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A1. Modelldiagnostik

Prufen, ob die Modellannahmen erfullt sind
Dr. Paul Schmidt

Um alle in diesem Kapitel verwendeten Pakete zu installieren und zu laden, kann man
folgenden Code ausfihren:

for (pkg in c("easystats", "olsrr", "tidyverse")) {
if (!require (pkg, character.only = TRUE)) install.packages (pkqg)
}

library (easystats)
library(olsrr)
library (tidyverse)

Statistische Modelle treffen Annahmen Gber die Daten, und Ergebnisse kdnnen irrefiihrend
sein, wenn diese Annahmen stark verletzt werden. Dieses Kapitel zeigt, wie man prift, ob die
Annahmen eines linearen Modells hinreichend erflllt sind — ein Prozess, der als
Modelldiagnostik bekannt ist. Wir beginnen mit einem schnellen, praktischen Ansatz und
gehen dann schrittweise tiefer flr diejenigen, die mehr Details winschen.

Die Kurzversion

Man hat ein lineares Modell gefittet und mdchte eigentlich nur die ANOVA-Ergebnisse —
aber irgendwo in einer Vorlesung oder einem Lehrbuch wurde einem gesagt, man solle
vorher “die Modellannahmen prifen”. Verstandlich. Hier ist der schnellste Weg, das zu tun

und mit gutem Gewissen weiterzuarbeiten. Wir verwenden den integrierten PlantGrowth -
Datensatz als Beispiel in diesem gesamten Kapitel:

Imod <- Im(weight ~ group, data = PlantGrowth)

Sowohl die PlantGrowth -Daten als auch die 1m() -Funktion sind in R integriert und
bendtigen keine zusatzlichen Pakete. Nun erstellen wir die Standard-Diagnoseplots:

par (mfrow = c(2, 2))
plot (mod)
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Ipar(mfrow = c(1l, 1))

Die par (mfrow = ...) -Zeilen' gehdren nicht zur Diagnostik — plot (mod) ist der
entscheidende Befehl. Diese vier Plots geben einen schnellen Uberblick:

Plot Was prufen? Was ist in Ordnung?
Residuals vs Fitted (oben  Zufallige Streuung um Null?  Keine offensichtlichen

links) Kurven oder Trichterformen
Q-Q Residuals (oben Punkte nahe an der Die meisten Punkte folgen
rechts) Diagonalen? der Linie

Scale-Location (unten Ungefahr gleichmaRige Kein deutlicher Trichter oder
links) Streuung? Trend

Residuals vs Factor Extreme Ausreiller? Keine Punkte weit jenseits
Levels (unten rechts) der Cook’s-Distance-Linien

"par (mfrow = c(2, 2)) istein R-Base-Graphics-Befehl, der die nachsten Plots in einem 2x2-Raster
anordnet. Er hat nichts mit Modelldiagnostik zu tun — er teilt R lediglich mit, vier Plots gleichzeitig statt
nacheinander anzuzeigen. Das par (mfrow = c(1, 1)) am Ende setzt das Layout wieder auf die
Standard-Einzelansicht zuriick.
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© Schnelle Entscheidungsregel

Wenn die Plots ungefahr in Ordnung aussehen — keine dramatischen Muster, keine
extremen Ausreil’er — kann man mit der Analyse fortfahren. Lineare Modelle sind recht
robust gegenuber kleinen Abweichungen von perfekten Annahmen. Wenn etwas deutlich
problematisch aussieht, bieten die folgenden Abschnitte Orientierung.

Die {easystats}-Alternative

Wer einen umfassenderen Satz an Diagnoseplots in einem einzigen Aufruf haben méchte,

findet im Paket {easystats} (das oben bereits geladen wurde) die Funktion check model () :

I check model (mod)

Posterior Predictive Check

Model-predicted lines should resemble observed data line
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Diese Funktion erzeugt eine mehrteilige Abbildung, die die wichtigsten Annahmen abdeckt —
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einschliellich Normalverteilung, Homoskedastizitat, einflussreiche Beobachtungen und
Kollinearitat — alles auf einmal. Es ist ein hervorragender Weg flir einen schnellen und
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dennoch griindlichen Uberblick, und die Plots sind wohl einfacher zu lesen als die Base-R-
Versionen. Beide Ansatze eignen sich gut fiur die Routinediagnostik.

Die Annahmen verstehen

Lineare Modelle (einschliefdlich ANOVA) stitzen sich auf mehrere Annahmen. Gehen wir
jede einzelne durch und verstehen, worauf man achten muss.

Unabhaengigkeit

Annahme: Die einzelnen Beobachtungen sind voneinander unabhangig.

Diese Annahme lasst sich nicht mit Diagnoseplots oder statistischen Tests Uberprtfen.
Stattdessen muss sie durch ein korrektes Versuchsdesign und Randomisierung
sichergestellt werden. Wenn das Experiment ordnungsgemaf randomisiert wurde (wie es bei
jeder gut geplanten Studie der Fall sein sollte), ist diese Annahme in der Regel erflllt.

Wenn die Unabhangigkeit verletzt ist — beispielsweise bei Messwiederholungen Uber die
Zeit, raumlich korrelierten Feldversuchen oder hierarchischen Datenstrukturen — werden die
Standardfehler unzuverlassig. In solchen Fallen sollten stattdessen spezialisierte Methoden
wie gemischte Modelle (Mixed-Effects Models) verwendet werden.

Normalverteilung der Residuen

Annahme: Die Modellresiduen folgen einer Normalverteilung.

| Residuen priifen, nicht Rohdaten!

Ein sehr haufiger Fehler ist es, zu prifen, ob die rohe Zielvariable (z.B. Ertrag)
normalverteilt ist. Darum geht es bei der Annahme aber nicht. Was annéhernd
normalverteilt sein muss, sind die Residuen des Modells — also die Abweichungen
zwischen beobachteten und angepassten Werten. Siehe M. Kozak and H.-P. Piepho [1]
(Abschnitt “4 | Answering Question 1”) fur Details.

Der QQ-Plot (Quantil-Quantil-Plot) ist das primare Werkzeug zur Beurteilung der
Normalverteilung. Er stellt die Residuen den Werten gegentiber, die man bei perfekter
Normalverteilung erwarten wirde. Wenn die Normalverteilung gegeben ist, liegen die Punkte
entlang der Diagonalen:

Iplot(mod, which = 2)

BioMath
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Bei der Interpretation von QQ-Plots sollte man auf das Gesamtmuster achten, nicht auf
einzelne Punkte:

» Gute Normalverteilung: Die Punkte folgen eng der Diagonalen, mit vielleicht kleinen
Abweichungen an den dulRersten Enden.

» Schwere Rander (Heavy Tails): Die Punkte biegen an beiden Enden von der Linie ab (S-
Form).

+ Schiefe (Skewness): Die Punkte weichen systematisch in eine Richtung von der Linie ab.

» AusreiBer: Ein oder zwei Punkte weit von der Linie entfernt, wahrend der Rest ihr gut folgt.

© Praktische Faustregel

Kleine Abweichungen in QQ-Plots sind kein Grund zur Sorge. Lineare Modelle kommen
gut mit leichter Nicht-Normalitat zurecht, besonders bei ausreichenden
StichprobengréfRen (ungefahr n > 15 pro Gruppe). Der Zentrale Grenzwertsatz stellt
sicher, dass der ANOVA-F-Test auch bei nicht-normalen Residuen fiur moderate bis
groRe Stichproben annahernd gultig bleibt.

Homoskedastizitaet
Annahme: Die Fehlervarianz ist liber alle Gruppen / angepassten Werte konstant.

Auch als Homoskedastizitdt bezeichnet (das Gegenteil von Heteroskedastizitét). Der
Residuen-vs-Fitted-Plot hilft bei der Beurteilung dieser Annahme. Die Residuen sollten ein
ungefahr gleichmafiges horizontales Band um Null bilden:
mod %>%
check heteroscedasticity() $%$>%
plot ()
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Homogeneity of Variance
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Wenn die Streuung der Residuen mit den angepassten Werten deutlich zu- oder abnimmt
(eine “Trichter’-Form), kdnnte die Varianzgleichheit verletzt sein. Geringe Unterschiede in der
Streuung zwischen Gruppen sind in der Regel unproblematisch — die ANOVA ist recht
robust, solange das Verhaltnis der grofdten zur kleinsten Gruppenvarianz unter etwa 3:1 liegt.

Linearitaet
Annahme: Die Zielvariable ldsst sich als Linearkombination der Pradiktoren darstellen.

Auch diese Annahme wird Uber den Residuen-vs-Fitted-Plot geprift (das Panel oben links
aus dem Vier-Panel-Plot oben). Bei jedem angepassten Wert sollte der Mittelwert der
Residuen ungefahr Null sein. Wenn statt einer zufalligen Streuung ein deutlich gekrimmtes
Muster zu erkennen ist, kdnnte die Linearitatsannahme nicht erfullt sein.

Fur Modelle mit ausschlief3lich kategorialen Pradiktoren (wie alle ANOVA-Beispiele in diesem
Kurs) ist die Linearitat automatisch erfillt — das Modell schatzt einfach einen separaten
Mittelwert fur jede Gruppe. Die unten gezeigten Kurvenmuster kénnen nur auftreten, wenn
ein kontinuierlicher Pradiktor beteiligt ist (z.B. bei Regression). Dennoch ist es nutzlich, diese
Muster zu verstehen, da viele reale Analysen kategoriale und kontinuierliche Pradiktoren
kombinieren.

Um zu veranschaulichen, wie problematische Muster im Vergleich zu einem gesunden
Residuenmuster aussehen, hier drei simulierte Beispiele:
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Das linke Panel zeigt ein unauffalliges Residuenmuster mit zufalliger Streuung um Null. Das
mittlere Panel zeigt ein gekrimmtes Muster, was darauf hindeutet, dass die Beziehung
zwischen Pradiktor und Zielvariable nicht linear ist. Das rechte Panel zeigt ein
Trichtermuster, bei dem die Streuung der Residuen mit den angepassten Werten zunimmt —
dies deutet auf Heteroskedastizitat hin und nicht auf ein Linearitatsproblem.

Vertiefung

Die vorangegangenen Abschnitte decken ab, was fur die Routinediagnostik nétig ist. Was
folgt, geht Uber die Grundlagen hinaus und behandelt differenziertere Fragen: Warum sind
diagnostische Tests problematisch? Wie lassen sich einflussreiche Beobachtungen
identifizieren? Und was kann man tun, wenn die Annahmen klar verletzt sind?

Warum Plots statt Tests?

Es mag naheliegend erscheinen, einen statistischen Test (wie den Shapiro-Wilk-Test auf
Normalverteilung) zu verwenden, um die Annahmen “objektiv” zu prifen. Allerdings gibt es
einen wachsenden Konsens unter Statistikern, dass Diagnoseplots informativer sind als
statistische Tests fur diesen Zweck.

M. Kozak and H.-P. Piepho [1] liefern ein klares Argument, warum das so ist:

According to many authors (e.g., Atkinson, 1987; Belsley, Kuh, & Welsch, 2005; Kozak,

2009; Moser & Stevens, 1992; Quinn & Keough, 2002; Rasch, Kubinger, & Moder, 2011;
Schucany & Ng, 2006), significance tests should not be used for checking assumptions.
Diagnostic residual plots are a better choice.
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There are two possible reasons for the overuse of statistical tests to check assumptions.
First, many researchers base their knowledge on books first published 40 years ago or
earlier. Back then, using statistical tests was relatively simple while using diagnostic
plots was difficult; thus, these books advised the former, often even not mentioning the
latter. Second, most statistical software offers statistical tests for checking assumptions
as a default. Using default tests is simple, so users use them. However, we explained
why we think that significance tests are not a good way of checking assumptions (in
general, not only for ANOVA). First of all, with large samples (a very desirable situation)
we risk that even small (and irrelevant) departures from the null hypothesis (which states
that the assumption is met) will be detected as significant, and so we would need to
reject the hypothesis and state that the assumption is not met. With small samples, the
situation is opposite: much larger (and important) departures would not be found
significant. Thus, our advice is to use diagnostic plots instead of hypothesis testing to
check ANOVA assumptions.

Um dieses Problem in Aktion zu sehen, betrachten wir die Normalverteilungstests flr unser
Beispielmodell:

Io]s test normality (mod)

Test Statistic pvalue
Shapiro-Wilk 0.9661 0.4379
Kolmogorov-Smirnov 0.1101 0.8215
Cramer-von Mises 3.6109 0.0000
Anderson-Darling 0.3582 0.4299

Der QQ-Plot oben sieht véllig unauffallig aus, und dennoch sind sich die Tests nicht einig —
man beachte, wie einzelne Tests eine “signifikante” Abweichung anzeigen kénnen, obwohl
der visuelle Eindruck klar akzeptabel ist. Diese widersprichliche Situation illustriert genau,
warum es irrefihrend sein kann, sich auf Tests statt auf visuelle Beurteilung zu verlassen.

Der Vollstandigkeit halber hier die gangigen Tests auf Varianzhomogenitat:
ols test breusch pagan (mod)

Breusch Pagan Test for Heteroskedasticity
Ho: the variance is constant
Ha: the variance is not constant

Response : weight
Variables: fitted values of weight

Test Summary
DF =
Chi2 = 3.000303
Prob > Chi2 = 0.08324896
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bartlett.test (weight ~ group, data = PlantGrowth)

Bartlett test of homogeneity of variances

data: weight by group
Bartlett's K-squared = 2.8786, df = 2, p-value = 0.2371

Beide sind nicht signifikant (p > 0,05), was mit den Diagnoseplots Gibereinstimmt. Aber zur
Erinnerung: Ein nicht signifikanter Test garantiert nicht, dass die Annahme erfullt ist — er
kénnte einfach unzureichende statistische Power widerspiegeln.

Ausreisser und einflussreiche Beobachtungen

Manchmal haben einzelne Beobachtungen einen unverhaltnismaiig groRen Einfluss auf die
Modellergebnisse. Das sind nicht unbedingt fehlerhafte Datenpunkte, aber man sollte sich
ihrer bewusst sein.

Cook’s Distance quantifiziert, wie stark sich alle angepassten Werte andern, wenn eine
einzelne Beobachtung entfernt wird. Eine gangige Faustregel: Beobachtungen mit Cook’s
Distance groRer als 4/n verdienen einen genaueren Blick:

Ip]oL(mod, which = 4)

Cook's distance
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Im(weight ~ group)

In unserem Beispiel haben die Beobachtungen 15 und 17 die héchste Cook’s Distance. Mit
dem Schwellenwert bei 4/30 = 0,13 liegen diese beiden Werte nur leicht darliber. Das ist

recht mild — Cook’s-Distance-Werte Uber 1,0 wiirden auf ein ernsthaftes Problem hindeuten.

DFBETAS messen, wie stark sich jeder Regressionskoeffizient andert, wenn eine einzelne
Beobachtung entfernt wird. Beobachtungen mit [DFBETAS| > 2/\n verdienen
Aufmerksamkeit. Wichtig ist, DFBETAS fir alle Modellkoeffizienten zu priifen, nicht nur den
Intercept — eine Beobachtung kénnte einen Gruppenkontrast stark beeinflussen, ohne den
Gesamtmittelwert zu verandern:

n <- nrow(PlantGrowth)
db <- dfbetas (mod)

BioMath
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data.frame (
obs = 1:n,
cooks d = round(cooks.distance (mod), 4),
dfb_intercept = round(db[, 11, 4),
dfb_grouptrtl = round(db[, 2], 4),
dfb grouptrt2 = round(db[, 3], 4)
) $>%
filter(
cooks d > 4 / n |
if any(starts with("dfb "), \(x) abs(x) > 2 / sqgrt(n))
)

obs cooks d dfb intercept dfb grouptrtl dfb grouptrt2

1 1 0.0787 -0.4967 0.3512 0.3512
4 4 0.1231 0.6367 -0.4502 -0.4502
14 14 0.1215 0.0000 -0.4469 0.0000
15 15 0.1548 0.0000 0.5143 0.0000
17 17 0.1985 0.0000 0.5981 0.0000

In der Praxis ist es am sinnvollsten, die Analyse sowohl mit als auch ohne die identifizierten
einflussreichen Beobachtungen durchzufiihren und die Schlussfolgerungen zu vergleichen.
Stimmen sie Uberein, besteht kein Grund zur Sorge.

Was tun bei verletzten Annahmen?

Wenn Diagnoseplots klare Probleme aufzeigen, gibt es je nach Art und Schwere der
Verletzung mehrere Moglichkeiten.

Datentransformation

Eine Transformation der Zielvariable mit einer mathematischen Funktion (z.B. Quadratwurzel
oder Logarithmus) kann die Modelldiagnostik oft deutlich verbessern. Hier ein Beispiel mit
Daten aus einem Gurkenversuch im Lateinischen Quadrat (dieselben Daten wie in Kapitel 3):

for (pkg in c("agridat", "emmeans", "multcomp", "multcompView")) {
if (!require (pkg, character.only = TRUE)) install.packages (pkg)
}
library (agridat)
emmeans)
multcomp)
multcompView)

library
library
library

dat <- agridat::bridges.cucumber %>%

filter(loc == "Clemson") %>%
mutate (colF = as.factor(col),
rowF = as.factor (row))

Wir fitten zwei Modelle — eines mit der urspriinglichen Zielvariable und eines mit der
quadratwurzeltransformierten Zielvariable — und vergleichen ihre QQ-Plots nebeneinander:

mod original <- Im(
yield ~ gen + rowF + colF,
data = dat)

plot (mod original, which = 2)
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mod_sqgrt <- Im(
sqgrt (yield) ~ gen + rowF + colF,
data = dat)
plot (mod sqgrt, which = 2)
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Im(sqrt(yield) ~ gen + rowF + colF)

Der QQ-Plot des Quadratwurzel-Modells liegt deutlich ndher an der Diagonalen, daher
fahren wir mit der ANOVA auf der transformierten Skala fort:

Ianova(mod_sqrt)
Analysis of Variance Table

Response: sqgrt (yield)
Df Sum Sgq Mean Sg F value Pr (>F)
gen 3 10.5123 3.5041 8.8966 0.01256 *

11
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rowF 3 5.0283 1.6761 4.2555 0.06228
colF 3 4.2121 1.4040 3.5647 0.08670
Residuals 6 2.3632 0.3939

Sigmili, eecess 0 VF**U Q,001L Y+=*UV @.01L "=V @.,0% "," @, Y ¥ 1

Die ANOVA zeigt einen signifikanten Effekt des Genotyps. Fir Mittelwertvergleiche mittels
Post-hoc-Tests kdnnen die Mittelwerte auf der ricktransformierten (= urspringlichen) Skala
dargestellt werden, solange klar kommuniziert wird, dass Modellanpassung und
Mittelwertvergleiche auf der Quadratwurzel-Skala durchgefuhrt wurden:

mod sqrt %>%

emmeans (specs = ~ gen, type = "response") 3>%
cld(adjust = "Tukey", Letters = letters)
Note: adjust = "tukey" was changed to "sidak"

because "tukey" is only appropriate for one set of pairwise comparisons

gen response SE df lower.CL upper.CL .group
Poinsett 20.9 2.87 6 12.0 32.1 a
Sprint 25.1 3.14 o6 15.3 37.3 a
Guardian 30.4 3.46 o6 19.5 43.7 ab
Dasher 45.3 4.23 6 31.7 61.4 b

Results are averaged over the levels of: rowF, colF
Confidence level used: 0.95
Conf-level adjustment: sidak method for 4 estimates
Intervals are back-transformed from the sqgrt scale
Note: contrasts are still on the sqgrt scale. Consider using
regrid() if you want contrasts of back-transformed estimates.
P value adjustment: tukey method for comparing a family of 4 estimates
significance level used: alpha = 0.05
NOTE: If two or more means share the same grouping symbol,
then we cannot show them to be different.
But we also did not show them to be the same.

Hier bewirkt type = "response" die automatische Rucktransformation. Das funktioniert nur,
wenn die Transformation innerhalb der Modellformel angegeben wird (wie hier mit
sgrt (yield) in 1m() ), nicht wenn vorab eine transformierte Spalte erstellt wird.

Alternative Methoden (und ihre Grenzen)

Wenn die Annahmen verletzt sind und eine Transformation nicht hilft, gibt es verschiedene
alternative Methoden. Wir stellen sie hier kurz vor, allerdings mit einem wichtigen Vorbehalt:
Die meisten dieser Alternativen funktionieren nur fiir die einfachsten
Versuchsdesigns.

Welch-ANOVA setzt keine gleichen Varianzen Uber die Gruppen voraus:
oneway.test (weight ~ group, data = PlantGrowth, var.equal = FALSE)

One-way analysis of means (not assuming equal variances)

data: weight and group
F = 5.181, num df = 2.000, denom df = 17.128, p-value = 0.01739

Robuste Standardfehler behalten das urspriingliche Modell bei, passen aber die
Standardfehler an, um Heteroskedastizitat zu bertcksichtigen:

12
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for (pkg in c("lmtest", "sandwich")) {
if (!require (pkg, character.only = TRUE)) install.packages (pkg)
}
I Imtest::coeftest (mod, vcov = sandwich::vcovHC (mod, type = "HC3"))

t test of coefficients:

Estimate Std. Error t value Pr(>|t])

(Intercept) 5.03200 0.19436 25.8896 < 2e-16 **x*

grouptrtl -0.37100 0.32828 -1.1301 0.26836

grouptrt?2 0.49400 0.24401 2.0245 0.05291 .

Signif. codes: 0 '***' (Q.001 '**' 0.01 '*' 0.05 '.' 0.1 " ' 1

Nichtparametrische Tests wie der Kruskal-Wallis-Test lockern die
Normalverteilungsannahme, indem sie mit Rangen statt mit Rohwerten arbeiten:

Ikruskal.test(weight ~ group, data = PlantGrowth)

Kruskal-Wallis rank sum test

data: weight by group
Kruskal-Wallis chi-squared = 7.9882, df = 2, p-value = 0.01842

Der Kruskal-Wallis-Test ist nicht vollkommen “annahmefrei” — er setzt weiterhin voraus, dass
die Verteilungen in jeder Gruppe die gleiche Form haben, nur moglicherweise in ihrer Lage
verschoben.

| Diese Alternativen sind in der Praxis selten anwendbar

Alle drei oben gezeigten Methoden funktionieren gut fur den hier demonstrierten
einfachen einfaktoriellen Fall. In der Praxis haben die meisten Experimente jedoch
mehrere Behandlungsfaktoren, Blockstrukturen oder zufallige Effekte — und genau
dort sto3en diese Alternativen an ihre Grenzen:

* Welch-ANOVA funktioniert nur fur einfaktorielle Designs. Es gibt keine Welch-Version
fur zweifaktorielle ANOVA, Split-Plot-Designs oder Modelle mit Blockeffekten.

* Robuste Standardfehler lassen sich breiter anwenden, aber
Standardimplementierungen erstrecken sich nicht sauber auf gemischte Modelle oder
komplexe Varianzstrukturen.

* Nichtparametrische Tests existieren fir einige wenige einfache Designs — Kruskal-
Wallis fir einfaktorielle Anordnungen, der Friedman-Test fir RCBD — aber es gibt
keine einfachen nichtparametrischen Entsprechungen fir faktorielle Designs,
unvollstandige Blockdesigns oder Split-Plot-Versuche.

In der Praxis bedeutet das: Fur die meisten der in diesem Kurs behandelten
Versuchsdesigns (Lateinisches Quadrat, Alpha-Design, Row-Column usw.) sind diese
Alternativen in der Regel nicht verfiigbar. Die realistischen Optionen bei verletzten
Annahmen in komplexen Designs sind: (1) Datentransformation, (2) Verwendung
generalisierter linearer Modelle (GLMs — siehe den Ausblick unten) oder (3) Akzeptieren,
dass milde Verletzungen kein Problem darstellen (siehe die Robustheitsdiskussion
unten).
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Wie robust sind lineare Modelle?

Lineare Modelle sind robuster gegentiber Annahmenverletzungen, als haufig gelehrt wird.
Die Forschung hat durchgangig gezeigt:

+ ANOVA ist robust gegenuber moderaten Verletzungen sowohl der Normalverteilung als
auch der Varianzhomogenitat, besonders bei balancierten und ausreichenden
StichprobengréRen.

* Der Zentrale Grenzwertsatz stellt sicher, dass Teststatistiken auch bei nicht-normalen
Residuen mit wachsenden StichprobengréRen gegen ihre erwarteten Verteilungen
konvergieren.

» Leichte Verletzungen sind die Norm, nicht die Ausnahme. Die meisten realen Daten
weichen in gewissem Male von perfekten Annahmen ab.

Als grobe Richtlinie:

StichprobengréRe pro Gruppe Praktischer Rat

Klein (n <15) Annahmenverletzungen wirken sich starker
aus. Exakte Tests oder robuste Methoden in
Betracht ziehen. Diagnostik sorgfaltig
interpretieren.

Moderat (15-50) Standard-ANOVA ist in der Regel robust bei
milden Verletzungen. Nur schwerwiegende
Probleme suchen.

Grof (50+) Der Zentrale Grenzwertsatz bietet starken
Schutz. Annahmenprifung ist weniger
kritisch, aber Diagnoseplots kénnen
dennoch Datenqualitatsprobleme
aufdecken.

Die Kernbotschaft: Man sollte ANOVA-Ergebnisse nicht wegen kleiner Unvollkommenheiten
in Diagnoseplots verwerfen. Der Fokus liegt auf klaren, eindeutigen Verletzungen. Im Zweifel
kann man die Analyse sowohl mit dem Standardansatz als auch mit einer robusten
Alternative durchfiihren — stimmen die Schlussfolgerungen tberein, war die
Annahmenverletzung nicht folgenreich.
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© Weiterfiihrende Ressourcen

Allgemein

* What's normal anyway? Residual plots are more telling than significance tests when
checking ANOVA assumptions [1]

» Chapter 13 Model Diagnostics in Applied Statistics with R (Dalpiaz, 2022)

* {olsrr} R-Paket-Dokumentation

Normalverteilung

» Fir diesen speziellen Zweck werden QQ-Plots auch als Normal probability plots
bezeichnet

Varianzhomogenitat
» Dokumentation zu Tests aus {olsrr}
Transformation

» Kapitel 3.3 in C. F. Dormann and |. Kiihn [2]

Ausblick: Generalisierte Lineare Modelle

Bisher hat sich dieses Kapitel mit Situationen befasst, in denen die Annahmen eines linearen
Modells anndhernd erflllt sind oder milde Verletzungen toleriert werden kdnnen. Aber was ist
mit Daten, die diese Annahmen grundsatzlich nicht erfiillen kbnnen?

Man denke an Zahldaten (z.B. Anzahl Insekten pro Pflanze) oder Anteile (z.B. Prozentsatz
gekeimter Samen). Diese Zielvariablen sind inharent nicht-normal: Zahldaten sind diskret
und kdnnen nicht negativ sein, Anteile liegen zwischen 0 und 1. Transformationen (wie
Logarithmus fir Zahldaten oder Arcussinus-Quadratwurzel fur Anteile) werden seit
Jahrzehnten verwendet und kdnnen helfen, Idsen aber die grundsatzliche Diskrepanz
zwischen den Daten und der Normalverteilung nicht vollstandig auf. Der Versuch, solche
Daten in ein Standard-Linearmodell zu zwangen, fuhrt haufig zu persistenten
Diagnostikproblemen — und das ist ein Zeichen, dass das Modell selbst mdglicherweise
nicht das richtige Werkzeug fir die Aufgabe ist.

Generalisierte Lineare Modelle (GLMs) |6sen dieses Problem, indem sie den Rahmen
linearer Modelle erweitern, um verschiedene Typen von Zielvariablen direkt zu verarbeiten.
Anstatt normalverteilte Residuen vorauszusetzen, erlaubt ein GLM die Spezifikation einer
Verteilung, die zur Natur der Daten passt:

Datentyp Verteilung Beispiel

Zahldaten (0, 1, 2, ...) Poisson Anzahl Insekten pro Parzelle
Binare Ergebnisse (ja/nein) Binomial Gekeimt oder nicht

Anteile (0-1) Beta oder Binomial Infektionsrate

Positive stetige Daten Gamma Ertrag mit Rechtsschiefe

Das Elegante an GLMs ist, dass die Modellannahmen um den tatsachlichen
datengenerierenden Prozess herum aufgebaut sind, anstatt die Daten in einen normalen
Rahmen zu zwangen. Wenn also Diagnoseplots systematische Probleme zeigen, die eine
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Transformation nicht beheben kann, lautet die Antwort oft nicht “die Annahmen starker
erfillen”, sondern “ein Modell verwenden, dessen Annahmen zu den Daten passen”.

GLMs verwenden dieselbe R-Syntax, die man bereits kennt — glm() statt im() — und sie

integrieren sich mit denselben Werkzeugen fir ANOVA-artige Auswertung ( anova () ,

emmeans () ), Blockstrukturen und faktorielle Designs. Eine ausfuhrliche Behandlung von

GLMs geht tGiber den Rahmen dieses Kapitels hinaus, aber es ist gut zu wissen, dass sie als

prinzipientreue Lésung fir Daten existieren, die nicht in den Rahmen linearer Modelle
passen.

1 Zusammenfassung

Prifung der wichtigsten Annahmen. Alternativ kann man check model (mod) aus
{easystats} fur einen umfassenderen Uberblick verwenden.

2. Plots statt Tests zur Annahmenprifung verwenden. Statistische Tests auf

oder grof3en Stichproben.

3. Residuen priifen, nicht Rohdaten. Die Normalverteilung muss an den
Modellresiduen beurteilt werden, nicht an der Zielvariable.

4. Leichte Verletzungen sind meist kein Problem. Lineare Modelle sind robust,
besonders bei ausreichenden Stichprobengréf3en.

5. Bei schweren Verletzungen ist die Datentransformation in der Regel das erste und
am breitesten anwendbare Mittel.

6. Alternative Methoden haben Grenzen. Welch-ANOVA, robuste Standardfehler und

Versuche kommen Transformation oder GLMs in Frage.

7. Transparent berichten. Den Diagnostikprozess und alle getroffenen MaRnahmen
dokumentieren.

1. Mit plot(mod) beginnen — der Vier-Panel-Diagnoseplot bietet eine schnelle visuelle

Normalverteilung oder Varianzhomogenitat fuhren oft in die Irre, besonders bei kleinen

nichtparametrische Tests funktionieren nur fir die einfachsten Designs. Fir komplexe
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