuweisung von Behandlungen zu Versuchseinheiten

* RCBD: Jede Behandlung erscheint einmal pro Block

* Lateinisches Quadrat: Jede Behandlung erscheint einmal pro Zeile UND einmal pro
Spalte

4. Wann zu verwenden:

* CRD: Wenn Versuchseinheiten homogen sind

* RCBD: Wenn eine Quelle systematischer Variation existiert

+ Lateinisches Quadrat: Wenn zwei Quellen systematischer Variation existieren und die
Anzahl der Behandlungen klein ist (3-6)

Zusammenfassung

Sie haben nun gelernt, wie man Daten aus einem Lateinischen Quadrat analysiert, das das
Blockbildungsprinzip erweitert, um zwei Quellen systematischer Variation gleichzeitig zu
kontrollieren. Dieses spezialisierte Design bietet erhdhte Prazision, wenn sowohl Zeilen- als
auch Spalteneffekte vorhanden sind und die Designannahmen erfullt sind.
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1 Wichtige Erkenntnisse

1. Das Lateinische Quadrat kontrolliert zwei Quellen systematischer Variation, indem
sichergestellt wird, dass jede Behandlung genau einmal in jeder Zeile und jeder Spalte
erscheint.

2. Erhohte Prazision kann durch Entfernung sowohl von Zeilen- als auch
Spalteneffekten aus dem Versuchsfehler erreicht werden, vorausgesetzt es gibt
keine Zeile x Spalte Interaktionen.

3. Das Modell des Lateinischen Quadrats enthalt Behandlungs-, Zeilen- und

Spalteneffekte: response ~ treatment + row + column,

4. Designeinschrankungen erfordern gleiche Anzahlen von Behandlungen, Zeilen und
Spalten, was es am praktischsten fiir 3-6 Behandlungen macht.

5. Kritische Annahme: Das Design nimmt keine Interaktion zwischen Zeilen- und
Spalteneffekten an. Eine Verletzung dieser Annahme kann das Design weniger
effizient als Alternativen machen.

6. Die ANOVA fiir das Lateinische Quadrat testet Behandlungs-, Zeilen- und
Spalteneffekte - signifikante Zeilen- und Spalteneffekte bestatigen, dass das Design
vorteilhaft war.

7. Wann zu vermeiden: Lateinische Quadrate sind nicht geeignet, wenn
Behandlungszahlen grof3 sind (>6), Zeile x Spalte Interaktionen erwartet werden, oder
wenn andere Designs besser zu den experimentellen Zielen passen.
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