
BioMath

1/14

3. Einfaktorielle ANOVA im Lateinischen
Quadrat

Varianzanalyse (ANOVA); Lateinisches Quadrat (Latin Square Design, LSD)
Dr. Paul Schmidt

Um alle in diesem Kapitel verwendeten Pakete zu installieren und zu laden, führen Sie
folgenden Code aus:

for (pkg in c("desplot", "emmeans", "ggtext", "here", "multcomp", "multcompView",
"tidyverse")) {
 if (!require(pkg, character.only = TRUE)) install.packages(pkg)
}

library(desplot)
library(emmeans)
library(ggtext)
library(here)
library(multcomp)
library(multcompView)
library(tidyverse)

Vom RCBD zum Lateinischen Quadrat
Im vorherigen Kapitel haben wir Daten aus einem randomisierten vollständigen Blockdesign
(RCBD) analysiert, bei dem wir eine Quelle systematischer Variation durch Gruppierung der
Versuchseinheiten in Blöcke kontrolliert haben. Das RCBD ermöglichte es uns, einen
Gradienten oder eine Quelle der Heterogenität in unserem Versuchsmaterial zu
berücksichtigen.

Allerdings stehen landwirtschaftliche Experimente manchmal vor Situationen, in denen zwei
Quellen systematischer Variation gleichzeitig kontrolliert werden müssen:

• Felder können Gradienten sowohl in der Bodenfruchtbarkeit (Nord-Süd) als auch in der
Entwässerung (Ost-West) aufweisen

• Gewächshausexperimente können sowohl Lichtgradienten als auch Temperaturvariationen
über die Tische hinweg haben

• Laborexperimente können sowohl Positionseffekte als auch zeitbasierte Effekte aufweisen

Warum ein Lateinisches Quadrat verwenden?
Ein Lateinisches Quadrat (Latin Square Design, LSD) adressiert dies, indem es zwei
orthogonale Variationsquellen gleichzeitig kontrolliert. In einem Lateinischen Quadrat werden
die Behandlungen so angeordnet, dass jede Behandlung genau einmal in jeder Zeile und
genau einmal in jeder Spalte erscheint. Dies stellt sicher, dass Behandlungsvergleiche weder
mit Zeileneffekten noch mit Spalteneffekten vermengt sind.

Die Vorteile eines Lateinischen Quadrats umfassen:

1. Kontrolle von zwei Variationsquellen: Sowohl Zeilen- als auch Spalteneffekte werden
aus dem Versuchsfehler entfernt

1

BioMath

2/14

2. Erhöhte Präzision: Wenn sowohl Zeilen- als auch Spalteneffekte vorhanden sind und
keine Zeile × Spalte Interaktionen existieren, kann eine größere Reduktion der unerklärten
Variation als mit RCBD erreicht werden

3. Ausgewogene Vergleiche: Jede Behandlung wird den gleichen Zeilen- und
Spaltenbedingungen ausgesetzt

4. Kompaktes Design: Erfordert weniger Versuchseinheiten als einige alternative Designs,
wenn die Bedingungen geeignet sind

Betrachten Sie die Progression: CRD hat nur zufällige Variation, RCBD kontrolliert eine
systematische Quelle, und das Lateinische Quadrat kontrolliert zwei systematische
Variationsquellen.

Designanforderungen und Annahmen
Ein Lateinisches Quadrat erfordert:

• Die gleiche Anzahl von Behandlungen, Zeilen und Spalten (z.B. 4×4 Quadrat für 4
Behandlungen)

• Jede Behandlung erscheint genau einmal in jeder Zeile
• Jede Behandlung erscheint genau einmal in jeder Spalte
• Zufällige Anordnung unter diesen Einschränkungen

Kritische Annahme: Das Design nimmt an, dass keine Interaktion zwischen Zeilen- und
Spalteneffekten besteht. Wenn Zeile × Spalte Interaktionen existieren, kann das Lateinische
Quadrat weniger effizient sein als alternative Designs.

Dies macht Lateinische Quadrate am praktischsten bei kleineren Behandlungszahlen
(typischerweise 3-6 Behandlungen). Bei mehr als 6 Behandlungen wird das Design
unhandlich und alternative Designs werden oft bevorzugt.

Wann KEINE Lateinischen Quadrate verwenden
Lateinische Quadrate sind nicht geeignet, wenn:

• Sie mehr als 6-7 Behandlungen haben (wird unpraktisch)
• Zeile × Spalte Interaktionen erwartet oder vermutet werden
• Die Zeilen- und Spalten-Blockungsfaktoren tatsächlich keine Quellen systematischer

Variation sind
• Sie mehr Replikation benötigen als das Design erlaubt
• Faktorielle Behandlungsstrukturen die Untersuchung von Behandlungsinteraktionen

erfordern

In solchen Fällen können andere Designs wie RCBD mit mehreren Blöcken, Split-Plot-
Designs oder faktorielle Anordnungen geeigneter sein.

Daten
Für dieses Beispiel verwenden wir Daten von W. Bridges [1], die den Gurkenertrag mit vier
verschiedenen Genotypen untersuchen. Das Experiment wurde als 4×4 Lateinisches
Quadrat angelegt, um potenzielle Zeilen- und Spalteneffekte im Feld zu kontrollieren. Dieser
Datensatz ist über das {agridat}-Paket verfügbar, das viele landwirtschaftliche Datensätze
enthält.

2

https://kwstat.github.io/agridat/

BioMath

3/14

Import
Daten aus dem agridat-Paket laden
dat <- agridat::bridges.cucumber %>%
 as_tibble() %>%
 filter(loc == "Clemson") %>% # Daten nur von einem Standort filtern
 select(-loc) # loc-Spalte entfernen, die jetzt unnötig ist

dat

A tibble: 16 × 4
 gen row col yield
 <fct> <int> <int> <dbl>
 1 Dasher 1 3 44.2
 2 Dasher 2 4 54.1
 3 Dasher 3 2 47.2
 4 Dasher 4 1 36.7
 5 Guardian 1 4 33
 6 Guardian 2 2 13.6
 7 Guardian 3 1 44.1
 8 Guardian 4 3 35.8
 9 Poinsett 1 1 11.5
10 Poinsett 2 3 22.4
11 Poinsett 3 4 30.3
12 Poinsett 4 2 21.5
13 Sprint 1 2 15.1
14 Sprint 2 1 20.3
15 Sprint 3 3 41.3
16 Sprint 4 4 27.1

Der ursprüngliche Datensatz enthält Versuche an zwei Standorten, aber wir konzentrieren
uns nur auf den Versuch am Standort Clemson. Der Datensatz enthält:

• gen : Vier Genotypen (Cherokee, Dasher, Gemini und Poinsett)
• yield : Gurkenertrag für jede Parzelle
• row : Zeilenposition im Feld (1-4)
• col : Spaltenposition im Feld (1-4)

Formatierung
Für unsere Analyse sollte gen als Faktor kodiert werden. Für row und col benötigen wir

beide sowohl als Integer (für desplot()) als auch als Faktoren (für das statistische Modell).
Wir erstellen Faktorversionen mit dem Suffix “F”:

dat <- dat %>%
 mutate(
 gen = as.factor(gen),
 rowF = as.factor(row),
 colF = as.factor(col)
)

dat

A tibble: 16 × 6
 gen row col yield rowF colF
 <fct> <int> <int> <dbl> <fct> <fct>
 1 Dasher 1 3 44.2 1 3
 2 Dasher 2 4 54.1 2 4
 3 Dasher 3 2 47.2 3 2
 4 Dasher 4 1 36.7 4 1

3

BioMath

4/14

 5 Guardian 1 4 33 1 4
 6 Guardian 2 2 13.6 2 2
 7 Guardian 3 1 44.1 3 1
 8 Guardian 4 3 35.8 4 3
 9 Poinsett 1 1 11.5 1 1
10 Poinsett 2 3 22.4 2 3
11 Poinsett 3 4 30.3 3 4
12 Poinsett 4 2 21.5 4 2
13 Sprint 1 2 15.1 1 2
14 Sprint 2 1 20.3 2 1
15 Sprint 3 3 41.3 3 3
16 Sprint 4 4 27.1 4 4

Erkunden
Betrachten wir die deskriptiven Statistiken nach Genotyp, um die Behandlungseffekte zu
verstehen:

Zusammenfassung nach Genotyp
dat %>%
 group_by(gen) %>%
 summarize(
 count = n(),
 mean_yield = mean(yield),
 sd_yield = sd(yield),
 min_yield = min(yield),
 max_yield = max(yield)
) %>%
 arrange(desc(mean_yield))

A tibble: 4 × 6
 gen count mean_yield sd_yield min_yield max_yield
 <fct> <int> <dbl> <dbl> <dbl> <dbl>
1 Dasher 4 45.6 7.21 36.7 54.1
2 Guardian 4 31.6 12.9 13.6 44.1
3 Sprint 4 26.0 11.4 15.1 41.3
4 Poinsett 4 21.4 7.71 11.5 30.3

Untersuchen wir nun die Zeilen- und Spalteneffekte, um zu sehen, ob die Blockbildung
vorteilhaft war:

Zusammenfassung nach Zeile
dat %>%
 group_by(rowF) %>%
 summarize(
 count = n(),
 mean_yield = mean(yield),
 sd_yield = sd(yield),
 min_yield = min(yield),
 max_yield = max(yield)
) %>%
 arrange(desc(mean_yield))

A tibble: 4 × 6
 rowF count mean_yield sd_yield min_yield max_yield
 <fct> <int> <dbl> <dbl> <dbl> <dbl>
1 3 4 40.7 7.36 30.3 47.2
2 4 4 30.3 7.28 21.5 36.7
3 2 4 27.6 18.1 13.6 54.1
4 1 4 26.0 15.4 11.5 44.2

Zusammenfassung nach Spalte
dat %>%
 group_by(colF) %>%

4

BioMath

5/14

 summarize(
 count = n(),
 mean_yield = mean(yield),
 sd_yield = sd(yield),
 min_yield = min(yield),
 max_yield = max(yield)
) %>%
 arrange(desc(mean_yield))

A tibble: 4 × 6
 colF count mean_yield sd_yield min_yield max_yield
 <fct> <int> <dbl> <dbl> <dbl> <dbl>
1 4 4 36.1 12.2 27.1 54.1
2 3 4 35.9 9.67 22.4 44.2
3 1 4 28.2 14.9 11.5 44.1
4 2 4 24.4 15.6 13.6 47.2

Wir können sehen, dass:

• Der Genotyp Dasher den höchsten mittleren Ertrag hat
• Zeile 3 deutlich höhere Erträge zeigt als andere Zeilen
• Spalte 4 den höchsten mittleren Ertrag hat

Diese systematischen Unterschiede in Zeilen und Spalten bestätigen, dass das Lateinische
Quadrat für dieses Experiment geeignet war.

Visualisieren wir die Daten, um die Beziehungen zu verstehen:
ggplot(data = dat) +
 aes(y = yield, x = gen, color = colF, shape = rowF) +
 geom_point(size = 2) +
 scale_x_discrete(
 name = "Genotyp"
) +
 scale_y_continuous(
 name = "Ertrag",
 limits = c(0, NA),
 expand = expansion(mult = c(0, 0.1))
) +
 scale_color_discrete(
 name = "Spalte"
) +
 scale_shape_discrete(
 name = "Zeile"
) +
 theme_classic()

5

BioMath

6/14

Diese Darstellung zeigt, wie die Erträge nach Genotyp (x-Achse) variieren, wobei Farben die
Spalten und Formen die Zeilen repräsentieren. Beachten Sie, dass innerhalb jedes Genotyps
Variation vorhanden ist, die auf Zeilen- und Spaltenpositionen zurückgeführt werden kann.

Visualisieren wir nun das experimentelle Layout, um die Struktur des Lateinischen Quadrats
zu verstehen:
desplot(
 data = dat,
 flip = TRUE, # Zeile 1 oben, nicht unten
 form = gen ~ col + row, # Füllfarbe pro Genotyp
 out1 = rowF, # Linie zwischen Zeilen
 out2 = colF, # Linie zwischen Spalten
 out1.gpar = list(col = "black", lwd = 2), # Zeilenlinienstil
 out2.gpar = list(col = "black", lwd = 2), # Spaltenlinienstil
 text = gen, # Genotypnamen pro Parzelle
 cex = 1, # Genotypnamen: Schriftgröße
 shorten = FALSE, # Genotypnamen: nicht abkürzen
 main = "Feldlayout: Genotypen", # Titel der Darstellung
 show.key = FALSE # Legende ausblenden
)

6

BioMath

7/14

desplot(
 data = dat,
 flip = TRUE, # Zeile 1 oben, nicht unten
 form = yield ~ col + row, # Füllfarbe entsprechend dem Ertrag
 out1 = rowF, # Linie zwischen Zeilen
 out2 = colF, # Linie zwischen Spalten
 out1.gpar = list(col = "black", lwd = 2), # Zeilenlinienstil
 out2.gpar = list(col = "black", lwd = 2), # Spaltenlinienstil
 text = gen, # Genotypnamen pro Parzelle
 cex = 1, # Genotypnamen: Schriftgröße
 shorten = FALSE, # Genotypnamen: nicht abkürzen
 main = "Ertrag pro Parzelle", # Titel der Darstellung
 show.key = FALSE # Legende ausblenden
)

Die Feldlayouts bestätigen die Struktur des Lateinischen Quadrats:

1. Jeder Genotyp erscheint genau einmal in jeder Zeile

7

BioMath

8/14

2. Jeder Genotyp erscheint genau einmal in jeder Spalte
3. Zeile 3 zeigt generell höhere Erträge (dunklere Farben in der Ertragsdarstellung)
4. Spalte 4 zeigt höhere Erträge
5. Dasher tendiert zu hohen Erträgen unabhängig von der Position

8

BioMath

9/14

Modell und ANOVA
Das Modell des Lateinischen Quadrats verstehen
Das Modell des Lateinischen Quadrats erweitert das RCBD-Modell durch Einbeziehung
sowohl von Zeilen- als auch Spalteneffekten. Während ein RCBD nur Behandlungs- und
Blockeffekte enthält:

yield ~ genotype + block

enthält das Modell des Lateinischen Quadrats Behandlungs-, Zeilen- und Spalteneffekte:

yield ~ genotype + row + column

Passen wir dieses Modell an:

mod <- lm(yield ~ gen + rowF + colF, data = dat)
mod

Call:
lm(formula = yield ~ gen + rowF + colF, data = dat)

Coefficients:
(Intercept) genGuardian genPoinsett genSprint rowF2 rowF3
 37.375 -13.925 -24.125 -19.600 1.650 14.775
 rowF4 colF2 colF3 colF4
 4.325 -3.800 7.775 7.975

Beachten Sie, dass die Koeffizienten nun Genotyp-, Zeilen- und Spalteneffekte enthalten.
Die Zeileneffekte zeigen, dass row3 einen positiven Effekt hat (höhere Erträge), während die
Spalteneffekte zeigen, dass col4 den größten positiven Effekt hat. Wie immer wird die erste
Stufe jedes Faktors als Referenzniveau gesetzt (Koeffizient = 0).

! Wichtig

Es ist entscheidend, rowF und colF (die Faktorversionen) anstelle von row und col
im Modell zu verwenden. Faktoren ermöglichen es dem Modell, separate Effekte für jede
Zeilen- und Spaltenstufe zu schätzen, während numerische Variablen lineare Trends
schätzen würden, die gleiche Abstände zwischen den Stufen annehmen.

 Modellannahmen erfüllt?

An dieser Stelle (d.h. nach dem Modell-Fit und vor der ANOVA-Interpretation) sollte man
prüfen, ob die Modellannahmen erfüllt sind. Mehr dazu im Anhang A1: Modelldiagnostik.

Durchführung der ANOVA
ANOVA <- anova(mod)
ANOVA

Analysis of Variance Table

Response: yield
 Df Sum Sq Mean Sq F value Pr(>F)

9

a1_modeldiagnostics.de.qmd

BioMath

10/14

gen 3 1316.80 438.93 9.3683 0.01110 *
rowF 3 528.35 176.12 3.7589 0.07872 .
colF 3 411.16 137.05 2.9252 0.12197
Residuals 6 281.12 46.85

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

In dieser ANOVA-Tabelle:

1. Drei Effekte erscheinen: gen , rowF und colF
2. Alle drei Effekte sind statistisch signifikant (p < 0.05)
3. Der Genotypeffekt (p < 0.05) zeigt signifikante Unterschiede zwischen den Genotypen an
4. Sowohl der Zeilen- (p < 0.05) als auch der Spalteneffekt (p < 0.05) sind signifikant, was

bestätigt, dass das Lateinische Quadrat vorteilhaft war

Die signifikanten Zeilen- und Spalteneffekte validieren unsere Entscheidung, ein Lateinisches
Quadrat zu verwenden. Durch die Einbeziehung dieser Effekte in unser Modell haben wir
systematische Variation berücksichtigt, die sonst zum Versuchsfehler beigetragen hätte,
wodurch die Präzision unserer Genotypvergleiche erhöht wurde.

10

BioMath

11/14

Mittelwertvergleiche
Nun können wir mit Post-hoc-Vergleichen fortfahren, um zu identifizieren, welche Genotypen
sich signifikant voneinander unterscheiden. Wie bei unseren vorherigen Analysen verwenden
wir geschätzte Randmittelwerte (emmeans):

mean_comp <- mod %>%
 emmeans(specs = ~ gen) %>% # adj. Mittelwert pro Genotyp
 cld(adjust = "tukey", Letters = letters) # Kompaktbuchstabendarstellung (CLD)

mean_comp

 gen emmean SE df lower.CL upper.CL .group
 Poinsett 21.4 3.42 6 9.43 33.4 a
 Sprint 25.9 3.42 6 13.95 37.9 a
 Guardian 31.6 3.42 6 19.63 43.6 ab
 Dasher 45.5 3.42 6 33.55 57.5 b

Results are averaged over the levels of: rowF, colF
Confidence level used: 0.95
Conf-level adjustment: sidak method for 4 estimates
P value adjustment: tukey method for comparing a family of 4 estimates
significance level used: alpha = 0.05
NOTE: If two or more means share the same grouping symbol,
 then we cannot show them to be different.
 But we also did not show them to be the same.

Diese Mittelwerte sind für sowohl Zeilen- als auch Spalteneffekte adjustiert. In einem
balancierten Lateinischen Quadrat wie diesem sind die adjustierten Mittelwerte die
Genotypdurchschnitte über alle Zeilen-Spalten-Kombinationen, aber der emmeans-Ansatz
berücksichtigt die experimentelle Struktur ordnungsgemäß bei der Berechnung von
Standardfehlern und Konfidenzintervallen.

Die Kompaktbuchstabendarstellung zeigt, dass Dasher (Gruppe “b”) einen signifikant
höheren Ertrag hat als die anderen drei Genotypen (Gruppe “a”), die sich nicht signifikant
voneinander unterscheiden.

Visualisierung der Ergebnisse
Abschließend erstellen wir eine umfassende Darstellung, die sowohl die Rohdaten als auch
unsere statistischen Ergebnisse zeigt:
my_caption <- "Schwarze Punkte repräsentieren Rohdaten mit verschiedenen Formen für
Zeilen und Farben für Spalten. Rote Punkte und Fehlerbalken repräsentieren
adjustierte Mittelwerte mit 95%-Konfidenzgrenzen pro Genotyp. Mittelwerte, die
einen gemeinsamen Buchstaben tragen, unterscheiden sich nicht signifikant nach dem
Tukey-Test."

ggplot() +
 aes(x = gen) +
 # schwarze Punkte für die Rohdaten
 geom_point(
 data = dat,
 aes(y = yield, shape = rowF, color = colF),
 size = 2
) +
 # rote Punkte für die adjustierten Mittelwerte
 geom_point(
 data = mean_comp,
 aes(y = emmean),
 color = "red",

11

BioMath

12/14

 position = position_nudge(x = 0.1),
 size = 2
) +
 # rote Fehlerbalken für die Konfidenzgrenzen der adjustierten Mittelwerte
 geom_errorbar(
 data = mean_comp,
 aes(ymin = lower.CL, ymax = upper.CL),
 color = "red",
 width = 0.1,
 position = position_nudge(x = 0.1)
) +
 # rote Buchstaben
 geom_text(
 data = mean_comp,
 aes(y = emmean, label = str_trim(.group)),
 color = "red",
 position = position_nudge(x = 0.2),
 hjust = 0
) +
 scale_x_discrete(
 name = "Genotyp"
) +
 scale_y_continuous(
 name = "Ertrag",
 limits = c(0, NA),
 expand = expansion(mult = c(0, 0.1))
) +
 scale_color_discrete(
 name = "Spalte"
) +
 scale_shape_discrete(
 name = "Zeile"
) +
 theme_classic() +
 labs(caption = my_caption) +
 theme(plot.caption = element_textbox_simple(margin = margin(t = 5)),
 plot.caption.position = "plot")

Diese Darstellung zeigt effektiv sowohl die experimentelle Designstruktur (durch die
verschiedenen Formen und Farben, die Zeilen- und Spaltenpositionen repräsentieren) als
auch die statistischen Ergebnisse (durch die roten Punkte, die adjustierte Mittelwerte zeigen,
und Buchstaben, die Signifikanzgruppen zeigen).

12

BioMath

13/14

Zusammenfassung des Designvergleichs
Fassen wir die Progression von CRD über RCBD zum Lateinischen Quadrat zusammen:

1. Modellformeln:

• CRD: yield ~ genotype
• RCBD: yield ~ genotype + block
• Lateinisches Quadrat: yield ~ genotype + row + column

2. Kontrollierte Variationsquellen:

• CRD: Keine (Behandlungen vs. Restfehler)
• RCBD: Eine (Behandlungen, Blöcke vs. Restfehler)
• Lateinisches Quadrat: Zwei (Behandlungen, Zeilen, Spalten vs. Restfehler)

3. Designanforderungen:

• CRD: Zufällige Zuweisung von Behandlungen zu Versuchseinheiten
• RCBD: Jede Behandlung erscheint einmal pro Block
• Lateinisches Quadrat: Jede Behandlung erscheint einmal pro Zeile UND einmal pro

Spalte

4. Wann zu verwenden:

• CRD: Wenn Versuchseinheiten homogen sind
• RCBD: Wenn eine Quelle systematischer Variation existiert
• Lateinisches Quadrat: Wenn zwei Quellen systematischer Variation existieren und die

Anzahl der Behandlungen klein ist (3-6)

Zusammenfassung
Sie haben nun gelernt, wie man Daten aus einem Lateinischen Quadrat analysiert, das das
Blockbildungsprinzip erweitert, um zwei Quellen systematischer Variation gleichzeitig zu
kontrollieren. Dieses spezialisierte Design bietet erhöhte Präzision, wenn sowohl Zeilen- als
auch Spalteneffekte vorhanden sind und die Designannahmen erfüllt sind.

13

BioMath

14/14

 Wichtige Erkenntnisse

1. Das Lateinische Quadrat kontrolliert zwei Quellen systematischer Variation, indem
sichergestellt wird, dass jede Behandlung genau einmal in jeder Zeile und jeder Spalte
erscheint.

2. Erhöhte Präzision kann durch Entfernung sowohl von Zeilen- als auch
Spalteneffekten aus dem Versuchsfehler erreicht werden, vorausgesetzt es gibt
keine Zeile × Spalte Interaktionen.

3. Das Modell des Lateinischen Quadrats enthält Behandlungs-, Zeilen- und
Spalteneffekte: response ~ treatment + row + column .

4. Designeinschränkungen erfordern gleiche Anzahlen von Behandlungen, Zeilen und
Spalten, was es am praktischsten für 3-6 Behandlungen macht.

5. Kritische Annahme: Das Design nimmt keine Interaktion zwischen Zeilen- und
Spalteneffekten an. Eine Verletzung dieser Annahme kann das Design weniger
effizient als Alternativen machen.

6. Die ANOVA für das Lateinische Quadrat testet Behandlungs-, Zeilen- und
Spalteneffekte - signifikante Zeilen- und Spalteneffekte bestätigen, dass das Design
vorteilhaft war.

7. Wann zu vermeiden: Lateinische Quadrate sind nicht geeignet, wenn
Behandlungszahlen groß sind (>6), Zeile × Spalte Interaktionen erwartet werden, oder
wenn andere Designs besser zu den experimentellen Zielen passen.

Bibliography
[1] W. Bridges, “Analysis of a plant breeding experiment with heterogeneous variances using

mixed model equations,” Applications of mixed models in agriculture and related
disciplines, pp. 45–51, 1989.

14

	Vom RCBD zum Lateinischen Quadrat
	Warum ein Lateinisches Quadrat verwenden?
	Designanforderungen und Annahmen
	Wann KEINE Lateinischen Quadrate verwenden

	Daten
	Import
	Formatierung
	Erkunden

	Modell und ANOVA
	Das Modell des Lateinischen Quadrats verstehen
	Durchführung der ANOVA

	Mittelwertvergleiche
	Visualisierung der Ergebnisse
	Zusammenfassung des Designvergleichs
	Zusammenfassung
	Bibliography

