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4. Einfaktorielle ANOVA im Alpha-Design

Varianzanalyse (ANOVA); Alpha-Design mit unvollstaendigen Bloecken
Dr. Paul Schmidt

Um alle in diesem Kapitel verwendeten Pakete zu installieren und zu laden, fihren Sie
folgenden Code aus:

for (pkg in c("agridat", "desplot", "emmeans", "ggtext", "here", "lme4d",
"lmerTest", "multcomp", "multcompView", "tidyverse")) {
if (!require (pkg, character.only = TRUE)) install.packages (pkqg)
}

library (agridat)
library (desplot)
library (emmeans)
library (ggtext)
library (here)

library (lmed)

library (1lmerTest)
library (multcomp)
library (multcompView)
library(tidyverse)

Von vollstaendigen zu unvollstaendigen
Bloecken

In den vorherigen Kapiteln haben wir Daten aus Designs analysiert, bei denen jeder Block
alle Behandlungen enthielt: Das RCBD hatte jede Sorte einmal pro Block, und das
Lateinische Quadrat hatte jede Behandlung einmal pro Zeile und einmal pro Spalte. Diese
werden vollstandige Blockdesigns genannt.

Wenn jedoch die Anzahl der Behandlungen grof3 wird, ist es mdglicherweise nicht praktisch
oder sogar unméglich, alle Behandlungen in einen einzelnen Block zu packen. Wenn wir
beispielsweise 24 Genotypen haben und unsere Feldparzellen aufgrund von
Bodenheterogenitatsbeschrankungen nur 4 Parzellen pro Block aufnehmen kénnen, kdnnen
wir kein vollstandiges Blockdesign verwenden. Hier kommen unvollstiandige Blockdesigns
ins Spiel.

Was ist ein Alpha-Design?

Ein Alpha-Design (auch a-Design genannt) ist eine Art auflésbares unvollstéandiges
Blockdesign. “Auflosbar” bedeutet, dass die unvollstandigen Blocke zu vollstandigen
Wiederholungen gruppiert werden kdnnen, wobei jede Wiederholung jede Behandlung
genau einmal enthalt. Innerhalb jeder Wiederholung werden die Behandlungen auf mehrere
kleinere unvollstdndige Blocke verteilt.

Die Vorteile von Alpha-Designs umfassen:

1. Viele Behandlungen handhaben: Praktisch, wenn vollstandige Blocke zu grof® waren
2. Lokale Fehlerkontrolle: Kleinere Bldcke sind homogener und reduzieren den
Versuchsfehler
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3. Auflosbarkeit: Vollstandige Wiederholungen ermdglichen eine traditionelle
wiederholungsbasierte Analyse als Fallback

4. Flexibilitat: Kann verschiedene Anzahlen von Behandlungen und Blockgréfen
aufnehmen

Einfuhrung in Gemischte Modelle

In den vorherigen Kapiteln haben wir 1m() verwendet, um unsere Modelle anzupassen,

wobei alle Effekte als fest behandelt wurden. Fur unvollstandige Blockdesigns verwenden wir
typischerweise gemischte Modelle, die sowohl feste Effekte (wie unseren Behandlungs-/
Genotypeffekt) als auch zuféllige Effekte (wie unvollstandige Blockeffekte) enthalten. Wir

verwenden die 1mer () -Funktion aus dem {ImerTest}-Paket, um gemischte Modelle

anzupassen, wobei zufallige Effekte mit (1 | factor) anstelle von + factor spezifiziert
werden.

Daten

Dieses Beispiel betrachtet Daten, die in J. John and E. Williams [1] ver&ffentlicht wurden, aus
einem Ertragsversuch (t/ha), der als Alpha-Design angelegt wurde. Der Versuch hatte 24

Genotypen ( gen ), 3 vollstdndige Wiederholungen ( rep ) und 6 unvollstandige Blécke

(block ) innerhalb jeder Wiederholung. Die BlockgréRe war 4, was bedeutet, dass jeder
unvollstandige Block 4 der 24 Genotypen enthielt.

Import

Die Daten sind als Teil des {agridat}-Pakets verfiigbar:

dat <- as tibble(agridat::john.alpha)
dat

# A tibble: 72 x 7
plot rep block gen yield row col
<int> <fct> <fct> <fct> <dbl> <int> <int>

1 1 R1 Bl Gl1 4.12 1 1
2 2 R1 Bl G04 4.45 2 1
3 3 R1 Bl GO05 5.88 3 1
4 4 R1 Bl G22 4.58 4 1
5 5 R1 B2 G21 4.65 5 1
6 6 R1 B2 G10 4.17 6 1
7 7 R1 B2 G20 4.01 7 1
8 8 R1 B2 G02 4.34 8 1
9 9 R1 B3 G23 4.23 9 1
10 10 R1 B3 Gl4 4.76 10 1

# i 62 more rows

Der Datensatz enthalt:

* rep: Drei vollstandige Wiederholungen (R1, R2, R3)

* block : Sechs unvollstandige Blocke innerhalb jeder Wiederholung (B1-B6)
* gen: 24 Genotypen (G01-G24)

* yield: Ernteertrag in Tonnen pro Hektar

* row und col : Feldparzellenkoordinaten fur die Visualisierung
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Erkunden

Betrachten wir zunachst die deskriptiven Statistiken nach Genotyp:

dat %>%

summarize (
count = n(
mean yield
sd yield =

) $>%

# A tibble: 24

<fct> <int>
GO1
GO05
Gl2
G15
G19
G13
G21
G17
Gl6
G06
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Jeder Genotyp erscheint genau 3 mal (einmal pro Wiederholung). Genotyp G11 hat den
héchsten mittleren Ertrag, wahrend G24 den niedrigsten hat.

Untersuchen wir nun die Blockstruktur:

dat %>%

summarize (

group by (gen)

min yield =
max yield =

$>%

I~

mean (yield),
sd(yield),

min (yield),
max (yield)

arrange (desc (mean_yield))

X 6

<dbl> <dbl>

5.16 0.534
5.06 0.841
4.91 0.641
4.89 0.207
4.87 0.398
4.83 0.619
4.82 0.503
4.73 0.379
4.73 0.502
4.71 0.464

# i 14 more rows

group by (rep, block) %>%

count = n{(),
mean yield = mean(yield),
.groups = "drop"
) $>%
arrange (rep, block)
# A tibble: 18 x 4
rep block count mean yield
<fct> <fct> <int> <dbl>
1 R1 Bl 4 4.75
2 R1 B2 4 4.29
3 R1 B3 4 4.36
4 R1 B4 4 4.33
5 R1 B5 4 4.79
6 R1 B6 4 4.58
7 R2 Bl 4 4.12
8 R2 B2 4 4.23
9 R2 B3 4 5.22
10 R2 B4 4 5.01
11 R2 B5 4 5.21
12 R2 B6 4 5.11
13 R3 Bl 4 4.38
14 R3 B2 4 3.96
15 R3 B3 4 4.30
16 R3 B4 4 4.22
17 R3 B5 4 4.15
18 R3 B6 4 3.61

<dbl>

4.
.20
o L7
.68
050
.25
.41
.32
.39
0 25

L S S ST SN oS SN AN
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gen count mean yield sd yield min yield max yield

<dbl>

5o
.88
.31
.09
.31
.48
.38
-7
.30
.18

(G BNC, NE, BNC, BN E) BC BN, B C RN E)]
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Wir kdnnen sehen, dass jeder der 18 unvollstadndigen Blocke (6 Blocke x 3 Wiederholungen)
genau 4 Parzellen enthalt. Visualisieren wir die Daten:

# Genotypen nach mittlerem Ertrag sortieren
gen order <- dat %>%

group by (gen) %>%

summarise (mean = mean (yield)) %>%

arrange (mean) %>%

pull (gen) %$>%

as.character ()

ggplot (data = dat) +

aes (
y = yield,
X = gen,
shape = rep
) +

geom line (
aes (group = gen),
color = "darkgrey"
) +
geom point () +
scale x discrete (

name = "Genotyp",
limits = gen order
) + -
scale y continuous (
name = "Ertrag",
limits = c (0, NA),
expand = expansion (mult = c (0, 0.05))
)
scale shape discrete(
name = "Wiederholung"
) +
guides (shape = guide legend(nrow = 1)) +
theme classic () +
theme (
legend.position = "top",
axis.text.x = element text(angle = 90, vjust = 0.5)

Wiederholung ¢ R1 4 R2 = R3
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Die grauen Linien verbinden Beobachtungen desselben Genotyps tber Wiederholungen
hinweg und helfen, die Genotypkonsistenz zu visualisieren. Schauen wir uns nun das
Feldlayout an:

desplot (
data = dat,
flip = TRUE,
form = gen ~ col + row | rep, # Fillfarbe pro Genotyp, Panels pro Wiederholung
outl = block, # Linien zwischen unvollstandigen Bloécken
outl.gpar = list(col = "black", 1lwd = 1, lty = "dashed"),
main = "Feldlayout",
key.cex = 0.6,
layout = c(3, 1) # alle Wiederholungen in einer Reihe erzwingen

---  block Feldlayout

GO1 R1 R2 R3

Die gestrichelten Linien trennen die unvollstandigen Blécke innerhalb jeder Wiederholung.
Beachten Sie, wie jeder Genotyp einmal pro Wiederholung erscheint, aber in verschiedenen
Blocken.
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Modell und ANOVA

Modell mit zufaelligen unvolistaendigen Bloecken

Fur ein Alpha-Design enthalt das Modell:

* Feste Effekte: Genotyp ( gen ) und Wiederholung ( rep )
+ Zufallige Effekte: Unvollstandige Blocke genestelt innerhalb von Wiederholungen
(rep:block)

Die unvollstandigen Blocke werden als zufallig behandelt, weil wir nicht an den spezifischen
Blockeffekten selbst interessiert sind, sondern die Variation bertcksichtigen wollen, die sie
einfiihren. Dies ist der wesentliche Unterschied zu unseren vorherigen Analysen.

mod <- lmer(yield ~ gen + rep + (1 | rep:block),
data = dat)

Die Syntax (1 | rep:block) spezifiziert, dass die Interaktion von rep und block (d.h. die
18 einzigartigen unvollstadndigen Blocke) als zufélliger Effekt behandelt werden soll.

Modellannahmen erfullt?

An dieser Stelle (d.h. nach dem Modell-Fit und vor der ANOVA-Interpretation) sollte man
prifen, ob die Modellannahmen erfiillt sind. Mehr dazu im Anhang A1: Modelldiagnostik.

Durchfuhrung der ANOVA

Fir gemischte Modelle verwenden wir einen etwas anderen ANOVA-Ansatz mit Kenward-
Roger-Freiheitsgraden, der genauere F-Tests flr kleine Stichprobengrolien liefert:

ANOVA <- anova (mod, ddf = "Kenward-Roger")
ANOVA

Type III Analysis of Variance Table with Kenward-Roger's method

Sum Sg Mean Sg NumDF DenDF F value Pr (>F)
gen 10.5070 0.45683 23 35.498 5.3628 4.496e-06 ***
rep 1.5703 0.78513 2 11.519 9.2124 0.004078 **
Signif. codes: 0 '***' (Q.001 '**' 0.01 '*' 0.05 '.' 0.1 " ' 1

Die ANOVA zeigt, dass der Genotypeffekt statistisch signifikant ist (p < 0.05), was darauf
hinweist, dass sich mindestens ein Genotyp von den anderen im Ertrag unterscheidet.
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a1_modeldiagnostics.de.qmd

Mittelwertvergleiche

Wie in vorherigen Kapiteln verwenden wir emmeans () , um adjustierte Mittelwerte zu erhalten

und Post-hoc-Vergleiche durchzufiihren:

mean comp <- mod %>%
emmeans (specs = ~ gen) %>%
cld(adjust = "none", Letters = letters)

mean_comp

gen emmean SE df lower.CL upper.CL .group

GO03 3.50 0.199 44.3 3.10 3.90 a

GO09 3.50 0.199 44.3 3.10 3.90 ab

G20 4.04 0.199 44.3 3.64 4.44 bc

GO07 4.11 0.199 44.3 3.71 4.51 cd

G24 4.15 0.199 44.3 3.75 4.55 cd

G23 4.25 0.199 44.3 3.85 4.65 cde

G1l1 4.28 0.199 44.3 3.88 4.68 cde

G18 4.36 0.199 44.3 3.96 4.76 cdef
G10 4.37 0.199 44.3 3.97 4.77 cdef
G02 4.48 0.199 44.3 4.08 4.88 cdefg
G04 4.49 0.199 44.3 4.09 4.89 cdefg
G22 4.53 0.199 44.3 4.13 4.93 cdefgh
GO08 4.53 0.199 44.3 4.13 4.93 cdefgh
GO06 4.54 0.199 44.3 4.14 4.94 cdefgh
G17 4.60 0.199 44.3 4.20 5.00 defghi
Gl6 4.73 0.199 44.3 4.33 5.13 efghi
G1l2 4.76 0.199 44.3 4.35 5.16 efghi
G13 4.76 0.199 44.3 4.36 5.16 efghi
Gl4 4.78 0.199 44.3 4.37 5.18 efghi
G21 4.80 0.199 44.3 4.39 5.20 efghi
G19 4.84 0.199 44.3 4.44 5.24 fghi
G15 4.97 0.199 44.3 4.57 5.37 ghi
GO05 5.04 0.199 44.3 4.64 5.44 hi
GO1 5.11 0.199 44.3 4.71 5.51 i

Results are averaged over the levels of: rep
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
significance level used: alpha = 0.05
NOTE: If two or more means share the same grouping symbol,
then we cannot show them to be different.
But we also did not show them to be the same.

Beachten Sie, dass diese Mittelwerte flir sowohl Wiederholungs- als auch unvollstandige
Blockeffekte adjustiert sind. Die Kompaktbuchstabendarstellung zeigt, welche Genotypen
sich signifikant voneinander unterscheiden, gemal Fishers LSD-Test.

Visualisierung der Ergebnisse

my caption <- "Schwarze Punkte représentieren Rohdaten. Rote Rauten und
Fehlerbalken reprédsentieren adjustierte Mittelwerte mit 95%-Konfidenzgrenzen pro
Genotyp. Mittelwerte, die einen gemeinsamen Buchstaben tragen, unterscheiden sich
nicht signifikant nach Fishers LSD-Test."

ggplot () +
aes(x = gen) +
# schwarze Punkte fiir die Rohdaten
geom point (
data = dat,
aes(y = yield)
) +
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# rote Rauten fir die adjustierten Mittelwerte
geom point (
data = mean comp,

aes (y = emmean),
shape = 18,
color = "red",
position = position nudge (x 0.2)
) +
# rote Fehlerbalken fiir die Konfidenzgrenzen der adjustierten Mittelwerte

geom_errorbar (
data = mean comp,
aes (ymin = lower.CL, ymax = upper.CL),
color = "red",
width = 0.1,

position = position nudge (x 0.2)
) + B
# rote Buchstaben
geom_text (
data = mean comp,
aes(y = lower.CL, label = str trim(.group)),
color = "red",
angle = 90,
hjust = 1.1,
position = position nudge (x 0.2)
) + N
scale x discrete(
name = "Genotyp",
limits = as.character (mean compSgen)
)
scale y continuous (
name = "Ertrag",
limits = c (0, NA),
expand = expansion (mult = c (0, 0.05))
) +
labs (caption = my caption) +
theme classic () +
theme (plot.caption = element textbox simple (margin = margin(t = 5)),
plot.caption.position = "plot",
axis.text.x = element text (angle 90, vjust = 0.5))
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Schwarze Punkte reprasentieren Rohdaten. Rote Rauten und Fehlerbalken reprasentieren
adjustierte Mittelwerte mit 95%-Konfidenzgrenzen pro Genotyp. Mittelwerte, die einen
gemeinsamen Buchstaben tragen, unterscheiden sich nicht signifikant nach Fishers LSD-Test.
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Bonus: Designeffizienz

Die Effizienz eines unvollstandigen Blockdesigns kann durch Vergleich mit dem analogen
RCBD (unter Ignorierung der unvollstandigen Blocke) bewertet werden. Wir vergleichen die
quadrierten Standardfehler der Differenzen:

# s.e.d. gquadriert flir Alpha-Design
avg sed alpha <- mod %>%
emmeans (pairwise ~ "gen", adjust = "none", lmer.df = "kenward-roger") %$>%
pluck ("contrasts") $>%
as_tibble () %>%
pull ("SE") %>%
mean ()

# s.e.d. quadriert fir RCBD (unter Ignorierung der unvollstandigen Blocke)
avg _sed rcbd <- lm(yield ~ gen + rep, data = dat) %>%

emmeans (pairwise ~ "gen", adjust = "none") %>%

pluck ("contrasts") $>%

as_tibble () %>%

pull ("SE") %>%

mean ()

# Effizienz
avg_sed rcbd”2 / avg_sed alpha”2

I[l] 1.230428

Eine Effizienz > 1 zeigt an, dass das Alpha-Design effizienter ist als ein einfaches RCBD,
was bedeutet, dass die unvollstadndigen Blocke den Versuchsfehler erfolgreich reduziert
haben.

Zusammenfassung

Sie haben nun gelernt, wie man Daten aus einem Alpha-Design analysiert, das das
Blockbildungsprinzip auf Situationen erweitert, in denen vollstandige Bl6cke unpraktisch sind.

1 Wichtige Erkenntnisse

1. Alpha-Designs sind auflésbare unvollstandige Blockdesigns, die nitzlich sind, wenn
die Anzahl der Behandlungen zu grof} fir vollstandige Blocke ist.

2. Gemischte Modelle mit 1mer() werden verwendet, um unvollstindige Blockdesigns
zu analysieren, wobei unvollstandige Blocke als zuféllige Effekte behandelt werden.

3. Syntax fiir zufillige Effekte: Verwenden Sie (1 | factor) fiir zufillige Effekte
anstelle von + factor fir feste Effekte.

4. Das Modell enthalt feste Genotyp- und Wiederholungseffekte plus zufallige
unvollstandige Blockeffekte: yield ~ gen + rep + (1 | rep:block) .

5. Kenward-Roger-Freiheitsgrade liefern genauere F-Tests flir gemischte Modelle mit
kleinen Stichprobengrofien.

6. Die Designeffizienz kann durch Vergleich mit einem analogen RCBD bewertet
werden - eine Effizienz > 1 bestatigt den Vorteil der unvollstandigen Blockbildung.
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