
BioMath

1/5

10. Parametrisierte Reports

Ein Template, viele Varianten
Dr. Paul Schmidt

Bisher haben wir unseren Report nur für Adelie-Pinguine erstellt. Aber was, wenn wir
denselben Report für alle drei Pinguinarten möchten? Statt drei separate Dokumente zu
pflegen, können wir Parameter verwenden: Ein Template, das beim Rendern mit
verschiedenen Werten gefüllt wird.

Das Konzept
Ein parametrisierter Report ist wie ein Formular mit Lücken:

1. Das Template definiert Parameter mit Standardwerten
2. Beim Rendern können andere Werte übergeben werden
3. Der Report passt sich automatisch an

Parameter definieren
Parameter werden im YAML-Header unter params:  definiert:

---
title: "Pinguin-Report"
format: docx
params:
  species: "Adelie"
---

Hier ist species  der Parametername und "Adelie"  der Standardwert.

Parameter im Code verwenden
Im R-Code greift man mit params$parametername  auf Parameter zu:

# Daten basierend auf Parameter filtern
selected_penguins <- penguins %>%
  filter(species == params$species) %>%
  drop_na()

Der Fließtext kann ebenfalls Parameter enthalten:
Dieser Report analysiert **Adelie**-Pinguine.

Ein vollständiges Beispiel
Hier ist unser Pinguin-Report als parametrisierte Version:
---
title: "Pinguin-Report"
subtitle: "Adelie-Pinguine"
author: "Forschungsteam"
date: today
format: docx

1



BioMath

2/5

params:
  species: "Adelie"
execute:
  echo: false
  warning: false
  message: false
---

# Einleitung

Dieser Report analysiert **Adelie**-Pinguine aus dem 
Palmer Penguins Datensatz. Der Datensatz umfasst 146 
Individuen dieser Art.

# Deskriptive Statistik

```{r}
#| label: tbl-params-summary
#| tbl-cap: "Zusammenfassung der Messwerte"
selected_penguins %>%
  summarise(
    N = n(),
    `Schnabellänge (mm)` = round(mean(bill_length_mm), 1),
    `Körpermasse (g)` = round(mean(body_mass_g), 0)
  ) %>%
  flextable() %>%
  autofit()
```

# Visualisierung

```{r}
#| label: fig-params-scatter
#| fig-cap: "Schnabelmaße der ausgewählten Pinguinart"
#| fig-width: 5
#| fig-height: 4
ggplot(selected_penguins, aes(x = bill_length_mm, y = bill_depth_mm)) +
  geom_point(alpha = 0.6) +
  labs(
    x = "Schnabellänge (mm)",
    y = "Schnabeltiefe (mm)",
    title = glue::glue("{params$species}-Pinguine")
  ) +
  theme_minimal()
```

Reports mit verschiedenen Parametern rendern
In RStudio
1. Klicke auf den Pfeil neben dem Render-Button
2. Wähle “Render with Parameters…”
3. Ein Dialog öffnet sich, in dem man die Werte ändern kann

Via Kommandozeile
quarto render report.qmd -P species:Gentoo

Mehrere Parameter:
quarto render report.qmd -P species:Chinstrap -P year:2008

2



BioMath

3/5

Programmatisch in R
# Einen Report rendern
quarto::quarto_render(
  input = "report.qmd",
  execute_params = list(species = "Gentoo"),
  output_file = "report_gentoo.docx"
)

Alle Varianten auf einmal rendern
Mit einer Schleife kann man alle Versionen automatisch erzeugen:

library(purrr)

# Alle Pinguinarten
species_list <- c("Adelie", "Chinstrap", "Gentoo")

# Für jede Art einen Report rendern
walk(species_list, function(sp) {
  quarto::quarto_render(
    input = "report.qmd",
    execute_params = list(species = sp),
    output_file = glue::glue("report_{tolower(sp)}.docx")
  )
})

Das erzeugt drei Dateien: report_adelie.docx , report_chinstrap.docx ,
report_gentoo.docx .

Mehrere Parameter
Man kann beliebig viele Parameter definieren:
params:
  species: "Adelie"
  island: "Biscoe"
  min_year: 2007
  include_plots: true

Und im Code:

filtered_data <- penguins %>%
  filter(
    species == params$species,
    island == params$island,
    year >= params$min_year
  )

# Bedingte Ausführung
if (params$include_plots) {
  # Plot-Code hier
}

Parametertypen
Parameter können verschiedene Typen haben:
params:
  species: "Adelie"           # Text
  sample_size: 100            # Zahl

3



BioMath

4/5

  include_plots: true         # Boolean
  islands:                    # Liste
    - Biscoe
    - Dream

Dynamische Titel
Der Titel kann Parameter enthalten:
---
title: "Adelie\-Pinguin\-Analyse"
params:
  species: "Adelie"
---

Oder einfacher im Subtitle:
---
title: "Pinguin-Analyse"
subtitle: "Adelie"
params:
  species: "Adelie"
---

Praktische Anwendungsfälle
Anwendung Parameter

Reports pro Region region , year

Kundenberichte client_name , client_id

Testversionen include_draft_watermark: true

Sprachversionen language: "de"

Datenquellen data_file: "data_2024.csv"

Tipps
Standardwerte sinnvoll setzen
Der Standardwert sollte ein typischer, funktionierender Wert sein — so kann man das
Template einfach testen.

Parameterwerte validieren
Am Anfang des Dokuments prüfen, ob die Parameter gültig sind:

# Prüfen ob Spezies existiert
valid_species <- c("Adelie", "Chinstrap", "Gentoo")

if (!params$species %in% valid_species) {
  stop(glue::glue(
    "Ungültige Spezies: {params$species}. ",
    "Erlaubt sind: {paste(valid_species, collapse = ', ')}"
  ))
}

4



BioMath

5/5

Ausgabedateinamen
Bei der Massenproduktion sinnvolle Dateinamen verwenden:

output_file = glue::glue(
  "report_{params$species}_{Sys.Date()}.docx"
)

 Übung: Parametrisierten Report erstellen

1. Nimm den bisherigen Pinguin-Report
2. Füge einen species -Parameter mit Standardwert “Adelie” hinzu
3. Ersetze alle Stellen, die auf Adelie verweisen, durch params$species
4. Rendere den Report mit verschiedenen Spezies (Adelie, Chinstrap, Gentoo)
5. Bonus: Schreibe eine Schleife, die alle drei Reports automatisch erzeugt

Weiterführende Ressourcen
• Quarto Parameters — Offizielle Dokumentation
• Parameterized Reporting with Quarto — Rendering-Optionen

Was kommt als Nächstes
Im letzten Kapitel werfen wir einen Blick über den Word-Tellerrand: PDF-Export mit Typst,
Präsentationen mit Reveal.js, und HTML-Dokumente — alles mit demselben Quarto-Wissen.

Bibliography

5

https://quarto.org/docs/computations/parameters.html
https://quarto.org/docs/computations/parameters.html#rendering-with-parameters

	Das Konzept
	Parameter definieren
	Parameter im Code verwenden
	Ein vollständiges Beispiel
	Reports mit verschiedenen Parametern rendern
	In RStudio
	Via Kommandozeile
	Programmatisch in R

	Alle Varianten auf einmal rendern
	Mehrere Parameter
	Parametertypen
	Dynamische Titel
	Praktische Anwendungsfälle
	Tipps
	Standardwerte sinnvoll setzen
	Parameterwerte validieren
	Ausgabedateinamen

	Weiterführende Ressourcen
	Was kommt als Nächstes
	Bibliography

