BioMath

1. RIRStudio Grundlagen

Wie benutze ich Uberhaupt R?
Dr. Paul Schmidt

Dieses Kapitel richtet sich hauptsachlich an Menschen, die noch nie mit R gearbeitet haben.
Allerdings kdnnen auch Personen, die R bereits kennen, nitzliche Einblicke gewinnen -
namlich in den Abschnitten, in denen ich betone, wie ich persdnlich R nutze. Bevor du
weitermachst, stelle sicher, dass du R und RStudio installiert hast und dass du das
Einfihrungsvideo zu RStudio angesehen hast — insbesondere solltest du wissen, wie du die
wichtigsten Panels wie die Konsole, den Skripteditor und die Umgebung nutzt.

1 Weitere Quellen

Dies ist vermutlich nicht das beste Tutorial der Welt. Deswegen hier mal eine Liste
anderer R-Tutorials.

In diesen Kapiteln siehst du R-Code in grauen Boxen und die resultierende Ausgabe in
griinen Boxen darunter. Du solltest also auf deinem PC immer das gleiche Ergebnis erzielen
kénnen, wenn du denselben Code wie in den grauen Boxen ausfihrst.

Grundlegende Codeausfuhrung

Du kannst R wie einen Taschenrechner verwenden. Wenn du einfache Operationen schreibst
und ausfuhrst, gibt es das Ergebnis in der Konsole zuriick:

I 2+3

| [11 5

Wie du siehst, erscheint das Ergebnis (also 5)nach [1] . Darauf gehen wir spater genauer
ein, aber fUrs Erste kannst du die [11 ignorieren.

In R spielt es normalerweise keine Rolle, ob und wie viele Leerzeichen du zwischen deine
Zahlen, Operatoren usw. setzt. Daher funktioniert auch folgender Code:

|2 + 3
|[1]5

Es bleibt also deiner personlichen Vorliebe Gberlassen, ob du Leerzeichen vor und nach
Operatoren wie +, - usw. haben mdchtest.

112

https://youtu.be/sQzoQeQ82NI
https://youtu.be/sQzoQeQ82NI
https://github.com/ujjwalkarn/DataScienceR

Q Tipp

Du kannst Kommentare zu deinem Code hinzufligen, indem du das Symbol #

verwendest. In jeder Zeile wird alles nach dem # von R ignoriert. Dies ist nitzlich, da du
dir selbst oder anderen Notizen genau an der relevanten Stelle machen kannst. Zum
Beispiel:

Funktionen

Ahnlich wie in Microsoft Excel kannst du Funktionen in R verwenden. Das erste Beispiel ist
sqrt () , um die Quadratwurzel einer Zahl zu berechnen:

Isqrt(9)
I [1] 3

Genau wie in Excel funktioniert eine Funktion so: Man schreibt den Namen, dann Klammern
() und (meistens) mindestens eine Information in die Klammern. Wenn du dich fragst, wie
eine bestimmte Funktion funktioniert, kannst du jederzeit (auch ohne Internetverbindung) die

Dokumentation, also das Handbuch der jeweiligen Funktion, aufrufen, indem du ein
Fragezeichen vor den Funktionsnamen setzt und es dann ausfihrst:

I ?sqgrt

Wenn das nicht funktioniert, kannst du es mit zwei Fragezeichen versuchen, also ?2sgrt .
Das ist notig, wenn du nach einer Funktion suchst, deren Paket du noch nicht geladen hast.
Spater werden wir klaren, was ein Paket ist.

Die Dokumentation erscheint im Hilfe-Panel in RStudio (siehe Screenshot unten) und enthalt
viele Informationen zur Funktion. Das kann Uberwaltigend wirken, aber es ist wichtig zu
wissen, dass der Aufbau der Dokumentation immer gleich ist: Zuerst kommt eine
Beschreibung, dann Verwendung und Argumente usw. und meistens am Ende Beispielcode.

BioMath

212

Files Plots Packages Help Viewsr Presemtation
-=an oA c
R: Miscellaneous Mathematical Functions - = Find in Topic

MathFun {base} R Documentation

Miscellaneous Mathematical Functions

Description
abs (x) computes the absolute value of x, sgrt (x) computes the (principal) square root ofx, 1/Z.
The naming follows the standard for computer languages such as C or Fortran.
Usage
abs (x
sqrt (x
Arguments

a numeric or compl ex vector or amay.

Details

These are internal generic primitive functions: methods can be defined for them individually or via the Math group
generic. For complex arguments (and the default method), z, aba (z) == Mod(z) and sgrt(z) == z~0.5.

abs (x) retumns an integer vector when x is integer of Logical.

54 methods

Both are S4 generic and members of the Math group generic.

References

Becker, R. A, Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth & Brooks/Cole.

See Also

Arithmecic for simple, log for logarithmic, sin for frigonometric, and Special for special mathematical functions.
‘ploimath’ for the use of sqrt in plot annotation.

Examples

Run examples

require (stats
require (graphi

[Package base version 4.4.2 Index]

Variablen

Neben eingebauten Funktionen kennt R auch bestimmte Dinge wie 7 oder das Alphabet, die

in den eingebauten Konstanten pi und letters gespeichert sind. Beachte, dass diese
keine Klammern haben:

| o
| [1] 3.141593

I letters

[1] ngn o Npw o nenondgn o ngn o ngn vlgvl "hY nin vljvl Wgwom]wonmgpnowpn o vlpvl "q" wpn o ngn
[20] WEW g T g e n lly" non

Q Tipp

Wie schon im oben genannten Video erklart: Wenn du Code aus deinem Skript
ausfuhren willst, kannst du entweder den Button rRun oben rechts im Skripteditor klicken
oder strg + Enter dricken. Wenn du keinen spezifischen Teil markiert hast, wird die

Zeile ausgefihrt, in der dein Cursor steht, und der Cursor springt anschlieend in die
nachste Zeile. Wenn du jedoch einen Teil markiert hast, wird nur dieser Teil ausgefuhrt.

"Macht es einen Unterschied ob ich <- oder = nutze? Die kurze Antwort ist Nein. Die prazisere Antwort

gibt’s in diesem Video.

BioMath

312

https://stat.ethz.ch/R-manual/R-devel/library/base/html/Constants.html
https://youtu.be/oQLcpkDXysM

BioMath

Viel nutzlicher ist es jedoch, eigene Variablen in R zu definieren. Das geschieht mit dem
Zuweisungsoperator <- oder dem Gleichheitszeichen =". Ersteres ist in R Ublicher,
letzteres auch in anderen Programmiersprachen wie Python.

Beispiel: Der folgende Code gibt nichts in der Konsole aus, speichert aber die Zahl 5 in der

Variablen x:
Ix <- 5

Um zu prifen, ob die Variable = erstellt wurde und welchen Wert sie hat, kannst du einfach

x ausfihren:

| =

I[l]5

Wie gesagt, du kannst auch das Gleichheitszeichen = verwenden, um einer Variablen einen
Wert zuzuweisen:

y = 10
y

I [1] 10

Alle definierten Variablen kannst du im Environment-Panel in RStudio sehen. Dieses Panel
zeigt alle bisher definierten Variablen und ihre Werte.

Environment History Connections Tutorial

& B K import - @ 195MiB - &
R = ' B, Global Environment = Q

\ERTEES
X

Y

Eine Variable kann Uberschrieben werden, indem du ihr einen neuen Wert zuweist. Zum
Beispiel, wenn wir nun den Wert 7 an = zuweisen:

IX # aktueller Wert von x

|[1]5

4/12

BioMath

x <=1
b4

| t11 7

Du kannst auch Operationen mit Variablen durchfiihren. Wenn du = und vy wie oben
definiert hast, kannst du sie addieren:

| =+ v
| [1] 17
Das Ergebnis einer Operation kannst du auch in einer neuen Variablen speichern. Zum

Beispiel so:

z <- X ty
Z
I[l] 17

Variablen konnen nicht nur Zahlen enthalten, sondern z.B. auch Texte. Und in der Praxis
solltest du beschreibendere Variablennamen als =, vy oder z verwenden. Zum Beispiel:

mytext <- "Dies ist mein Text"
mytext
I[l] "Dies ist mein Text"

Wie du siehst, schreibt man Texte in Anflihrungszeichen. So erkennt R, dass es sich um Text
(einen sogenannten String) und nicht um eine Variable handelt. Man kann " oder
verwenden, aber man muss am Anfang und Ende denselben Typ verwenden.

5/12

BioMath

Datentypen

Wie du eben gesehen hast, kann R sowohl mit Zahlen als auch mit Text umgehen und noch
mit vielen weiteren Datentypen. Jede Variable speichert nicht nur den Wert, sondern auch

Informationen Giber den Typ der Daten. Mit typeof () kannst du den Datentyp prifen:

Itypeof(x)
I [1] "double"
Itypeof(mytext)

I [1] "character"

x ist vom Typ double und mytext istvom Typ character . Hier eine vereinfachte Ubersicht
einiger Datentypen:

+ Zahlen
> integer /int : ganze Zahl (z. B. 42, -1504)

> numeric/num & double/dbl :reelle Zahl (z. B. 3.74, 0.051795)

» Text

> character / chr : Zeichenketten (z. B. “hallo”, “Zwei Wérter”)
* Faktor

> factor / fct : kategorische Variable mit Levels (z. B. Kontrolle, Behandlung)
» TRUE/FALSE

> logical [logi : logischer Wert (TRUE oder FALSE)

Vektoren

Statt mit einzelnen Zahlen oder Texten arbeiten wir meist mit ganzen Datensatzen. Ein erster
Schritt dorthin ist der Vektor: eine Sequenz von Elementen gleichen Datentyps. Du kannst
dir Vektoren wie eine Spalte in deinem Datensatz vorstellen. Ein Beispiel hatten wir schon:

letters jst ein Vektor mit 26 Zeichen. Mit length () oder str() kannst du dir das
ansehen:

Iienqth(letters)

| t11 26

Istr(letters)

I chr [1:26] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "1" "m" "n" "o" "p"

Beim Ausgeben von letters erscheinen Zahlen in eckigen Klammern, z. B. (11, [20] .

Das sind die Indizes der Elemente im Vektor und das ist auch die (11, die wir vorhin noch
ignoriert haben.

Hier ist ein Screenshot aus RStudio:

6/12

BioMath

Console Terminal Background Jobs

®@. R4.4.2 - C/Users/PSchmidt/BioMath GmbH/Central - BioMal

[1] " np" ve
[7] "hrovy
o
"u

n lld" II.F"
n II'I "
[13] n
[19] "t"
[25] z"

Du kannst mit diesen Indizes auch gezielt Elemente abrufen:

Iletters[B]

I [1] "c"

Eigene Vektoren erzeugst du mit ¢ () und Kommas zwischen den Elementen:

mynumbers <- c(1, 4, 9, 12, 12, 12, 16)
mynumbers

I[l] 1 4 912 12 12 16

mywords <- c("Hakuna", "Matata", "Simba")
mywords

I[l] "Hakuna" "Matata" "Simba"

Funktionen wie sart() oder mean() arbeiten auch mit Vektoren:

Isqrt(mynumbers)
I[l] 1.000000 2.000000 3.000000 3.464102 3.464102 3.464102 4.000000
Imean(mynumbers)

I [1] 9.428571

712

Vergleichsoperatoren

Mit Vergleichsoperatoren kannst du Werte vergleichen. Die wichtigsten sind:

* Gleich (==

* Ungleich (!=)

* Kleiner als (<)

* GroRerals (>)

* Kleiner oder gleich (<=)

* GrolRer oder gleich (>=)
Beispiele:

—
[€)]
|
|
[€)]

3 <4

—
ul
A
1
ul

|5!=5

— —
o N
\”/ \%
(o)}
[y
(o]

BioMath

Funktionsargumente

Bisher hatten die Funktionen, die wir verwendet haben, gemeinsam, dass sie nur eine
Eingabe bendtigten. Die wirklich interessanten Sachen in R passieren mit komplexeren

Funktionen, die mehrere Eingaben bendtigen. Nehmen wir seq() als Beispiel, was einfach
genug erscheint, weil es eine Sequenz von Zahlen generiert:

|seq(1,10)
|[1]12345678910

Wie man sieht, erzeugt die Eingabe von 1 und 10, getrennt durch ein Komma, einen

numerischen Vektor mit Zahlen von 1 bis 10. Wir mochten jedoch, dass man vollstandig
versteht, was hier vor sich geht, weil es sehr bei komplexeren Funktionen hilft.

Man kann die Zahlen vertauschen und die Funktion wird wie erwartet funktionieren:
I seq (10, 1)

|[1]10987654321

Das bedeutet also, dass die erste Eingabe immer der Startpunkt und die zweite immer der
Endpunkt der Sequenz ist, richtig? Nun, ja standardmafig, aber man kann es auch anders
haben, wenn man spezifisch die Namen der Argumente verwendet. Die einzelnen Eingaben
einer Funktion werden Argumente genannt und man kann immer die Reihenfolge der
Argumente und ihre Namen in der Dokumentation einer Funktion nachschlagen.

Wenn man sich 2seq() ansieht, steht dort seq(from = 1, to = 1) , also ist dieses
seq(10, 1) expliziter ausgedrickt: seq(from = 10, to = 1) . Und es gibt sogar ein drittes

Argument by =. Hier ist der Beweis, dass man die Funktion auch mit expliziten
Argumentnamen schreiben kann und sie das exakt gleiche Ergebnis zurlckgibt:

Iseq(from =1, to =10, by = 1)

I[l]12345678910

Nochmals: Wenn man die Argumente nicht so ausschreibt, wird R einfach die
Standardreihenfolge annehmen: Die erste gelieferte Zahl ist from =, die zweite ist to =

und die dritte ist by = - so wurde diese Funktion einfach erstellt/programmiert. Wenn wir
jedoch die Argumentnamen ausschreiben, kdnnen wir sie neu anordnen und jede beliebige
Reihenfolge verwenden:

Iseq(l, 9, 2)

I [1] 1 3579

Iseq(from =1, to =9, by = 2)
Jtii135709

Iseq(from =1, by = 2, to = 9)

|[1]13579

9/12

Iseq(l, 2, O & eepiel b

Kurz gesagt: Wenn man versteht, warum die Beispiele A-C oben das gleiche Ergebnis
produzieren, aber Beispiel D nicht, dann ist man bereit!

10

BioMath

R-Pakete

Jede Funktion, die man jemals in R verwenden wird, ist immer Teil eines R-Pakets. Ein R-
Paket ist eine Sammlung von Funktionen, Daten und Dokumentation.

base R

Die Funktionen, die wir bisher verwendet haben, sind Teil des sogenannten base R. Das ist
die Sammlung von Funktionen/Paketen, die mit jeder Installation von R mitkommt. Selbst
wenn man R gerade erst installiert hat, stehen bereits eine ganze Reihe von Paketen zur
Verfigung, was man im Packages-Panel in RStudio sehen kann. Hier kann man alle
installierten Pakete sehen und auch sehen, welche geladen sind. Ein geladenes Paket wird
mit einem Hakchen davor angezeigt. Wenn man eine Funktion aus einem Paket verwenden
mdchte, muss man das Paket zuerst laden. Wie jedoch bereits gesagt, muss man die base R
Funktionen/Pakete nicht laden, weil sie immer geladen sind, weshalb wir die Funktionen
oben verwenden konnten.

Pakete laden

Um ein Paket zu laden, kann man die library () -Funktion verwenden. Zum Beispiel gibt es

ein Paket namens tools , das standardmaflig auf dem Computer installiert ist, aber nicht

geladen wird. Wenn man eine Funktion aus diesem Paket verwenden mochte, muss man es
zuerst laden.

I library (package name here)

Dieser Befehl muss einmal jedes Mal (!) ausgefuihrt werden, wenn man eine neue R-
Sitzung 6ffnet, was grundsatzlich bedeutet, jedes Mal wenn man RStudio 6ffnet.

Pakete installieren

So richtig glanzt R aber durch die Fahigkeit, zusatzliche Pakete aus externen Quellen zu
installieren. Grundsatzlich kann jeder eine Funktion erstellen, sie in ein Paket packen und
online verfuigbar machen. Einige Pakete sind sehr ausgereift und beliebt - so wurde z.B. das

Paket {ggplot2} 168 Millionen Mal heruntergeladen. Um ein Paket zu installieren, ist der
Standardbefehl install.packages ("package name") . Alternativ kann man auch auf den
“Install”-Button oben links im Packages-Tab klicken und dort den package_name eingeben.

I install.packages ("package name here")

Sobald man ein Paket erfolgreich installiert hat, wird es in der Liste der Pakete im Packages-
Tab erscheinen. Es wird jedoch kein Hakchen haben, was bedeutet, dass man es immer

noch mit der library () -Funktion laden muss, wenn man seine Funktionen verwenden
mochte:

» Ein Paket muss nur einmal installiert werden, aber
* Ein Paket muss jedes Mal geladen werden, wenn man eine neue R-Sitzung 6ffnet!

11
11/12

https://cranlogs.r-pkg.org/badges/grand-total/ggplot2

Zusammenfassung

Herzlichen Glickwunsch! Du hast die Einfihrung in die R-Grundlagen abgeschlossen und
die ersten Schritte in die Welt der R-Programmierung gemacht. Du verfligst nun Gber die
grundlegenden Fahigkeiten, die notig sind, um eigenen R-Code zu schreiben und
auszufihren.

1 Wichtige Erkenntnisse

1.

R kann als Taschenrechner mit Operationen wie Addition (+), Subtraktion (-),
Multiplikation (*) und Division (/) verwendet werden.

Variablen erméglichen es, Werte fiir spatere Verwendung zu speichern:

* Man verwendet den Zuweisungsoperator (<-) oder das Gleichheitszeichen (=), um

Variablen zu erstellen
< Variablennamen sollten ihren Inhalt beschreiben
» Variablen kénnen verschiedene Datentypen (Zahlen, Text, etc.) enthalten

Funktionen sind wichtige Werkzeuge in R:

 Sie fuhren spezifische Aufgaben mit Eingaben (Argumenten) aus
* Man kann auf die Funktionsdokumentation mit 2function_name zugreifen
» Argumente kdnnen nach Position oder nach Namen spezifiziert werden

. R hat mehrere wichtige Datenstrukturen:

» Vektoren speichern mehrere Werte des gleichen Typs
* Man greift auf Vektorelemente mit eckigen Klammern zu (z.B. vector[3])

* Man erstellt Vektoren mit der c () -Funktion

Vergleichsoperatoren wie ==, !'=, <, > geben logische Werte (TRUE/FALSE)
zuruck

R-Pakete erweitern die Funktionalitat:

* Man installiert Pakete einmal mit install.packages ("package name")

* Man Iadt Pakete in jeder Sitzung mit library (package name)
* Base R enthalt viele eingebaute Funktionen und Pakete

Man verwendet Kommentare mit # , um Code zu dokumentieren und verstandlicher
zZU machen

1 Weitere Quellen

Siehe auch Kapitel 1 Getting started with R and RStudio im Buch “An Introduction to R”

Bibliography

12

BioMath

12/12

https://intro2r.com/chap1.html
https://intro2r.com/

	Grundlegende Codeausführung
	Funktionen
	Variablen

	Datentypen
	Vektoren
	Vergleichsoperatoren
	Funktionsargumente
	R-Pakete
	base R
	Pakete laden
	Pakete installieren

	Zusammenfassung
	Bibliography

