
BioMath

1/10

4. Einfaktorielle ANOVA im Alpha-Design

Varianzanalyse (ANOVA); Alpha-Design mit unvollstaendigen Bloecken
Dr. Paul Schmidt

Um alle in diesem Kapitel verwendeten Pakete zu installieren und zu laden, führen Sie
folgenden Code aus:

for (pkg in c("agridat", "desplot", "emmeans", "ggtext", "here", "lme4",
 "lmerTest", "multcomp", "multcompView", "tidyverse")) {
 if (!require(pkg, character.only = TRUE)) install.packages(pkg)
}

library(agridat)
library(desplot)
library(emmeans)
library(ggtext)
library(here)
library(lme4)
library(lmerTest)
library(multcomp)
library(multcompView)
library(tidyverse)

Von vollstaendigen zu unvollstaendigen
Bloecken
In den vorherigen Kapiteln haben wir Daten aus Designs analysiert, bei denen jeder Block
alle Behandlungen enthielt: Das RCBD hatte jede Sorte einmal pro Block, und das
Lateinische Quadrat hatte jede Behandlung einmal pro Zeile und einmal pro Spalte. Diese
werden vollständige Blockdesigns genannt.

Wenn jedoch die Anzahl der Behandlungen groß wird, ist es möglicherweise nicht praktisch
oder sogar unmöglich, alle Behandlungen in einen einzelnen Block zu packen. Wenn wir
beispielsweise 24 Genotypen haben und unsere Feldparzellen aufgrund von
Bodenheterogenitätsbeschränkungen nur 4 Parzellen pro Block aufnehmen können, können
wir kein vollständiges Blockdesign verwenden. Hier kommen unvollständige Blockdesigns
ins Spiel.

Was ist ein Alpha-Design?
Ein Alpha-Design (auch α-Design genannt) ist eine Art auflösbares unvollständiges
Blockdesign. “Auflösbar” bedeutet, dass die unvollständigen Blöcke zu vollständigen
Wiederholungen gruppiert werden können, wobei jede Wiederholung jede Behandlung
genau einmal enthält. Innerhalb jeder Wiederholung werden die Behandlungen auf mehrere
kleinere unvollständige Blöcke verteilt.

Die Vorteile von Alpha-Designs umfassen:

1. Viele Behandlungen handhaben: Praktisch, wenn vollständige Blöcke zu groß wären
2. Lokale Fehlerkontrolle: Kleinere Blöcke sind homogener und reduzieren den

Versuchsfehler

1

BioMath

2/10

3. Auflösbarkeit: Vollständige Wiederholungen ermöglichen eine traditionelle
wiederholungsbasierte Analyse als Fallback

4. Flexibilität: Kann verschiedene Anzahlen von Behandlungen und Blockgrößen
aufnehmen

Einführung in Gemischte Modelle
In den vorherigen Kapiteln haben wir lm() verwendet, um unsere Modelle anzupassen,
wobei alle Effekte als fest behandelt wurden. Für unvollständige Blockdesigns verwenden wir
typischerweise gemischte Modelle, die sowohl feste Effekte (wie unseren Behandlungs-/
Genotypeffekt) als auch zufällige Effekte (wie unvollständige Blockeffekte) enthalten. Wir
verwenden die lmer() -Funktion aus dem {lmerTest}-Paket, um gemischte Modelle

anzupassen, wobei zufällige Effekte mit (1 | factor) anstelle von + factor spezifiziert
werden.

Daten
Dieses Beispiel betrachtet Daten, die in J. John and E. Williams [1] veröffentlicht wurden, aus
einem Ertragsversuch (t/ha), der als Alpha-Design angelegt wurde. Der Versuch hatte 24
Genotypen (gen), 3 vollständige Wiederholungen (rep) und 6 unvollständige Blöcke

(block) innerhalb jeder Wiederholung. Die Blockgröße war 4, was bedeutet, dass jeder
unvollständige Block 4 der 24 Genotypen enthielt.

Import
Die Daten sind als Teil des {agridat}-Pakets verfügbar:

dat <- as_tibble(agridat::john.alpha)
dat

A tibble: 72 × 7
 plot rep block gen yield row col
 <int> <fct> <fct> <fct> <dbl> <int> <int>
 1 1 R1 B1 G11 4.12 1 1
 2 2 R1 B1 G04 4.45 2 1
 3 3 R1 B1 G05 5.88 3 1
 4 4 R1 B1 G22 4.58 4 1
 5 5 R1 B2 G21 4.65 5 1
 6 6 R1 B2 G10 4.17 6 1
 7 7 R1 B2 G20 4.01 7 1
 8 8 R1 B2 G02 4.34 8 1
 9 9 R1 B3 G23 4.23 9 1
10 10 R1 B3 G14 4.76 10 1
ℹ 62 more rows

Der Datensatz enthält:

• rep : Drei vollständige Wiederholungen (R1, R2, R3)
• block : Sechs unvollständige Blöcke innerhalb jeder Wiederholung (B1-B6)
• gen : 24 Genotypen (G01-G24)
• yield : Ernteertrag in Tonnen pro Hektar
• row und col : Feldparzellenkoordinaten für die Visualisierung

2

BioMath

3/10

Erkunden
Betrachten wir zunächst die deskriptiven Statistiken nach Genotyp:

dat %>%
 group_by(gen) %>%
 summarize(
 count = n(),
 mean_yield = mean(yield),
 sd_yield = sd(yield),
 min_yield = min(yield),
 max_yield = max(yield)
) %>%
 arrange(desc(mean_yield))

A tibble: 24 × 6
 gen count mean_yield sd_yield min_yield max_yield
 <fct> <int> <dbl> <dbl> <dbl> <dbl>
 1 G01 3 5.16 0.534 4.65 5.72
 2 G05 3 5.06 0.841 4.20 5.88
 3 G12 3 4.91 0.641 4.17 5.31
 4 G15 3 4.89 0.207 4.68 5.09
 5 G19 3 4.87 0.398 4.56 5.31
 6 G13 3 4.83 0.619 4.25 5.48
 7 G21 3 4.82 0.503 4.41 5.38
 8 G17 3 4.73 0.379 4.32 5.07
 9 G16 3 4.73 0.502 4.39 5.30
10 G06 3 4.71 0.464 4.25 5.18
ℹ 14 more rows

Jeder Genotyp erscheint genau 3 mal (einmal pro Wiederholung). Genotyp G11 hat den
höchsten mittleren Ertrag, während G24 den niedrigsten hat.

Untersuchen wir nun die Blockstruktur:

dat %>%
 group_by(rep, block) %>%
 summarize(
 count = n(),
 mean_yield = mean(yield),
 .groups = "drop"
) %>%
 arrange(rep, block)

A tibble: 18 × 4
 rep block count mean_yield
 <fct> <fct> <int> <dbl>
 1 R1 B1 4 4.75
 2 R1 B2 4 4.29
 3 R1 B3 4 4.36
 4 R1 B4 4 4.33
 5 R1 B5 4 4.79
 6 R1 B6 4 4.58
 7 R2 B1 4 4.12
 8 R2 B2 4 4.23
 9 R2 B3 4 5.22
10 R2 B4 4 5.01
11 R2 B5 4 5.21
12 R2 B6 4 5.11
13 R3 B1 4 4.38
14 R3 B2 4 3.96
15 R3 B3 4 4.30
16 R3 B4 4 4.22
17 R3 B5 4 4.15
18 R3 B6 4 3.61

3

BioMath

4/10

Wir können sehen, dass jeder der 18 unvollständigen Blöcke (6 Blöcke × 3 Wiederholungen)
genau 4 Parzellen enthält. Visualisieren wir die Daten:
Genotypen nach mittlerem Ertrag sortieren
gen_order <- dat %>%
 group_by(gen) %>%
 summarise(mean = mean(yield)) %>%
 arrange(mean) %>%
 pull(gen) %>%
 as.character()

ggplot(data = dat) +
 aes(
 y = yield,
 x = gen,
 shape = rep
) +
 geom_line(
 aes(group = gen),
 color = "darkgrey"
) +
 geom_point() +
 scale_x_discrete(
 name = "Genotyp",
 limits = gen_order
) +
 scale_y_continuous(
 name = "Ertrag",
 limits = c(0, NA),
 expand = expansion(mult = c(0, 0.05))
) +
 scale_shape_discrete(
 name = "Wiederholung"
) +
 guides(shape = guide_legend(nrow = 1)) +
 theme_classic() +
 theme(
 legend.position = "top",
 axis.text.x = element_text(angle = 90, vjust = 0.5)
)

4

BioMath

5/10

Die grauen Linien verbinden Beobachtungen desselben Genotyps über Wiederholungen
hinweg und helfen, die Genotypkonsistenz zu visualisieren. Schauen wir uns nun das
Feldlayout an:
desplot(
 data = dat,
 flip = TRUE,
 form = gen ~ col + row | rep, # Füllfarbe pro Genotyp, Panels pro Wiederholung
 out1 = block, # Linien zwischen unvollständigen Blöcken
 out1.gpar = list(col = "black", lwd = 1, lty = "dashed"),
 main = "Feldlayout",
 key.cex = 0.6,
 layout = c(3, 1) # alle Wiederholungen in einer Reihe erzwingen
)

Die gestrichelten Linien trennen die unvollständigen Blöcke innerhalb jeder Wiederholung.
Beachten Sie, wie jeder Genotyp einmal pro Wiederholung erscheint, aber in verschiedenen
Blöcken.

5

BioMath

6/10

Modell und ANOVA
Modell mit zufaelligen unvollstaendigen Bloecken
Für ein Alpha-Design enthält das Modell:

• Feste Effekte: Genotyp (gen) und Wiederholung (rep)
• Zufällige Effekte: Unvollständige Blöcke genestelt innerhalb von Wiederholungen

(rep:block)

Die unvollständigen Blöcke werden als zufällig behandelt, weil wir nicht an den spezifischen
Blockeffekten selbst interessiert sind, sondern die Variation berücksichtigen wollen, die sie
einführen. Dies ist der wesentliche Unterschied zu unseren vorherigen Analysen.

mod <- lmer(yield ~ gen + rep + (1 | rep:block),
 data = dat)

Die Syntax (1 | rep:block) spezifiziert, dass die Interaktion von rep und block (d.h. die
18 einzigartigen unvollständigen Blöcke) als zufälliger Effekt behandelt werden soll.

 Modellannahmen erfüllt?

An dieser Stelle (d.h. nach dem Modell-Fit und vor der ANOVA-Interpretation) sollte man
prüfen, ob die Modellannahmen erfüllt sind. Mehr dazu im Anhang A1: Modelldiagnostik.

Durchführung der ANOVA
Für gemischte Modelle verwenden wir einen etwas anderen ANOVA-Ansatz mit Kenward-
Roger-Freiheitsgraden, der genauere F-Tests für kleine Stichprobengrößen liefert:

ANOVA <- anova(mod, ddf = "Kenward-Roger")
ANOVA

Type III Analysis of Variance Table with Kenward-Roger's method
 Sum Sq Mean Sq NumDF DenDF F value Pr(>F)
gen 10.5070 0.45683 23 35.498 5.3628 4.496e-06 ***
rep 1.5703 0.78513 2 11.519 9.2124 0.004078 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Die ANOVA zeigt, dass der Genotypeffekt statistisch signifikant ist (p < 0.05), was darauf
hinweist, dass sich mindestens ein Genotyp von den anderen im Ertrag unterscheidet.

6

a1_modeldiagnostics.de.qmd

BioMath

7/10

Mittelwertvergleiche
Wie in vorherigen Kapiteln verwenden wir emmeans() , um adjustierte Mittelwerte zu erhalten
und Post-hoc-Vergleiche durchzuführen:

mean_comp <- mod %>%
 emmeans(specs = ~ gen) %>%
 cld(adjust = "none", Letters = letters)

mean_comp

 gen emmean SE df lower.CL upper.CL .group
 G03 3.50 0.199 44.3 3.10 3.90 a
 G09 3.50 0.199 44.3 3.10 3.90 ab
 G20 4.04 0.199 44.3 3.64 4.44 bc
 G07 4.11 0.199 44.3 3.71 4.51 cd
 G24 4.15 0.199 44.3 3.75 4.55 cd
 G23 4.25 0.199 44.3 3.85 4.65 cde
 G11 4.28 0.199 44.3 3.88 4.68 cde
 G18 4.36 0.199 44.3 3.96 4.76 cdef
 G10 4.37 0.199 44.3 3.97 4.77 cdef
 G02 4.48 0.199 44.3 4.08 4.88 cdefg
 G04 4.49 0.199 44.3 4.09 4.89 cdefg
 G22 4.53 0.199 44.3 4.13 4.93 cdefgh
 G08 4.53 0.199 44.3 4.13 4.93 cdefgh
 G06 4.54 0.199 44.3 4.14 4.94 cdefgh
 G17 4.60 0.199 44.3 4.20 5.00 defghi
 G16 4.73 0.199 44.3 4.33 5.13 efghi
 G12 4.76 0.199 44.3 4.35 5.16 efghi
 G13 4.76 0.199 44.3 4.36 5.16 efghi
 G14 4.78 0.199 44.3 4.37 5.18 efghi
 G21 4.80 0.199 44.3 4.39 5.20 efghi
 G19 4.84 0.199 44.3 4.44 5.24 fghi
 G15 4.97 0.199 44.3 4.57 5.37 ghi
 G05 5.04 0.199 44.3 4.64 5.44 hi
 G01 5.11 0.199 44.3 4.71 5.51 i

Results are averaged over the levels of: rep
Degrees-of-freedom method: kenward-roger
Confidence level used: 0.95
significance level used: alpha = 0.05
NOTE: If two or more means share the same grouping symbol,
 then we cannot show them to be different.
 But we also did not show them to be the same.

Beachten Sie, dass diese Mittelwerte für sowohl Wiederholungs- als auch unvollständige
Blockeffekte adjustiert sind. Die Kompaktbuchstabendarstellung zeigt, welche Genotypen
sich signifikant voneinander unterscheiden, gemäß Fishers LSD-Test.

Visualisierung der Ergebnisse
my_caption <- "Schwarze Punkte repräsentieren Rohdaten. Rote Rauten und
Fehlerbalken repräsentieren adjustierte Mittelwerte mit 95%-Konfidenzgrenzen pro
Genotyp. Mittelwerte, die einen gemeinsamen Buchstaben tragen, unterscheiden sich
nicht signifikant nach Fishers LSD-Test."

ggplot() +
 aes(x = gen) +
 # schwarze Punkte für die Rohdaten
 geom_point(
 data = dat,
 aes(y = yield)
) +

7

BioMath

8/10

 # rote Rauten für die adjustierten Mittelwerte
 geom_point(
 data = mean_comp,
 aes(y = emmean),
 shape = 18,
 color = "red",
 position = position_nudge(x = 0.2)
) +
 # rote Fehlerbalken für die Konfidenzgrenzen der adjustierten Mittelwerte
 geom_errorbar(
 data = mean_comp,
 aes(ymin = lower.CL, ymax = upper.CL),
 color = "red",
 width = 0.1,
 position = position_nudge(x = 0.2)
) +
 # rote Buchstaben
 geom_text(
 data = mean_comp,
 aes(y = lower.CL, label = str_trim(.group)),
 color = "red",
 angle = 90,
 hjust = 1.1,
 position = position_nudge(x = 0.2)
) +
 scale_x_discrete(
 name = "Genotyp",
 limits = as.character(mean_comp$gen)
) +
 scale_y_continuous(
 name = "Ertrag",
 limits = c(0, NA),
 expand = expansion(mult = c(0, 0.05))
) +
 labs(caption = my_caption) +
 theme_classic() +
 theme(plot.caption = element_textbox_simple(margin = margin(t = 5)),
 plot.caption.position = "plot",
 axis.text.x = element_text(angle = 90, vjust = 0.5))

8

BioMath

9/10

Bonus: Designeffizienz
Die Effizienz eines unvollständigen Blockdesigns kann durch Vergleich mit dem analogen
RCBD (unter Ignorierung der unvollständigen Blöcke) bewertet werden. Wir vergleichen die
quadrierten Standardfehler der Differenzen:

s.e.d. quadriert für Alpha-Design
avg_sed_alpha <- mod %>%
 emmeans(pairwise ~ "gen", adjust = "none", lmer.df = "kenward-roger") %>%
 pluck("contrasts") %>%
 as_tibble() %>%
 pull("SE") %>%
 mean()

s.e.d. quadriert für RCBD (unter Ignorierung der unvollständigen Blöcke)
avg_sed_rcbd <- lm(yield ~ gen + rep, data = dat) %>%
 emmeans(pairwise ~ "gen", adjust = "none") %>%
 pluck("contrasts") %>%
 as_tibble() %>%
 pull("SE") %>%
 mean()

Effizienz
avg_sed_rcbd^2 / avg_sed_alpha^2

[1] 1.230428

Eine Effizienz > 1 zeigt an, dass das Alpha-Design effizienter ist als ein einfaches RCBD,
was bedeutet, dass die unvollständigen Blöcke den Versuchsfehler erfolgreich reduziert
haben.

Zusammenfassung
Sie haben nun gelernt, wie man Daten aus einem Alpha-Design analysiert, das das
Blockbildungsprinzip auf Situationen erweitert, in denen vollständige Blöcke unpraktisch sind.

 Wichtige Erkenntnisse

1. Alpha-Designs sind auflösbare unvollständige Blockdesigns, die nützlich sind, wenn
die Anzahl der Behandlungen zu groß für vollständige Blöcke ist.

2. Gemischte Modelle mit lmer() werden verwendet, um unvollständige Blockdesigns
zu analysieren, wobei unvollständige Blöcke als zufällige Effekte behandelt werden.

3. Syntax für zufällige Effekte: Verwenden Sie (1 | factor) für zufällige Effekte

anstelle von + factor für feste Effekte.

4. Das Modell enthält feste Genotyp- und Wiederholungseffekte plus zufällige
unvollständige Blockeffekte: yield ~ gen + rep + (1 | rep:block) .

5. Kenward-Roger-Freiheitsgrade liefern genauere F-Tests für gemischte Modelle mit
kleinen Stichprobengrößen.

6. Die Designeffizienz kann durch Vergleich mit einem analogen RCBD bewertet
werden - eine Effizienz > 1 bestätigt den Vorteil der unvollständigen Blockbildung.

9

BioMath

10/10

Bibliography
[1] J. John and E. Williams, “Cyclic and Computer Generated Designs,” Biometrical Journal,

vol. 38, no. 7, p. 778, 1995, doi: 10.1002/bimj.4710380703.

10

https://doi.org/10.1002/bimj.4710380703

	Von vollstaendigen zu unvollstaendigen Bloecken
	Was ist ein Alpha-Design?
	Einführung in Gemischte Modelle

	Daten
	Import
	Erkunden

	Modell und ANOVA
	Modell mit zufaelligen unvollstaendigen Bloecken
	Durchführung der ANOVA

	Mittelwertvergleiche
	Visualisierung der Ergebnisse

	Bonus: Designeffizienz
	Zusammenfassung
	Bibliography

