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6. Einfaktorielle ANOVA im Zeilen-Spalten-
Design

Varianzanalyse (ANOVA); Auflosbares Zeilen-Spalten-Design
Dr. Paul Schmidt

Um alle in diesem Kapitel verwendeten Pakete zu installieren und zu laden, flihren Sie
folgenden Code aus:

for (pkg in c("agridat", "desplot", "emmeans", "ggtext", "here", "lme4d",
"ImerTest", "multcomp", "multcompView", "tidyverse")) {

if (!require (pkg, character.only = TRUE)) install.packages (pkqg)
}
library (agridat)
desplot)
emmeans)
ggtext)
here)
1med)
lmerTest)
multcomp)
multcompView)
tidyverse)

library
library
library
library
library
library
library
library
library

Zeilen-Spalten-Designs

In Kapitel 3 haben wir das Lateinische Quadrat kennengelernt, das zwei Variationsquellen
(Zeilen und Spalten) gleichzeitig kontrolliert. Das Lateinische Quadrat hat jedoch eine
wesentliche Einschrankung: Die Anzahl der Behandlungen muss gleich der Anzahl der Zeilen
und Spalten sein. Dies macht es fur Experimente mit vielen Behandlungen unpraktisch.

Was ist ein Zeilen-Spalten-Design?

Ein auflosbares Zeilen-Spalten-Design erweitert das Konzept des Lateinischen Quadrats,
um mehr Behandlungen aufzunehmen. Wie ein Alpha-Design hat es vollstandige
Wiederholungen, die unterteilt sind - aber hier ist jede Wiederholung sowohl in
unvollstandige Zeilen als auch in unvollstandige Spalten unterteilt. Dies bietet eine doppelte
Blockbildung innerhalb jeder Wiederholung.

Die wesentlichen Merkmale sind:

1. Zweidimensionale Blockbildung: Jede Wiederholung hat sowohl Zeilen- als auch
Spaltenstruktur

2. Unvolistandige Blocke: Weder Zeilen noch Spalten enthalten alle Behandlungen

3. Auflosbarkeit: Wiederholungen sind vollstandig und enthalten jede Behandlung genau
einmal

4. Flexibilitat: Kann verschiedene Anzahlen von Behandlungen aufnehmen

Die Vorteile umfassen:

1. Kontrolle von zwei Gradienten: Beriicksichtigt raumliche Trends in zwei Richtungen
gleichzeitig
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2. Mehr Behandlungen als Lateinisches Quadrat: Nicht auf txt-Anordnungen beschrankt
3. Erhohte Prazision: Doppelte Blockbildung kann den Versuchsfehler erheblich reduzieren
4. Praktisch fiir Feldversuche: Passt zum rechteckigen Layout vieler Feldexperimente

Daten

Dieses Beispiel betrachtet Daten, die in R. A. Kempton, P. N. Fox, and M. Cerezo [1]
veroffentlicht wurden, aus einem Ertragsversuch, der als auflésbares Zeilen-Spalten-Design

angelegt wurde. Der Versuch hatte 35 Genotypen ( gen ), 2 vollstandige Wiederholungen
( rep ) mit jeweils 5 Zeilen ( row ) und 7 Spalten ( col ). Somit bildet jede Wiederholung ein
5x7-Raster mit unvollstandigen Zeilen und Spalten.

Import
Die Daten sind als Teil des {agridat}-Pakets verflgbar:
dat <- as tibble(agridat::kempton.rowcol)
dat
# A tibble: 68 x 5
rep row col gen yield
<fct> <int> <int> <fct> <dbl>
1 R1 1 1 G20 3.77
2 R1 1 2 G04 3.21
3 R1 1 3 G33 4.55
4 R1 1 4 G28 4.09
5 R1 1 5 GO07 5.05
6 R1 1 6 Gl2 4.19
7 R1 1 7 G30 3.27
8 R1 2 1 G10 3.44
9 R1 2 2 Gl4 4.3
10 R1 2 4 G21 3.86
# i 58 more rows

Der Datensatz enthalt:

* rep: Zwei vollstandige Wiederholungen (R1, R2)

* row : Zeilenposition innerhalb der Wiederholung (1-5)
* col : Spaltenposition innerhalb der Wiederholung (1-7)
* gen: 35 Genotypen

* yield: Ernteertrag

Beachten Sie, dass in diesem Datensatz fehlende Werte vorhanden sind - zwei Parzellen
haben keinen erfassten Ertrag.

Formatierung

Fur unsere Analyse sollte gen als Faktor kodiert werden. Wir erstellen auch Faktorversionen

von row und col flr das statistische Modell:

dat <- dat %>%

mutate (
gen = as.factor (gen),
rowF = as.factor (row),
colF = as.factor (col)
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dat

# A tibble: 68 x 7

rep row col gen yield rowF colF

<fct> <int> <int> <fct> <dbl> <fct> <fct>
1 R1 1 1 G20 3.77 1 1
2 R1 1 2 G04 3.21 1 2
3 R1 1 3 G33 4.55 1 3
4 R1 1 4 G28 4.09 1 4
5 R1 1 5 GO7 5.05 1 5
6 R1 1 6 Gl2 4.19 1 6
7 R1 1 7 G30 3.27 1 7
8 R1 2 1 G10 3.44 2 1
9 R1 2 2 Gl4 4.3 2 2
10 R1 2 4 G21 3.86 2 4

# i 58 more rows

Erkunden

Betrachten wir die deskriptiven Statistiken nach Genotyp:

dat $>%

group by (gen) %>%

summarize (
count = n{(),
mean_yield = mean(yield, na.rm = TRUE),
sd _yield = sd(yield, na.rm = TRUE)

) $>%

arrange (desc (mean yield))

# A tibble: 35 x 4
gen count mean yield sd yield

<fct> <int> <dbl> <dbl>
1 G19 2 6.07 1.84
2 GO7 2 5.74 0.976
3 G33 2 5.13 0.820
4 GO6 2 4.96 0.940
5 G09 2 4.94 1.68
6 G11 2 4.93 1.03
7 Gl4 2 4.92 0.877
8 G27 2 4.89 1.80
9 GO03 2 4.78 0.0424
10 G25 2 4.78 0.361

# i 25 more rows

Die meisten Genotypen erscheinen zweimal (einmal pro Wiederholung), aber einige haben
aufgrund fehlender Daten nur eine Beobachtung. Visualisieren wir die Daten:

# Genotypen nach mi
gen order <- dat %
group by (gen) %
summarise (mean = mean (yield, na.rm = TRUE)) %>%
arrange (mean) %>%
pull (gen) %$>%
as.character ()

ttlerem Ertrag sortieren

ggplot (data = dat) +

aes (
y = yield,
X = gen,
shape = rep
) +

geom line (
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aes (group = gen),

color =
) +
geom poin

"darkgrey"

t() +

scale x discrete(

name =

limits
) +
scale y c

name =

limits

expand
)+

"Genotyp",
= gen_order

ontinuous (

"Ertrag",

= c(0, NA),

= expansion (mult = c(0, 0.05))

scale shape discrete(

name =
) +

"Wiederholung"

guides (shape = guide legend(nrow = 1)) +
theme classic () +

theme (
legend.

position = "top",

axis.text.x = element text(angle = 90, vjust = 0.5)

Wiederholung ¢ R1 4 R2

G151
G23 1

Schauen wir uns nun das Feldlayout an. Beachten Sie, dass die zwei fehlenden Parzellen

G331
GO7 1
G191

als weild/leer erscheinen:

desplot (
data = dat,
form = gen ~ col + row | rep, # Fiillfarbe pro Genotyp, Panels pro Wiederho
text = gen,
cex = 0.7,
shorten = FALSE,
outl = row, outl.gpar = list(col = "black"), # Linien
out2 = col, out2.gpar = list(col = "black"), # Linien
main = "Feldlayout",

show.key = FALSE

BioMath

4/12



Die schwarzen Linien zeigen die Zeilen- und Spaltenstruktur innerhalb jeder Wiederholung.
Jeder Genotyp erscheint einmal pro Wiederholung, aber in verschiedenen Zeilen-Spalten-

Positionen.

Feldlayout
R1 R2
G17 | G09 | GO3 | G34 | G13 | G35 | GO1 | GO1 | G27 G29 | G14 | G28
G05 | G32 | GO2 | G27 | GO8 | G33 | GO9 | G17 | G18 | G32 G02
G19 | G26 | G29 | G15 G07 G10 | G30
G10 | G14 G21 | G31 | G06 G21 G13 | G03
G20 | G04 | G33 | G28 | GO7 | G12 G19 G08 | G06
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Modell und ANOVA

Wahl zwischen festen und zufaelligen Effekten

Flr ein Zeilen-Spalten-Design muss das Modell Zeilen- und Spalteneffekte innerhalb jeder
Wiederholung berticksichtigen. Wir kdnnen diese als feste oder zufallige Effekte behandeln.
Vergleichen wir beide Ansatze:

f Zeilen und Spalten als feste Effekte
mod fixed <- Im(yield ~ gen + rep + rep:rowF + rep:colF,
data = dat)
# Zeilen und Spalten als zufallige Effekte
mod random <- lmer(yield ~ gen + rep + (1 | rep:rowF) + (1 | rep:colF),
data = dat)

Vergleichen wir nun den durchschnittlichen s.e.d. fir Genotypvergleiche:

# s.e.d. fur festes Modell
sed fixed <- mod fixed %>%
emmeans (pairwise ~ "gen", adjust = "none") %>%

pluck ("contrasts") $>%
as_tibble () %>%

pull ("SE") %>%

mean ()

NOTE: A nesting structure was detected in the fitted model:
rowF %$in% rep, colF %in% rep

# s.e.d. fir zufalliges Modell
sed random <- mod random %>%
emmeans (pairwise ~ "gen", adjust = "none", lmer.df = "kenward-roger") %$>%

pluck ("contrasts") %$>%
as_tibble () %>%

pull ("SE") %>%

mean ()

tibble (
model = c("Feste Zeilen/Spalten", "Zufallige Zeilen/Spalten"),
mean sed = c(sed fixed, sed random)

)

# A tibble: 2 x 2

model mean sed
<chr> <dbl>
1 Feste Zeilen/Spalten 0.408
2 Zufallige Zeilen/Spalten 0.402

In diesem Fall hat das Modell mit festen Effekten einen etwas kleineren s.e.d., daher
verwenden wir es flr unsere Analyse.

Modellannahmen erfillt?

An dieser Stelle (d.h. nach dem Modell-Fit und vor der ANOVA-Interpretation) sollte man
prufen, ob die Modellannahmen erfullt sind. Mehr dazu im Anhang A1: Modelldiagnostik.

Durchfuhrung der ANOVA
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a1_modeldiagnostics.de.qmd

ANOVA <- anova (mod fixed)
ANOVA

Der Genotypeffekt ist nicht statistisch signifikant (p > 0.05), was auf keine starke Evidenz fir
Unterschiede zwischen Genotypen in diesem Versuch hinweist. Dennoch untersuchen wir
die Mittelwertvergleiche.
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Mittelwertvergleiche

mean comp <- mod fixed $>%
emmeans (specs = ~ gen) %$>%
cld(adjust = "none", Letters = letters)
mean_comp
gen emmean SE df lower.CL upper.CL .group
G04 3.48 0.270 12 2.89 4.07 a
G23 3.58 0.270 12 2,99 4.17 ab
G15 3.60 0.442 12 2.64 4.57 abcde
G35 3.63 0.277 12 3.03 4.24 abc
G31 3.79 0.280 12 3.18 4.40 abcd
G02 3.84 0.279 12 3.23 4.45 abcd
G26 3.90 0.291 12 3.26 4.53 abcde
G24 3.90 0.267 12 3.32 4.49 abcd £
G29 3.91 0.276 12 3.31 4.51 abcde
G30 3.99 0.270 12 3.40 4.58 abcdefg
G32 4.12 0.276 12 3.52 4.72 abcdefgh
G17 4.14 0.282 12 3.53 4.75 abcdefgh
GO09 4.15 0.274 12 3.56 4.75 abcdefgh
G34 4.20 0.267 12 3.62 4.78 abcdefgh
Gl6 4.23 0.432 12 3.29 5.17 abcdefghij
GO05 4.25 0.278 12 3.64 4.85 abcdefghi
G20 4.25 0.266 12 3.67 4.83 abcdefgh
G22 4.27 0.282 12 3.66 4.88 abcdefghi
G10 4.36 0.278 12 3.76 4.97 abcdefghij
G28 4.37 0.278 12 3.77 4.98 bcdefghij
G18 4.48 0.284 12 3.86 5.10 cdefghij
G21 4.57 0.269 12 3.98 5.16 defghij
GO08 4.58 0.285 12 3.95 5.20 defghij
G25 4.59 0.277 12 3.98 5.19 defghij
G13 4.73 0.284 12 4.11 5.35 e ghijkl
G27 4.75 0.282 12 4.13 5.36 fghijk
G33 4.76 0.286 12 4.13 5.38 e ghijk
Gl4 4.79 0.270 12 4.20 5.38 ghijkl
GO1 4.88 0.268 12 4.30 5.46 hijkl
GO07 4.94 0.270 12 4.35 5.53 hijkl
Gl1l 4.97 0.276 12 4.37 5.57 hijkl
Gl2 5.13 0.293 12 4.49 5.77 ijkl
GO03 5.15 0.281 12 4.54 5.76 Jjkl
GO6 5.53 0.280 12 4.92 6.14 k1l
G19 5.60 0.281 12 4.99 6.22 1
Results are averaged over the levels of: colF, rowF, rep
Confidence level used: 0.95
significance level used: alpha = 0.05
NOTE: If two or more means share the same grouping symbol,
then we cannot show them to be different.
But we also did not show them to be the same.

Die Kompaktbuchstabendarstellung zeigt die Gruppierungen basierend auf Fishers LSD-
Test. Bei 35 Genotypen wird die Buchstabendarstellung komplex, bietet aber dennoch eine
pragnante Zusammenfassung, welche Genotypen sich signifikant unterscheiden.

Visualisierung der Ergebnisse

my caption <- "Schwarze Punkte reprédsentieren Rohdaten. Rote Rauten und
Fehlerbalken reprédsentieren adjustierte Mittelwerte mit 95%-Konfidenzgrenzen pro
Genotyp. Mittelwerte, die einen gemeinsamen Buchstaben tragen, unterscheiden sich
nicht signifikant nach Fishers LSD-Test."

ggplot () +
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aes(x = gen) +
# schwarze Punkte flir die Rohdaten
geom point (
data = dat,
aes (y = yield)
)+
# rote Rauten fir die adjustierten Mittelwerte
geom point (
data = mean comp,

aes (y = emmean),

shape = 18,

color = "red",

position = position nudge(x = 0.2)
) +

# rote Fehlerbalken fiir die Konfidenzgrenzen der adjustierten Mittelwerte
geom errorbar (
data = mean comp,
aes (ymin = lower.CL, ymax = upper.CL),
color = "red",
width = 0.1,
position = position nudge(x = 0.2)
)+
# rote Buchstaben
geom_text (

data = mean comp,
aes(y = upper.CL, label = str trim(.group)),
color = "red",
angle = 90,
hjust = -0.2,
position = position nudge(x = 0.2)
) +
scale x discrete (
name = "Genotyp",
limits = as.character (mean compSgen)
) +
scale y continuous (
name = "Ertrag",
expand = expansion (mult = c (0, 0.05))
) +

coord cartesian(ylim = c(0, NA)) +
labs (caption = my caption) +
theme classic () +

theme (plot.caption = element textbox simple (margin = margin(t = 5)),
plot.caption.position = "plot",
axis.text.x = element text (angle = 90, vjust = 0.5))
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Schwarze Punkte reprasentieren Rohdaten. Rote Rauten und Fehlerbalken reprasentieren

adjustierte Mittelwerte mit 95%-Konfidenzgrenzen pro Genotyp. Mittelwerte, die einen

gemeinsamen Buchstaben tragen, unterscheiden sich nicht signifikant nach Fishers LSD-Test.
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Bonus: Designeffizienz

Bewerten wir die Effizienz des Zeilen-Spalten-Designs im Vergleich zu einem einfachen
RCBD (unter Ignorierung der Zeilen- und Spaltenstruktur):

# s.e.d. quadriert fiir RCBD (unter Ignorierung der Zeilen-/Spaltenstruktur)
avg_sed rcbd <- lm(yield ~ gen + rep, data = dat) %>%

emmeans (pairwise ~ "gen", adjust = "none") %>%

pluck ("contrasts") $>%

as_tibble () %>%

pull ("SE") %>%

mean ()

avg _sed rcbd”2 / sed fixed"2

| [1] 1.953932

Eine Effizienz > 1 zeigt an, dass das Zeilen-Spalten-Design effizienter ist als ein einfaches
RCBD, was bedeutet, dass die Zeilen- und Spaltenblockierung den Versuchsfehler
erfolgreich reduziert hat.

Zusammenfassung

Sie haben nun gelernt, wie man Daten aus einem auflésbaren Zeilen-Spalten-Design
analysiert, das eine leistungsstarke Kontrolle Uber zwei Quellen raumlicher Variation bietet.

1 Wichtige Erkenntnisse

1. Zeilen-Spalten-Designs kontrollieren zwei Variationsquellen gleichzeitig durch
Blockbildung sowohl in Zeilen- als auch in Spaltenrichtung innerhalb jeder
Wiederholung.

2. Flexibler als das Lateinische Quadrat: Kann jede Anzahl von Behandlungen
aufnehmen, nicht auf txt-Anordnungen beschrankt.

3. Doppelte Blockbildung innerhalb von Wiederholungen bietet erhdhte Prazision,
wenn raumliche Trends in zwei Richtungen existieren.

4. Die Modellwahl zwischen festen und zufalligen Zeilen-/Spalteneffekten kann darauf
basieren, welche den kleineren durchschnittlichen s.e.d. ergibt.

5. Das Modell mit festen Effekten: yield ~ gen + rep + rep:rowF + rep:colF (Zeilen
und Spalten genestelt innerhalb von Wiederholungen).

6. Eine Designeffizienz > 1 im Vergleich zum RCBD bestatigt den Vorteil der
zusatzlichen Zeilen-Spalten-Struktur.

7. Umgang mit fehlenden Daten: Zeilen-Spalten-Designs kdnnen auch bei fehlenden
Beobachtungen analysiert werden, obwohl die Prazision beeintrachtigt sein kann.

Zusammenfassung des Designvergleichs

Fassen wir die Progression der in dieser Kapitelserie behandelten Designs zusammen:
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Design Blockstruktur Modellformel Geeignet fur
CRD Keine y ~ trt Homogene
Bedingungen
RCBD Vollstandige Blocke y ~ trt + block Ein Gradient
Lateinisches Zeilen + Spalten y ~ trt + row + col  Zwei Gradienten,
Quadrat (vollstandig) wenige Behandlungen
Alpha- Unvollstandige Blocke in ¢ ~ trt + rep + (1] Viele Behandlungen,
Design Wdh. rep:block) ein Gradient
Augmented Standards + Eintrage y ~ trt + block Screening vieler nicht
replizierter Eintrage
Zeilen- Unv. Zeilen + Spalten in y ~ trt + rep + Viele Behandlungen,
Spalten Wdh. rep:row + rep:col zwei Gradienten
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