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A1. Modelldiagnostik

Prüfen, ob die Modellannahmen erfüllt sind
Dr. Paul Schmidt

Um alle in diesem Kapitel verwendeten Pakete zu installieren und zu laden, kann man
folgenden Code ausführen:

for (pkg in c("easystats", "olsrr", "tidyverse")) {
  if (!require(pkg, character.only = TRUE)) install.packages(pkg)
}

library(easystats)
library(olsrr)
library(tidyverse)

Statistische Modelle treffen Annahmen über die Daten, und Ergebnisse können irreführend
sein, wenn diese Annahmen stark verletzt werden. Dieses Kapitel zeigt, wie man prüft, ob die
Annahmen eines linearen Modells hinreichend erfüllt sind — ein Prozess, der als
Modelldiagnostik bekannt ist. Wir beginnen mit einem schnellen, praktischen Ansatz und
gehen dann schrittweise tiefer für diejenigen, die mehr Details wünschen.

Die Kurzversion
Man hat ein lineares Modell gefittet und möchte eigentlich nur die ANOVA-Ergebnisse —
aber irgendwo in einer Vorlesung oder einem Lehrbuch wurde einem gesagt, man solle
vorher “die Modellannahmen prüfen”. Verständlich. Hier ist der schnellste Weg, das zu tun
und mit gutem Gewissen weiterzuarbeiten. Wir verwenden den integrierten PlantGrowth -
Datensatz als Beispiel in diesem gesamten Kapitel:

mod <- lm(weight ~ group, data = PlantGrowth)

Sowohl die PlantGrowth -Daten als auch die lm() -Funktion sind in R integriert und
benötigen keine zusätzlichen Pakete. Nun erstellen wir die Standard-Diagnoseplots:
par(mfrow = c(2, 2))
plot(mod)
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par(mfrow = c(1, 1))

Die par(mfrow = ...) -Zeilen¹ gehören nicht zur Diagnostik — plot(mod)  ist der
entscheidende Befehl. Diese vier Plots geben einen schnellen Überblick:

Plot Was prüfen? Was ist in Ordnung?

Residuals vs Fitted (oben
links)

Zufällige Streuung um Null? Keine offensichtlichen
Kurven oder Trichterformen

Q-Q Residuals (oben
rechts)

Punkte nahe an der
Diagonalen?

Die meisten Punkte folgen
der Linie

Scale-Location (unten
links)

Ungefähr gleichmäßige
Streuung?

Kein deutlicher Trichter oder
Trend

Residuals vs Factor
Levels (unten rechts)

Extreme Ausreißer? Keine Punkte weit jenseits
der Cook’s-Distance-Linien

¹ par(mfrow = c(2, 2))  ist ein R-Base-Graphics-Befehl, der die nächsten Plots in einem 2x2-Raster
anordnet. Er hat nichts mit Modelldiagnostik zu tun — er teilt R lediglich mit, vier Plots gleichzeitig statt
nacheinander anzuzeigen. Das par(mfrow = c(1, 1))  am Ende setzt das Layout wieder auf die
Standard-Einzelansicht zurück.
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 Schnelle Entscheidungsregel

Wenn die Plots ungefähr in Ordnung aussehen — keine dramatischen Muster, keine
extremen Ausreißer — kann man mit der Analyse fortfahren. Lineare Modelle sind recht
robust gegenüber kleinen Abweichungen von perfekten Annahmen. Wenn etwas deutlich
problematisch aussieht, bieten die folgenden Abschnitte Orientierung.

Die {easystats}-Alternative
Wer einen umfassenderen Satz an Diagnoseplots in einem einzigen Aufruf haben möchte,
findet im Paket {easystats} (das oben bereits geladen wurde) die Funktion check_model() :

check_model(mod)

Diese Funktion erzeugt eine mehrteilige Abbildung, die die wichtigsten Annahmen abdeckt —
einschließlich Normalverteilung, Homoskedastizität, einflussreiche Beobachtungen und
Kollinearität — alles auf einmal. Es ist ein hervorragender Weg für einen schnellen und
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dennoch gründlichen Überblick, und die Plots sind wohl einfacher zu lesen als die Base-R-
Versionen. Beide Ansätze eignen sich gut für die Routinediagnostik.

Die Annahmen verstehen
Lineare Modelle (einschließlich ANOVA) stützen sich auf mehrere Annahmen. Gehen wir
jede einzelne durch und verstehen, worauf man achten muss.

Unabhaengigkeit
Annahme: Die einzelnen Beobachtungen sind voneinander unabhängig.

Diese Annahme lässt sich nicht mit Diagnoseplots oder statistischen Tests überprüfen.
Stattdessen muss sie durch ein korrektes Versuchsdesign und Randomisierung
sichergestellt werden. Wenn das Experiment ordnungsgemäß randomisiert wurde (wie es bei
jeder gut geplanten Studie der Fall sein sollte), ist diese Annahme in der Regel erfüllt.

Wenn die Unabhängigkeit verletzt ist — beispielsweise bei Messwiederholungen über die
Zeit, räumlich korrelierten Feldversuchen oder hierarchischen Datenstrukturen — werden die
Standardfehler unzuverlässig. In solchen Fällen sollten stattdessen spezialisierte Methoden
wie gemischte Modelle (Mixed-Effects Models) verwendet werden.

Normalverteilung der Residuen
Annahme: Die Modellresiduen folgen einer Normalverteilung.

! Residuen prüfen, nicht Rohdaten!

Ein sehr häufiger Fehler ist es, zu prüfen, ob die rohe Zielvariable (z.B. Ertrag)
normalverteilt ist. Darum geht es bei der Annahme aber nicht. Was annähernd
normalverteilt sein muss, sind die Residuen des Modells — also die Abweichungen
zwischen beobachteten und angepassten Werten. Siehe M. Kozak and H.-P. Piepho [1]
(Abschnitt “4 | Answering Question 1”) für Details.

Der QQ-Plot (Quantil-Quantil-Plot) ist das primäre Werkzeug zur Beurteilung der
Normalverteilung. Er stellt die Residuen den Werten gegenüber, die man bei perfekter
Normalverteilung erwarten würde. Wenn die Normalverteilung gegeben ist, liegen die Punkte
entlang der Diagonalen:
plot(mod, which = 2)
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Bei der Interpretation von QQ-Plots sollte man auf das Gesamtmuster achten, nicht auf
einzelne Punkte:

• Gute Normalverteilung: Die Punkte folgen eng der Diagonalen, mit vielleicht kleinen
Abweichungen an den äußersten Enden.

• Schwere Ränder (Heavy Tails): Die Punkte biegen an beiden Enden von der Linie ab (S-
Form).

• Schiefe (Skewness): Die Punkte weichen systematisch in eine Richtung von der Linie ab.
• Ausreißer: Ein oder zwei Punkte weit von der Linie entfernt, während der Rest ihr gut folgt.

 Praktische Faustregel

Kleine Abweichungen in QQ-Plots sind kein Grund zur Sorge. Lineare Modelle kommen
gut mit leichter Nicht-Normalität zurecht, besonders bei ausreichenden
Stichprobengrößen (ungefähr n > 15 pro Gruppe). Der Zentrale Grenzwertsatz stellt
sicher, dass der ANOVA-F-Test auch bei nicht-normalen Residuen für moderate bis
große Stichproben annähernd gültig bleibt.

Homoskedastizitaet
Annahme: Die Fehlervarianz ist über alle Gruppen / angepassten Werte konstant.

Auch als Homoskedastizität bezeichnet (das Gegenteil von Heteroskedastizität). Der
Residuen-vs-Fitted-Plot hilft bei der Beurteilung dieser Annahme. Die Residuen sollten ein
ungefähr gleichmäßiges horizontales Band um Null bilden:
mod %>%
  check_heteroscedasticity() %>%
  plot()
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Wenn die Streuung der Residuen mit den angepassten Werten deutlich zu- oder abnimmt
(eine “Trichter”-Form), könnte die Varianzgleichheit verletzt sein. Geringe Unterschiede in der
Streuung zwischen Gruppen sind in der Regel unproblematisch — die ANOVA ist recht
robust, solange das Verhältnis der größten zur kleinsten Gruppenvarianz unter etwa 3:1 liegt.

Linearitaet
Annahme: Die Zielvariable lässt sich als Linearkombination der Prädiktoren darstellen.

Auch diese Annahme wird über den Residuen-vs-Fitted-Plot geprüft (das Panel oben links
aus dem Vier-Panel-Plot oben). Bei jedem angepassten Wert sollte der Mittelwert der
Residuen ungefähr Null sein. Wenn statt einer zufälligen Streuung ein deutlich gekrümmtes
Muster zu erkennen ist, könnte die Linearitätsannahme nicht erfüllt sein.

Für Modelle mit ausschließlich kategorialen Prädiktoren (wie alle ANOVA-Beispiele in diesem
Kurs) ist die Linearität automatisch erfüllt — das Modell schätzt einfach einen separaten
Mittelwert für jede Gruppe. Die unten gezeigten Kurvenmuster können nur auftreten, wenn
ein kontinuierlicher Prädiktor beteiligt ist (z.B. bei Regression). Dennoch ist es nützlich, diese
Muster zu verstehen, da viele reale Analysen kategoriale und kontinuierliche Prädiktoren
kombinieren.

Um zu veranschaulichen, wie problematische Muster im Vergleich zu einem gesunden
Residuenmuster aussehen, hier drei simulierte Beispiele:
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Das linke Panel zeigt ein unauffälliges Residuenmuster mit zufälliger Streuung um Null. Das
mittlere Panel zeigt ein gekrümmtes Muster, was darauf hindeutet, dass die Beziehung
zwischen Prädiktor und Zielvariable nicht linear ist. Das rechte Panel zeigt ein
Trichtermuster, bei dem die Streuung der Residuen mit den angepassten Werten zunimmt —
dies deutet auf Heteroskedastizität hin und nicht auf ein Linearitätsproblem.

Vertiefung
Die vorangegangenen Abschnitte decken ab, was für die Routinediagnostik nötig ist. Was
folgt, geht über die Grundlagen hinaus und behandelt differenziertere Fragen: Warum sind
diagnostische Tests problematisch? Wie lassen sich einflussreiche Beobachtungen
identifizieren? Und was kann man tun, wenn die Annahmen klar verletzt sind?

Warum Plots statt Tests?
Es mag naheliegend erscheinen, einen statistischen Test (wie den Shapiro-Wilk-Test auf
Normalverteilung) zu verwenden, um die Annahmen “objektiv” zu prüfen. Allerdings gibt es
einen wachsenden Konsens unter Statistikern, dass Diagnoseplots informativer sind als
statistische Tests für diesen Zweck.

M. Kozak and H.-P. Piepho [1] liefern ein klares Argument, warum das so ist:

According to many authors (e.g., Atkinson, 1987; Belsley, Kuh, & Welsch, 2005; Kozak,
2009; Moser & Stevens, 1992; Quinn & Keough, 2002; Rasch, Kubinger, & Moder, 2011;
Schucany & Ng, 2006), significance tests should not be used for checking assumptions.
Diagnostic residual plots are a better choice.
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[…]

There are two possible reasons for the overuse of statistical tests to check assumptions.
First, many researchers base their knowledge on books first published 40 years ago or
earlier. Back then, using statistical tests was relatively simple while using diagnostic
plots was difficult; thus, these books advised the former, often even not mentioning the
latter. Second, most statistical software offers statistical tests for checking assumptions
as a default. Using default tests is simple, so users use them. However, we explained
why we think that significance tests are not a good way of checking assumptions (in
general, not only for ANOVA). First of all, with large samples (a very desirable situation)
we risk that even small (and irrelevant) departures from the null hypothesis (which states
that the assumption is met) will be detected as significant, and so we would need to
reject the hypothesis and state that the assumption is not met. With small samples, the
situation is opposite: much larger (and important) departures would not be found
significant. Thus, our advice is to use diagnostic plots instead of hypothesis testing to
check ANOVA assumptions.

Um dieses Problem in Aktion zu sehen, betrachten wir die Normalverteilungstests für unser
Beispielmodell:

ols_test_normality(mod)

-----------------------------------------------
       Test             Statistic       pvalue  
-----------------------------------------------
Shapiro-Wilk              0.9661         0.4379 
Kolmogorov-Smirnov        0.1101         0.8215 
Cramer-von Mises          3.6109         0.0000 
Anderson-Darling          0.3582         0.4299 
-----------------------------------------------

Der QQ-Plot oben sieht völlig unauffällig aus, und dennoch sind sich die Tests nicht einig —
man beachte, wie einzelne Tests eine “signifikante” Abweichung anzeigen können, obwohl
der visuelle Eindruck klar akzeptabel ist. Diese widersprüchliche Situation illustriert genau,
warum es irreführend sein kann, sich auf Tests statt auf visuelle Beurteilung zu verlassen.

Der Vollständigkeit halber hier die gängigen Tests auf Varianzhomogenität:

# Breusch-Pagan test
ols_test_breusch_pagan(mod)

 Breusch Pagan Test for Heteroskedasticity
 -----------------------------------------
 Ho: the variance is constant            
 Ha: the variance is not constant        

               Data                
 ----------------------------------
 Response : weight 
 Variables: fitted values of weight 

        Test Summary          
 -----------------------------
 DF            =    1 
 Chi2          =    3.000303 
 Prob > Chi2   =    0.08324896 
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# Bartlett test (designed for comparing group variances)
bartlett.test(weight ~ group, data = PlantGrowth)

    Bartlett test of homogeneity of variances

data:  weight by group
Bartlett's K-squared = 2.8786, df = 2, p-value = 0.2371

Beide sind nicht signifikant (p > 0,05), was mit den Diagnoseplots übereinstimmt. Aber zur
Erinnerung: Ein nicht signifikanter Test garantiert nicht, dass die Annahme erfüllt ist — er
könnte einfach unzureichende statistische Power widerspiegeln.

Ausreisser und einflussreiche Beobachtungen
Manchmal haben einzelne Beobachtungen einen unverhältnismäßig großen Einfluss auf die
Modellergebnisse. Das sind nicht unbedingt fehlerhafte Datenpunkte, aber man sollte sich
ihrer bewusst sein.

Cook’s Distance quantifiziert, wie stark sich alle angepassten Werte ändern, wenn eine
einzelne Beobachtung entfernt wird. Eine gängige Faustregel: Beobachtungen mit Cook’s
Distance größer als 4/n verdienen einen genaueren Blick:
plot(mod, which = 4)

In unserem Beispiel haben die Beobachtungen 15 und 17 die höchste Cook’s Distance. Mit
dem Schwellenwert bei 4/30 ≈ 0,13 liegen diese beiden Werte nur leicht darüber. Das ist
recht mild — Cook’s-Distance-Werte über 1,0 würden auf ein ernsthaftes Problem hindeuten.

DFBETAS messen, wie stark sich jeder Regressionskoeffizient ändert, wenn eine einzelne
Beobachtung entfernt wird. Beobachtungen mit |DFBETAS| > 2/√n verdienen
Aufmerksamkeit. Wichtig ist, DFBETAS für alle Modellkoeffizienten zu prüfen, nicht nur den
Intercept — eine Beobachtung könnte einen Gruppenkontrast stark beeinflussen, ohne den
Gesamtmittelwert zu verändern:

n <- nrow(PlantGrowth)
db <- dfbetas(mod)
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data.frame(
  obs = 1:n,
  cooks_d = round(cooks.distance(mod), 4),
  dfb_intercept = round(db[, 1], 4),
  dfb_grouptrt1 = round(db[, 2], 4),
  dfb_grouptrt2 = round(db[, 3], 4)
) %>%
  filter(
    cooks_d > 4 / n |
    if_any(starts_with("dfb_"), \(x) abs(x) > 2 / sqrt(n))
  )

   obs cooks_d dfb_intercept dfb_grouptrt1 dfb_grouptrt2
1    1  0.0787       -0.4967        0.3512        0.3512
4    4  0.1231        0.6367       -0.4502       -0.4502
14  14  0.1215        0.0000       -0.4469        0.0000
15  15  0.1548        0.0000        0.5143        0.0000
17  17  0.1985        0.0000        0.5981        0.0000

In der Praxis ist es am sinnvollsten, die Analyse sowohl mit als auch ohne die identifizierten
einflussreichen Beobachtungen durchzuführen und die Schlussfolgerungen zu vergleichen.
Stimmen sie überein, besteht kein Grund zur Sorge.

Was tun bei verletzten Annahmen?
Wenn Diagnoseplots klare Probleme aufzeigen, gibt es je nach Art und Schwere der
Verletzung mehrere Möglichkeiten.

Datentransformation
Eine Transformation der Zielvariable mit einer mathematischen Funktion (z.B. Quadratwurzel
oder Logarithmus) kann die Modelldiagnostik oft deutlich verbessern. Hier ein Beispiel mit
Daten aus einem Gurkenversuch im Lateinischen Quadrat (dieselben Daten wie in Kapitel 3):

for (pkg in c("agridat", "emmeans", "multcomp", "multcompView")) {
  if (!require(pkg, character.only = TRUE)) install.packages(pkg)
}

library(agridat)
library(emmeans)
library(multcomp)
library(multcompView)

dat <- agridat::bridges.cucumber %>%
  filter(loc == "Clemson") %>%
  mutate(colF = as.factor(col),
         rowF = as.factor(row))

Wir fitten zwei Modelle — eines mit der ursprünglichen Zielvariable und eines mit der
quadratwurzeltransformierten Zielvariable — und vergleichen ihre QQ-Plots nebeneinander:

mod_original <- lm(
  yield ~ gen + rowF + colF,
  data = dat)

plot(mod_original, which = 2)
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mod_sqrt <- lm(
  sqrt(yield) ~ gen + rowF + colF,
  data = dat)

plot(mod_sqrt, which = 2)

Der QQ-Plot des Quadratwurzel-Modells liegt deutlich näher an der Diagonalen, daher
fahren wir mit der ANOVA auf der transformierten Skala fort:

anova(mod_sqrt)

Analysis of Variance Table

Response: sqrt(yield)
          Df  Sum Sq Mean Sq F value  Pr(>F)  
gen        3 10.5123  3.5041  8.8966 0.01256 *
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rowF       3  5.0283  1.6761  4.2555 0.06228 .
colF       3  4.2121  1.4040  3.5647 0.08670 .
Residuals  6  2.3632  0.3939                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Die ANOVA zeigt einen signifikanten Effekt des Genotyps. Für Mittelwertvergleiche mittels
Post-hoc-Tests können die Mittelwerte auf der rücktransformierten (= ursprünglichen) Skala
dargestellt werden, solange klar kommuniziert wird, dass Modellanpassung und
Mittelwertvergleiche auf der Quadratwurzel-Skala durchgeführt wurden:

mod_sqrt %>%
  emmeans(specs = ~ gen, type = "response") %>%
  cld(adjust = "Tukey", Letters = letters)

Note: adjust = "tukey" was changed to "sidak"
because "tukey" is only appropriate for one set of pairwise comparisons

 gen      response   SE df lower.CL upper.CL .group
 Poinsett     20.9 2.87  6     12.0     32.1  a    
 Sprint       25.1 3.14  6     15.3     37.3  a    
 Guardian     30.4 3.46  6     19.5     43.7  ab   
 Dasher       45.3 4.23  6     31.7     61.4   b   

Results are averaged over the levels of: rowF, colF 
Confidence level used: 0.95 
Conf-level adjustment: sidak method for 4 estimates 
Intervals are back-transformed from the sqrt scale 
Note: contrasts are still on the sqrt scale. Consider using
      regrid() if you want contrasts of back-transformed estimates. 
P value adjustment: tukey method for comparing a family of 4 estimates 
significance level used: alpha = 0.05 
NOTE: If two or more means share the same grouping symbol,
      then we cannot show them to be different.
      But we also did not show them to be the same. 

Hier bewirkt type = "response"  die automatische Rücktransformation. Das funktioniert nur,
wenn die Transformation innerhalb der Modellformel angegeben wird (wie hier mit
sqrt(yield)  in lm() ), nicht wenn vorab eine transformierte Spalte erstellt wird.

Alternative Methoden (und ihre Grenzen)
Wenn die Annahmen verletzt sind und eine Transformation nicht hilft, gibt es verschiedene
alternative Methoden. Wir stellen sie hier kurz vor, allerdings mit einem wichtigen Vorbehalt:
Die meisten dieser Alternativen funktionieren nur für die einfachsten
Versuchsdesigns.

Welch-ANOVA setzt keine gleichen Varianzen über die Gruppen voraus:

# Welch's ANOVA (does not assume equal variances)
oneway.test(weight ~ group, data = PlantGrowth, var.equal = FALSE)

    One-way analysis of means (not assuming equal variances)

data:  weight and group
F = 5.181, num df = 2.000, denom df = 17.128, p-value = 0.01739

Robuste Standardfehler behalten das ursprüngliche Modell bei, passen aber die
Standardfehler an, um Heteroskedastizität zu berücksichtigen:
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for (pkg in c("lmtest", "sandwich")) {
  if (!require(pkg, character.only = TRUE)) install.packages(pkg)
}

lmtest::coeftest(mod, vcov = sandwich::vcovHC(mod, type = "HC3"))

t test of coefficients:

            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  5.03200    0.19436 25.8896  < 2e-16 ***
grouptrt1   -0.37100    0.32828 -1.1301  0.26836    
grouptrt2    0.49400    0.24401  2.0245  0.05291 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Nichtparametrische Tests wie der Kruskal-Wallis-Test lockern die
Normalverteilungsannahme, indem sie mit Rängen statt mit Rohwerten arbeiten:

kruskal.test(weight ~ group, data = PlantGrowth)

    Kruskal-Wallis rank sum test

data:  weight by group
Kruskal-Wallis chi-squared = 7.9882, df = 2, p-value = 0.01842

Der Kruskal-Wallis-Test ist nicht vollkommen “annahmefrei” — er setzt weiterhin voraus, dass
die Verteilungen in jeder Gruppe die gleiche Form haben, nur möglicherweise in ihrer Lage
verschoben.

! Diese Alternativen sind in der Praxis selten anwendbar

Alle drei oben gezeigten Methoden funktionieren gut für den hier demonstrierten
einfachen einfaktoriellen Fall. In der Praxis haben die meisten Experimente jedoch
mehrere Behandlungsfaktoren, Blockstrukturen oder zufällige Effekte — und genau
dort stoßen diese Alternativen an ihre Grenzen:

• Welch-ANOVA funktioniert nur für einfaktorielle Designs. Es gibt keine Welch-Version
für zweifaktorielle ANOVA, Split-Plot-Designs oder Modelle mit Blockeffekten.

• Robuste Standardfehler lassen sich breiter anwenden, aber
Standardimplementierungen erstrecken sich nicht sauber auf gemischte Modelle oder
komplexe Varianzstrukturen.

• Nichtparametrische Tests existieren für einige wenige einfache Designs — Kruskal-
Wallis für einfaktorielle Anordnungen, der Friedman-Test für RCBD — aber es gibt
keine einfachen nichtparametrischen Entsprechungen für faktorielle Designs,
unvollständige Blockdesigns oder Split-Plot-Versuche.

In der Praxis bedeutet das: Für die meisten der in diesem Kurs behandelten
Versuchsdesigns (Lateinisches Quadrat, Alpha-Design, Row-Column usw.) sind diese
Alternativen in der Regel nicht verfügbar. Die realistischen Optionen bei verletzten
Annahmen in komplexen Designs sind: (1) Datentransformation, (2) Verwendung
generalisierter linearer Modelle (GLMs — siehe den Ausblick unten) oder (3) Akzeptieren,
dass milde Verletzungen kein Problem darstellen (siehe die Robustheitsdiskussion
unten).
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Wie robust sind lineare Modelle?
Lineare Modelle sind robuster gegenüber Annahmenverletzungen, als häufig gelehrt wird.
Die Forschung hat durchgängig gezeigt:

• ANOVA ist robust gegenüber moderaten Verletzungen sowohl der Normalverteilung als
auch der Varianzhomogenität, besonders bei balancierten und ausreichenden
Stichprobengrößen.

• Der Zentrale Grenzwertsatz stellt sicher, dass Teststatistiken auch bei nicht-normalen
Residuen mit wachsenden Stichprobengrößen gegen ihre erwarteten Verteilungen
konvergieren.

• Leichte Verletzungen sind die Norm, nicht die Ausnahme. Die meisten realen Daten
weichen in gewissem Maße von perfekten Annahmen ab.

Als grobe Richtlinie:

Stichprobengröße pro Gruppe Praktischer Rat

Klein (n < 15) Annahmenverletzungen wirken sich stärker
aus. Exakte Tests oder robuste Methoden in
Betracht ziehen. Diagnostik sorgfältig
interpretieren.

Moderat (15–50) Standard-ANOVA ist in der Regel robust bei
milden Verletzungen. Nur schwerwiegende
Probleme suchen.

Groß (50+) Der Zentrale Grenzwertsatz bietet starken
Schutz. Annahmenprüfung ist weniger
kritisch, aber Diagnoseplots können
dennoch Datenqualitätsprobleme
aufdecken.

Die Kernbotschaft: Man sollte ANOVA-Ergebnisse nicht wegen kleiner Unvollkommenheiten
in Diagnoseplots verwerfen. Der Fokus liegt auf klaren, eindeutigen Verletzungen. Im Zweifel
kann man die Analyse sowohl mit dem Standardansatz als auch mit einer robusten
Alternative durchführen — stimmen die Schlussfolgerungen überein, war die
Annahmenverletzung nicht folgenreich.
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 Weiterführende Ressourcen

Allgemein

• What’s normal anyway? Residual plots are more telling than significance tests when
checking ANOVA assumptions [1]

• Chapter 13 Model Diagnostics in Applied Statistics with R (Dalpiaz, 2022)
• {olsrr} R-Paket-Dokumentation

Normalverteilung

• Für diesen speziellen Zweck werden QQ-Plots auch als Normal probability plots
bezeichnet

Varianzhomogenität

• Dokumentation zu Tests aus {olsrr}

Transformation

• Kapitel 3.3 in C. F. Dormann and I. Kühn [2]

Ausblick: Generalisierte Lineare Modelle
Bisher hat sich dieses Kapitel mit Situationen befasst, in denen die Annahmen eines linearen
Modells annähernd erfüllt sind oder milde Verletzungen toleriert werden können. Aber was ist
mit Daten, die diese Annahmen grundsätzlich nicht erfüllen können?

Man denke an Zähldaten (z.B. Anzahl Insekten pro Pflanze) oder Anteile (z.B. Prozentsatz
gekeimter Samen). Diese Zielvariablen sind inhärent nicht-normal: Zähldaten sind diskret
und können nicht negativ sein, Anteile liegen zwischen 0 und 1. Transformationen (wie
Logarithmus für Zähldaten oder Arcussinus-Quadratwurzel für Anteile) werden seit
Jahrzehnten verwendet und können helfen, lösen aber die grundsätzliche Diskrepanz
zwischen den Daten und der Normalverteilung nicht vollständig auf. Der Versuch, solche
Daten in ein Standard-Linearmodell zu zwängen, führt häufig zu persistenten
Diagnostikproblemen — und das ist ein Zeichen, dass das Modell selbst möglicherweise
nicht das richtige Werkzeug für die Aufgabe ist.

Generalisierte Lineare Modelle (GLMs) lösen dieses Problem, indem sie den Rahmen
linearer Modelle erweitern, um verschiedene Typen von Zielvariablen direkt zu verarbeiten.
Anstatt normalverteilte Residuen vorauszusetzen, erlaubt ein GLM die Spezifikation einer
Verteilung, die zur Natur der Daten passt:

Datentyp Verteilung Beispiel

Zähldaten (0, 1, 2, …) Poisson Anzahl Insekten pro Parzelle

Binäre Ergebnisse (ja/nein) Binomial Gekeimt oder nicht

Anteile (0–1) Beta oder Binomial Infektionsrate

Positive stetige Daten Gamma Ertrag mit Rechtsschiefe

Das Elegante an GLMs ist, dass die Modellannahmen um den tatsächlichen
datengenerierenden Prozess herum aufgebaut sind, anstatt die Daten in einen normalen
Rahmen zu zwängen. Wenn also Diagnoseplots systematische Probleme zeigen, die eine
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Transformation nicht beheben kann, lautet die Antwort oft nicht “die Annahmen stärker
erfüllen”, sondern “ein Modell verwenden, dessen Annahmen zu den Daten passen”.

GLMs verwenden dieselbe R-Syntax, die man bereits kennt — glm()  statt lm()  — und sie

integrieren sich mit denselben Werkzeugen für ANOVA-artige Auswertung ( anova() ,
emmeans() ), Blockstrukturen und faktorielle Designs. Eine ausführliche Behandlung von
GLMs geht über den Rahmen dieses Kapitels hinaus, aber es ist gut zu wissen, dass sie als
prinzipientreue Lösung für Daten existieren, die nicht in den Rahmen linearer Modelle
passen.

 Zusammenfassung

1. Mit plot(mod)  beginnen — der Vier-Panel-Diagnoseplot bietet eine schnelle visuelle

Prüfung der wichtigsten Annahmen. Alternativ kann man check_model(mod)  aus
{easystats} für einen umfassenderen Überblick verwenden.

2. Plots statt Tests zur Annahmenprüfung verwenden. Statistische Tests auf
Normalverteilung oder Varianzhomogenität führen oft in die Irre, besonders bei kleinen
oder großen Stichproben.

3. Residuen prüfen, nicht Rohdaten. Die Normalverteilung muss an den
Modellresiduen beurteilt werden, nicht an der Zielvariable.

4. Leichte Verletzungen sind meist kein Problem. Lineare Modelle sind robust,
besonders bei ausreichenden Stichprobengrößen.

5. Bei schweren Verletzungen ist die Datentransformation in der Regel das erste und
am breitesten anwendbare Mittel.

6. Alternative Methoden haben Grenzen. Welch-ANOVA, robuste Standardfehler und
nichtparametrische Tests funktionieren nur für die einfachsten Designs. Für komplexe
Versuche kommen Transformation oder GLMs in Frage.

7. Transparent berichten. Den Diagnostikprozess und alle getroffenen Maßnahmen
dokumentieren.
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