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2. Das Tidyverse

Ein moderner Weg, R zu verwenden - Datenverarbeitung und mehr
Dr. Paul Schmidt

Da wir die absoluten Grundlagen im letzten Abschnitt behandelt haben, sind wir gespannt
darauf, endlich mit echten Tabellen zu arbeiten und nicht nur mit einzelnen Werten und
Vektoren. Und genau das werden wir jetzt tun. Dies ist jedoch auch ein guter Punkt, um über
das Tidyverse zu sprechen.

Das Tidyverse ist nicht nur ein einzelnes, sondern eine Sammlung mehrerer R-Pakete, die
zusammenarbeiten und - einfach ausgedrückt - die Verwendung von R für alle Arten der
Datenverarbeitung gleichzeitig einfacher, schneller und mächtiger machen. Es folgen
mehrere Vergleiche zwischen der Durchführung von Aufgaben mit base R einerseits und mit
dem Tidyverse andererseits. Man muss verstehen, dass R all diese Dinge auch ohne die
Verwendung von Funktionen und Paketen aus dem Tidyverse bewältigen kann - schließlich
existierte R lange Zeit ohne die Tidyverse-Pakete. Das Tidyverse ist jedoch ein sehr
populärer und mächtiger Weg, Dinge zu erledigen, und ich bin nicht der einzige, der es der
base R-Methode vorzieht.

Um alle in diesem Kapitel verwendeten Pakete zu installieren und zu laden, führt man
folgenden Code aus:

# Pakete installieren (nur notwendig, falls noch nicht installiert)
for (pkg in c("tidyverse")) {
  if (!require(pkg, character.only = TRUE)) install.packages(pkg)
}

# Pakete laden
library(tidyverse)

Man bemerkt, dass wir eine ziemlich lange Ausgabe erhalten, wenn wir das Paket namens
Tidyverse laden. Das liegt u.a. daran, dass das Tidyverse nicht nur ein Paket ist, sondern
eine Sammlung mehrerer Pakete. Der library(tidyverse) -Befehl lädt sie alle auf einmal.
Das ist eine sehr praktische Funktion, da wir normalerweise mehrere Pakete aus dem
Tidyverse gleichzeitig verwenden. Daher listet der erste Teil der Ausgabe einfach alle 9
Pakete auf, die geladen wurden. Der zweite Teil über die Konflikte wird später besprochen.
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 Tipp

Wie man oben sehen kann, habe ich ein #  nicht nur zum Schreiben von Kommentaren
verwendet, sondern auch zum “Auskommentieren” von Code. Genauer gesagt habe ich
ein #  vor den install.packages("tidyverse") -Befehl gesetzt, was bedeutet, dass
dieser Befehl nicht ausgeführt wird, wenn man den Code ausführt, aber der Code ist
leicht verfügbar, falls man ihn ausführen muss.

Das ist eine sehr nützliche Funktion in R und vielen anderen Programmiersprachen.
Wenn man einen Befehl ausführen möchte, aber nicht gerade jetzt, kann man ihn
auskommentieren und den Rest des Codes ausführen. Man beachte, dass es sogar eine
Tastenkombination in RStudio zum Auskommentieren von Code gibt: Nachdem man eine
oder sogar mehrere Zeilen Code markiert hat, drückt man Ctrl + Shift + C , um den
Code auszukommentieren. Wenn man dieselbe Kombination erneut drückt, wird der
Code wieder einkommentiert.

Tabellen
Tabelle in base R: data.frame
Für uns sind Tabellen wahrscheinlich die wichtigste Datenstruktur in R. Oft sind die Daten in
einer .xlsx-, .csv- oder ähnlichen Datei gespeichert und man liest sie dann in R ein. Eine
Tabelle in R wird in der base R-Terminologie als data.frame  bezeichnet. Hier ist ein

Beispiel, wie man selbst eine erstellt und in einer Variable namens my_df  speichert:

(In der Praxis erstellt man offensichtlich nicht oft Tabellen manuell, wie unten gezeigt. Wir
werden bald das Importieren von Daten besprechen.)

my_df <- data.frame(
 name = c("Wei", "Priya", "Kwame", "Juan"),
 age = c(25, 30, 35, 28),
 height = c(180, 170, 190, 175)
)

my_df

   name age height
1   Wei  25    180
2 Priya  30    170
3 Kwame  35    190
4  Juan  28    175

Wie man sehen kann, haben wir eine Funktion namens data.frame()  verwendet, um eine

Tabelle mit drei Spalten zu erstellen: name , age  und height . Diese drei funktionieren also

nicht als vordefinierte Argumentnamen wie bei der seq() -Funktion im letzten Abschnitt,
sondern stattdessen als Namen der zu erstellenden Spalten. Außerdem wird der Inhalt jeder
Spalte durch einen Vektor der Länge 4 definiert, sodass letztendlich eine Tabelle mit 3
Spalten und 4 Zeilen erstellt wird.

Man beachte, dass ein data.frame wirklich eine Sammlung von Vektoren ist. Diese Tatsache
hilft dabei zu verstehen, wie man mit Tabellen in R arbeitet. Zur Erinnerung: Ein Vektor ist
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eine Sammlung von Werten desselben Typs. Im obigen Beispiel ist die name -Spalte ein

Vektor von character-Werten, die age -Spalte ist ein Vektor von numerischen Werten und die
height -Spalte ist ebenfalls ein Vektor von numerischen Werten. Man kann versuchen, über
Daten nachzudenken, mit denen man im täglichen Leben arbeitet, und es ist wahrscheinlich,
dass jede Spalte Werte desselben Typs enthält.

Man hat mehrere Möglichkeiten, auf Teile eines data.frame zuzugreifen. Zum Beispiel kann
man auf eine einzelne Spalte zugreifen, indem man den $ -Operator verwendet. Dadurch
wird der einzelne Vektor zurückgegeben, der die Spalte repräsentiert:

my_df$name

[1] "Wei"   "Priya" "Kwame" "Juan" 

Man kann auch die eckigen Klammern ( [] ) verwenden, um bestimmte Teile der Tabelle zu
extrahieren - genau wie wir es mit Vektoren im letzten Abschnitt getan haben. Man muss
jedoch daran denken, dass eine Tabelle zweidimensional ist und daher sowohl die Zeile als
auch die Spalte angeben muss, auf die man zugreifen möchte. Das kann man mit der
[Zeile, Spalte] -Syntax tun. Um zum Beispiel auf das Alter der zweiten Person in der
Tabelle zuzugreifen, kann man verwenden:

my_df[2, "age"] # alternativ: my_df[2, 2] da age die zweite Spalte ist

[1] 30

Schließlich gibt es hier zwei Funktionen, die man typischerweise in jedem R-Tutorial findet,
um die Struktur einer Tabelle zu untersuchen:

str(my_df)

'data.frame':   4 obs. of  3 variables:
 $ name  : chr  "Wei" "Priya" "Kwame" "Juan"
 $ age   : num  25 30 35 28
 $ height: num  180 170 190 175

Zuerst sehen wir, dass der data.frame 4 Beobachtungen (=Zeilen) von 3 Variablen (=Spalten)
hat. Dann erhalten wir eine Art Übersicht über jede Spalte, die uns ihre Namen, Datentypen
und die ersten paar Werte anzeigt (in diesem Fall alle Werte).

summary(my_df)

     name                age            height     
 Length:4           Min.   :25.00   Min.   :170.0  
 Class :character   1st Qu.:27.25   1st Qu.:173.8  
 Mode  :character   Median :29.00   Median :177.5  
                    Mean   :29.50   Mean   :178.8  
                    3rd Qu.:31.25   3rd Qu.:182.5  
                    Max.   :35.00   Max.   :190.0  

Diese Funktion liefert auch Informationen über die Spalten der Tabelle, aber auf eine andere
Weise. Zum Beispiel: für numerische Spalten gibt sie das Minimum, 1. Quartil, Median,
Mittelwert, 3. Quartil und den Maximalwert an.
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Tabelle im Tidyverse: tibble
Alles, was man bisher gesehen hat, ist die base R-Art, mit Tabellen umzugehen. Nun
schauen wir uns an, wie das Tidyverse es macht. Das Tidyverse hat seine eigene
Tabellenstruktur namens tibble . Laut den Autoren ist das tibble “eine moderne
Neuvorstellung des data.frame, die beibehält, was sich als effektiv erwiesen hat, und das
verwirft, was es nicht ist.” Mit anderen Worten, das tibble ist etwas benutzerfreundlicher und
hat einige Vorteile gegenüber dem data.frame. Man beachte, dass es keine völlig separate
Datenstruktur ist, sondern vielmehr eine modifizierte Version des data.frame - und immer
noch auf diesem basiert.

Bevor wir mit tibbles arbeiten können, müssen wir das erforderliche Paket installieren und
laden - was wir am Anfang dieses Kapitels getan haben. Wenn man nach oben zur Liste der
Pakete scrollt, die beim Laden des Tidyverse angezeigt wurde, wird man bemerken, dass
eines davon tibble  hieß. Das ist das Paket, das die tibble-Datenstruktur und alle
dazugehörigen Funktionen bereitstellt.

Hier ist, wie wir dieselbe Tabelle wie oben erstellen würden, aber diesmal als tibble und in
einer Variable namens my_tbl  speichern:

my_tbl <- tibble(
 name = c("Wei", "Priya", "Kwame", "Juan"),
 age = c(25, 30, 35, 28),
 height = c(180, 170, 190, 175)
)

my_tbl

# A tibble: 4 × 3
  name    age height
  <chr> <dbl>  <dbl>
1 Wei      25    180
2 Priya    30    170
3 Kwame    35    190
4 Juan     28    175

Man beachte, dass es bezüglich des Codes wirklich nur einen Unterschied zur base R-Art
der Tabellenerstellung gibt: Wir verwenden die tibble() -Funktion anstelle der
data.frame() -Funktion. Die Ausgabe ist jedoch etwas anders und hier kommen die Vorteile
des tibble zum Tragen. Obwohl es immer noch dieselbe Tabelle in Bezug auf ihren Inhalt ist,
wird das tibble automatisch auf eine benutzerfreundlichere Weise ausgegeben. Um
möglichst alle Vorteile zu zeigen, wird hier beispielhaft ein größerer Datensatz ausgegeben.
Dieser hat 153 Zeilen, 12 Spalten, Fehlwerte ( NA ) und negative Werte:
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Man sieht also:

1. Es gibt eine zusätzliche erste Zeile, die uns über die Anzahl der Zeilen und Spalten
informiert.

2. Es gibt eine zusätzliche Zeile unter den Spaltennamen, die uns über den Datentyp jeder
Spalte informiert.

3. Nur die ersten zehn Datenzeilen werden ausgegeben.
4. Nur die ersten Spalten werden ausgegeben.
5. Fehlende Werte NA  und negative Zahlen werden rot ausgegeben.

All diese kleinen Dinge summieren sich wirklich über die Zeit und machen das Arbeiten mit
tibbles angenehmer als mit data.frames. Schließlich ist zu beachten, dass ein tibble in
seinem Kern immer noch ein data.frame ist und man in den meisten Fällen alles mit einem
tibble machen kann, was man mit einem data.frame machen kann. Hier sind dieselben
Befehle, die wir oben verwendet haben, als Beweis:

my_tbl$name

[1] "Wei"   "Priya" "Kwame" "Juan" 

str(my_tbl)

tibble [4 × 3] (S3: tbl_df/tbl/data.frame)
 $ name  : chr [1:4] "Wei" "Priya" "Kwame" "Juan"
 $ age   : num [1:4] 25 30 35 28
 $ height: num [1:4] 180 170 190 175

summary(my_tbl)
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     name                age            height     
 Length:4           Min.   :25.00   Min.   :170.0  
 Class :character   1st Qu.:27.25   1st Qu.:173.8  
 Mode  :character   Median :29.00   Median :177.5  
                    Mean   :29.50   Mean   :178.8  
                    3rd Qu.:31.25   3rd Qu.:182.5  
                    Max.   :35.00   Max.   :190.0  

Daher gibt es grundsätzlich keinen Nachteil und stattdessen nur Vorteile bei der Verwendung
von tibbles gegenüber data.frames. Und was hier für Tabellen gilt, veranschaulicht auch die
allgemeine Idee des Tidyverse: Es ist nicht unbedingt eine völlig neue Art, Dinge zu tun,
sondern vielmehr eine benutzerfreundlichere und mächtigere Art, Dinge zu tun, die bereits
vorher möglich waren.

 Weitere Quellen

An dieser Stelle möchte ich ein kostenloses Online-Buch empfehlen, das eine großartige
Ressource zum Erlernen des Tidyverse und R im Allgemeinen ist: “R for Data Science
(2e)”. Es wurde von Hadley Wickham, Mine Çetinkaya-Rundel und Garrett Grolemund
geschrieben, die selbst Autoren einiger der wichtigsten Tidyverse-Pakete sind.

Ein neuer Beispieldatensatz
Bevor wir weitermachen, verwerfen wir die kleinen Tabellen, die wir oben erstellt haben, und
verwenden stattdessen einen Datensatz, der mit R geliefert wird. Dieser Datensatz heißt
PlantGrowth  und enthält Daten zum Gewicht von 30 Pflanzen in 3 verschiedenen Gruppen.

Da er sozusagen in R eingebaut ist (genau wie pi ; siehe letztes Kapitel), können wir direkt
über seinen Namen darauf zugreifen. Es ist jedoch ein data.frame und wir möchten
stattdessen mit einem tibble arbeiten. Daher konvertieren wir es mit der as_tibble() -

Funktion in ein tibble und speichern es in einer Variable namens tbl :

tbl <- as_tibble(PlantGrowth)

tbl

# A tibble: 30 × 2
   weight group
    <dbl> <fct>
 1   4.17 ctrl 
 2   5.58 ctrl 
 3   5.18 ctrl 
 4   6.11 ctrl 
 5   4.5  ctrl 
 6   4.61 ctrl 
 7   5.17 ctrl 
 8   4.53 ctrl 
 9   5.33 ctrl 
10   5.14 ctrl 
# ℹ 20 more rows

Wir sehen, dass nicht alle 30 Datenzeilen, sondern stattdessen nur die ersten 10 Zeilen
anzeigt werden und darunter ein “… with 20 more rows” Hinweis steht. Das ist eine sehr
nützliche Funktion beim Arbeiten mit großen Datensätzen.
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Diagramme
Diagramm in base R: plot()
Base R hat eine plot() -Funktion, die gut darin ist, erste Datenvisualisierungen mit sehr
wenig Code zu erstellen. Sie errät, welche Art von Diagramm man sehen möchte, über den
Datentyp der jeweiligen zu plottenden Daten:

plot(tbl$weight) # Streudiagramm der Werte in der Reihenfolge ihres Auftretens
plot(tbl$group) # Balkendiagramm der Häufigkeit jeder Stufe
plot(x = tbl$group, y = tbl$weight) # Boxplot für Werte jeder Stufe

Diagramm im Tidyverse: ggplot()
Ich verwende plot()  jedoch wirklich nur, um einen schnellen ersten Blick auf Daten zu
werfen. Um professionelle Visualisierungen zu erhalten, verwende ich immer das Tidyverse-
Paket {ggplot2}  und seine Funktion ggplot() . Es scheint, als könnte es jedes vorstellbare
Diagramm erstellen. Seine hohe Leistungsfähigkeit geht jedoch mit dem Preis einer langen
Lernkurve einher. Daher verweise ich vorerst nur auf zusätzliche Ressourcen und werde in
den nächsten Abschnitten einige Grundlagen behandeln. Als Appetitanreger ist hier jedoch
ein Screenshot einiger mit ggplot erstellter Diagramme von Cédric Scherer:
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 Weitere Quellen

• How I use ggplot2
• ggplot2 extensions gallery
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Der Pipe-Operator
Der Pipe-Operator ( %>%  oder |> ) “veränderte völlig die Art, wie wir in R programmieren,
und machte es einfacher und lesbarer” (Álvarez, 2001). Wir haben angefangen, die Pipe als
%>%  aus dem {dplyr}-Paket zu verwenden¹. Seit dem 18. Mai 2021 (= R 4.1.0) ist die Pipe

jedoch offiziell Teil von Base R - obwohl als |>  geschrieben. Man beachte, dass es einige

Unterschiede zwischen %>%  und |>  gibt - mehr dazu findet man z.B. hier, hier oder hier.

Um zu verstehen, was ihn so großartig macht, müssen wir anfangen, mehr als eine Funktion
gleichzeitig zu verwenden. Bisher haben wir Funktionen nur einzeln verwendet. Im wirklichen
Leben wird man jedoch oft feststellen, dass man mehrere Funktionen kombinieren muss.

Als Beispiel nehmen wir an, wir haben drei Zahlen 1, 4 und 10 (d.h. einen Vektor
c(1, 4, 10) ) und wir möchten (i) ihre Quadratwurzel nehmen, dann (ii) den Mittelwert
dieser Werte ermitteln und (iii) die Quadratwurzel dieses Mittelwerts nehmen. Schließlich
möchten wir das Ergebnis in einer Variable namens result  speichern.

 Übung: Mehrere Funktionen kombinieren

Bevor du weiterliest: Versuche dies mit dem bereits vorhandenen Wissen zu erreichen,
d.h. ohne den Pipe-Operator.

 Lösungsvorschlag

Siehe die folgenden drei Abschnitte für verschiedene Lösungsansätze.

Lösung 1: Zwischenergebnisse
Eine Möglichkeit, unser Ziel hier zu erreichen, ist es schrittweise zu tun und jedes
Zwischenergebnis in einer Variable zu speichern. Das ist ein sehr häufiger Ansatz in der
Programmierung und wird “schrittweiser” oder “iterativer” Ansatz genannt. So würde es in R
aussehen:

x <- c(1, 4, 10)
step1 <- sqrt(x) # Schritt 1: Quadratwurzel nehmen
step2 <- mean(step1) # Schritt 2: Mittelwert ermitteln
result <- sqrt(step2) # Schritt 3: Quadratwurzel des Mittelwerts nehmen
result

[1] 1.433211

Das funktioniert perfekt und es ist leicht zu lesen, da wir jeden Schritt sehen können. Es
braucht jedoch auch ziemlich viel Code und erstellt Variablen, die uns nicht wirklich
interessieren.

¹Aber es war nicht das erste Paket, das es verwendete. Dieser Blogpost hat eine schöne
Zusammenfassung der Geschichte des Pipe-Operators in R.
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Lösung 2: Verschachtelte Funktionen
Eine andere Möglichkeit, dasselbe Ergebnis zu erreichen, ist die Verwendung
verschachtelter Funktionen - genau wie man es in Microsoft Excel tun würde. Das bedeutet,
dass wir eine Funktion in eine andere Funktion setzen:

x <- c(1, 4, 10)
result <- sqrt(mean(sqrt(x)))
result

[1] 1.433211

Der offensichtliche Vorteil ist, dass es weniger Code braucht und keine unnötigen Variablen
erstellt. Es ist jedoch auch weniger lesbar, weil man von innen nach außen lesen muss. Das
ist bei einfachen Funktionen wie dieser kein Problem, aber es kann bei komplexeren
Funktionen sehr verwirrend werden.

Lösung 3: Der Pipe-Operator
Dies kombiniert die Vorteile beider obigen Ansätze, da er (i) es ermöglicht, Funktionen von
links nach rechts / oben nach unten zu schreiben und somit in der Reihenfolge, in der sie
ausgeführt werden und wie man über sie denkt, und (ii) keine zusätzlichen Variablen für
Zwischenschritte erstellt:

x <- c(1, 4, 10)
result <- x %>% sqrt() %>% mean() %>% sqrt()
result

[1] 1.433211

Man kann es sich so vorstellen: Etwas (in diesem Fall x ) geht in die Pipe und wird zur

nächsten Funktion sqrt()  geleitet. Standardmäßig nimmt diese Funktion das, was aus der
vorherigen Pipe herauskam, und setzt es als ihr erstes Argument ein. Das passiert bei jeder
Pipe.

Vielleicht hilft es zu erkennen, dass diese beiden identische Dinge tun:

• sqrt(9)

• 9 %>% sqrt()

 Tipp

Die Tastenkombination zum Schreiben von %>%  in RStudio ist CTRL+SHIFT+M.
Tastenkombinationen können in RStudio angepasst werden, wie hier beschrieben.
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dplyr-Verben
Wir haben nun eine Vorstellung davon, wie das Erstellen von Tabellen, Diagrammen und
generell das Programmieren schöner ist, wenn man das Tidyverse verwendet. Ein weiterer
sehr wichtiger Teil des Tidyverse ist das Paket {dplyr} . Dieses Paket stellt eine Reihe von
Funktionen bereit, die sehr nützlich für die Datenmanipulation sind. Diese Funktionen werden
oft als “Verben” bezeichnet, weil sie beschreiben, was man mit seinen Daten machen
möchte. Direkt aus der Dokumentation übernommen:

{dplyr} ist eine Grammatik der Datenmanipulation, die eine konsistente Reihe von
Verben bereitstellt, die dabei helfen, die häufigsten Herausforderungen der
Datenmanipulation zu lösen:

• mutate()  fügt neue Variablen hinzu, die Funktionen bestehender Variablen sind.

• select()  wählt Variablen basierend auf ihren Namen aus.

• filter()  wählt Fälle basierend auf ihren Werten aus.

• summarise()  reduziert mehrere Werte auf eine einzige Zusammenfassung.

• arrange()  ändert die Reihenfolge der Zeilen.

Diese alle kombinieren sich natürlich mit group_by() , was es ermöglicht, jede
Operation “nach Gruppen” durchzuführen. Wenn man neu bei dplyr ist, ist der beste
Startpunkt das Kapitel zur Datentransformation in R for data science.

Nach unserer Erfahrung kann man wirklich den größten Teil der Datenmanipulation vor und
nach der eigentlichen Statistik mit diesen Funktionen erledigen. Mit anderen Worten, es sind
genau diese Funktionen, die die manuelle Arbeit ersetzen können und sollten, die man
möglicherweise gerade in MS Excel macht, um seine Daten zu bearbeiten. In den folgenden
Abschnitten geben wir sehr kurze Beispiele, wie diese Funktionen zu verwenden sind,
während wir immer auf gründlichere Ressourcen verweisen.

Bevor wir anfangen, sie zu verwenden, erstellen wir einige Spielzeugdatensätze, mit denen
es schön zu arbeiten ist. Bitte ignoriert, dass wir einige der unten verwendeten Funktionen
noch nicht eingeführt haben. Wir werden sie in den nächsten Abschnitten behandeln. Vorerst
wollen wir nur diese vier Datensätze erstellen, mit denen wir arbeiten können:

dat1 <- as_tibble(PlantGrowth)
dat2 <- dat1 %>% head() # erste 6 Zeilen behalten
dat3 <- dat1 %>% slice(1:4, 11:14, 21:24) # Zeilen 1-4, 11-14 und 21-24 behalten
dat4 <- dat1 %>% slice(1, 2, 11, 12, 21, 22) %>% # Zeilen 1, 2, 11, 12, 21 und 22
behalten
  mutate(var1 = 1:6, var2 = 22:27, var3 = 3:8, var4 = 4:9)
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 Hinweis

Hier ist etwas, was man verstehen muss, bevor wir weitermachen.

Was man oben sieht, ist Code, der 4 neue Datensätze/Objekte/Variablen (dat1 - dat3)
erstellt hat, jeder durch das Nehmen eines anderen Datensatzes und dessen
Manipulation auf irgendeine Weise. Der erste Datensatz ist der eingebaute Datensatz
PlantGrowth , aber als tibble formatiert. Der Grund, warum die manipulierte Version (d.h.

die tibble-Version von PlantGrowth ) dauerhaft als dat1  verfügbar ist, liegt daran, dass

wir den <- -Operator verwendet und diese manipulierte Version in dieser neuen Variable

namens dat1  gespeichert haben. Man beachte weiter, dass wir diese neuen Datensätze

eigentlich nicht sehen. Wenn wir dat1  sehen wollten, müssten wir dat1  (oder
print(dat1) ) ausführen, damit sein Inhalt in die Konsole ausgegeben wird.

In den folgenden Abschnitten werden wir sehr viele Datenmanipulationen durchführen,
weil das ist, was wir lernen werden. Wir werden jedoch eigentlich nie die manipulierten
Datensätze in neuen Variablen speichern. Stattdessen werden wir den Code ohne das
... <-  ausführen und somit immer einfach die manipulierte Version des Datensatzes in
die Konsole ausgeben. Das ist gut für den Zweck zu sehen, was eine Funktion macht. Es
ist jedoch offensichtlich nicht das, was man im wirklichen Leben machen wird. Im
wirklichen Leben wird man immer die manipulierte Version des Datensatzes in einer
neuen Variable speichern.
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select()
Die select() -Funktion ermöglicht es, bestimmte Spalten aus einer Tabelle auszuwählen.
Das ist sehr nützlich, wenn man eine große Tabelle hat und nur mit wenigen Spalten arbeiten
möchte. Das ist also unser Datensatz:

dat4

# A tibble: 6 × 6
  weight group  var1  var2  var3  var4
   <dbl> <fct> <int> <int> <int> <int>
1   4.17 ctrl      1    22     3     4
2   5.58 ctrl      2    23     4     5
3   4.81 trt1      3    24     5     6
4   4.17 trt1      4    25     6     7
5   6.31 trt2      5    26     7     8
6   5.12 trt2      6    27     8     9

Und wenn ich die select() -Funktion verwende, um die Spalte group  auszuwählen, wird sie
eine neue Tabelle mit nur dieser Spalte zurückgeben:

dat4 %>% select(group)

# A tibble: 6 × 1
  group
  <fct>
1 ctrl 
2 ctrl 
3 trt1 
4 trt1 
5 trt2 
6 trt2 

Außerdem kann man mehr als eine Spalte benennen:

dat4 %>% select(group, var2, var4)

# A tibble: 6 × 3
  group  var2  var4
  <fct> <int> <int>
1 ctrl     22     4
2 ctrl     23     5
3 trt1     24     6
4 trt1     25     7
5 trt2     26     8
6 trt2     27     9

 Hinweis

Nochmals eine Erinnerung, dass der Pipe-Operator ( %>% ) hier nicht unbedingt notwendig

ist. Die Funktion select()  funktioniert für sich allein und sie benötigt die Daten als ihr

erstes Argument. Daher könnte man auch select(dat4, group)  oder
select(dat4, group, var2, var4)  schreiben. Wir werden jedoch weiterhin den Pipe-
Operator verwenden, weil er den Code leichter zu lesen und zu verstehen macht -
zumindest auf lange Sicht.
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Man kann sogar mehrere Spalten auf einmal auswählen, indem man den : -Operator

verwendet. Wenn man zum Beispiel alle Spalten von var2  bis var4  auswählen möchte,
kann man das so machen:

dat4 %>% select(group, var2:var4)

# A tibble: 6 × 4
  group  var2  var3  var4
  <fct> <int> <int> <int>
1 ctrl     22     3     4
2 ctrl     23     4     5
3 trt1     24     5     6
4 trt1     25     6     7
5 trt2     26     7     8
6 trt2     27     8     9

Man kann auch den - -Operator verwenden, um bestimmte Spalten auszuschließen. Wenn

man zum Beispiel alle Spalten außer var1  auswählen möchte, kann man das so machen:

dat4 %>% select(-var1)

# A tibble: 6 × 5
  weight group  var2  var3  var4
   <dbl> <fct> <int> <int> <int>
1   4.17 ctrl     22     3     4
2   5.58 ctrl     23     4     5
3   4.81 trt1     24     5     6
4   4.17 trt1     25     6     7
5   6.31 trt2     26     7     8
6   5.12 trt2     27     8     9

Schließlich gibt es mehrere Hilfsfunktionen, die es ermöglichen, Spalten basierend auf ihren
Namen auszuwählen. Wenn man zum Beispiel alle Spalten auswählen möchte, die mit “var”
beginnen, kann man die Hilfsfunktion starts_with()  so verwenden:

dat4 %>% select(starts_with("var"))

# A tibble: 6 × 4
   var1  var2  var3  var4
  <int> <int> <int> <int>
1     1    22     3     4
2     2    23     4     5
3     3    24     5     6
4     4    25     6     7
5     5    26     7     8
6     6    27     8     9

Andere, ähnliche Funktionen sind ends_with() , contains() , matches()  und num_range() .

Es gibt auch Funktionen wie is.numeric() , is.character()  usw., die es ermöglichen,
Spalten basierend auf ihrem Datentyp auszuwählen. Wenn man zum Beispiel alle
numerischen Spalten auswählen möchte, kann man das so machen:

dat4 %>% select(where(~is.numeric(.x)))

# A tibble: 6 × 5
  weight  var1  var2  var3  var4
   <dbl> <int> <int> <int> <int>
1   4.17     1    22     3     4
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2   5.58     2    23     4     5
3   4.81     3    24     5     6
4   4.17     4    25     6     7
5   6.31     5    26     7     8
6   5.12     6    27     8     9

Das sind sehr mächtige Funktionen der select() -Funktion und ermöglichen es, Spalten
basierend auf ihren Namen oder Datentypen auszuwählen, ohne sie alle manuell eingeben
zu müssen. Schließlich gibt es sogar eine Hilfsfunktion namens everything() , die es
ermöglicht, alle Spalten auszuwählen. Das mag zunächst nicht sehr nützlich erscheinen,
aber man könnte sie z.B. verwenden, um Spalten neu zu ordnen, indem man spezifische
Spalten zuerst auswählt und dann alle anderen Spalten danach:

dat4 %>% select(var2, everything())

# A tibble: 6 × 6
   var2 weight group  var1  var3  var4
  <int>  <dbl> <fct> <int> <int> <int>
1    22   4.17 ctrl      1     3     4
2    23   5.58 ctrl      2     4     5
3    24   4.81 trt1      3     5     6
4    25   4.17 trt1      4     6     7
5    26   6.31 trt2      5     7     8
6    27   5.12 trt2      6     8     9

 Weitere Quellen

• 5.4 Select columns with select() in R for data science
• Subset columns using their names and types with select()
• Select variables that match a pattern with starts_with() etc.
• Select variables with a function with where()
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filter()
Die filter() -Funktion ermöglicht es, Zeilen basierend auf bestimmten Bedingungen zu
filtern. Man ist wahrscheinlich damit vertraut aus Excel, wo das auch Filtern genannt wird.

Um etwas zum Filtern zu haben, verwenden wir dat1 , da es 30 Beobachtungen hat. Um nur

die Beobachtungen zu behalten, bei denen das weight  größer als 6 ist, können wir die
filter() -Funktion so verwenden:

dat1 %>% filter(weight > 6)

# A tibble: 4 × 2
  weight group
   <dbl> <fct>
1   6.11 ctrl 
2   6.03 trt1 
3   6.31 trt2 
4   6.15 trt2 

Man kann eine zweite Bedingung hinzufügen, indem man den & -Operator verwendet, um es
so zu machen, dass sowohl Bedingung 1 ALS AUCH Bedingung 2 wahr sein müssen. Wenn
man zum Beispiel nur die Beobachtungen behalten möchte, bei denen das weight  größer

als 6 UND die group  “trt2” ist, kann man das so machen:

dat1 %>% filter(weight > 6 & group == "trt2")

# A tibble: 2 × 2
  weight group
   <dbl> <fct>
1   6.31 trt2 
2   6.15 trt2 

Falls man verwirrt ist, warum wir ==  anstelle von =  schreiben müssen, geht man zurück
zum Abschnitt “Vergleichsoperatoren” im vorherigen Kapitel und erinnert sich auch daran,
dass ein einzelnes =  zum Zuweisen von Werten an Variablen verwendet wird. Hier weisen

wir jedoch nichts zu, sondern überprüfen, ob der Wert von group  gleich “trt2” ist. Daher

müssen wir den doppelten == -Operator verwenden.

Man kann auch den | -Operator verwenden, um es so zu machen, dass entweder
Bedingung 1 ODER Bedingung 2 wahr sein muss. Wir könnten zum Beispiel nur die
Beobachtungen behalten, bei denen das weight  größer als 6 oder kleiner als 4 ist:

dat1 %>% filter(weight > 6 | weight < 4)

# A tibble: 6 × 2
  weight group
   <dbl> <fct>
1   6.11 ctrl 
2   3.59 trt1 
3   3.83 trt1 
4   6.03 trt1 
5   6.31 trt2 
6   6.15 trt2 
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Die nächsten drei Beispiele werden alle zum gleichen Ergebnis führen, aber es auf
verschiedene Weise erreichen. Es ist fast immer der Fall, dass es nicht nur einen einzigen
Weg gibt, etwas in R zu tun, aber manchmal ist ein Weg effizienter oder leichter zu lesen als
ein anderer. Unser Ziel für alle ist es, alle Beobachtungen zu behalten, die nicht zur
Kontrollgruppe gehören.

Wir könnten es mit dem | -Operator machen, den wir gerade gelernt haben:

dat1 %>% filter(group == "trt1" | group == "trt2")

# A tibble: 20 × 2
   weight group
    <dbl> <fct>
 1   4.81 trt1 
 2   4.17 trt1 
 3   4.41 trt1 
 4   3.59 trt1 
 5   5.87 trt1 
 6   3.83 trt1 
 7   6.03 trt1 
 8   4.89 trt1 
 9   4.32 trt1 
10   4.69 trt1 
11   6.31 trt2 
12   5.12 trt2 
13   5.54 trt2 
14   5.5  trt2 
15   5.37 trt2 
16   5.29 trt2 
17   4.92 trt2 
18   6.15 trt2 
19   5.8  trt2 
20   5.26 trt2 

Für Situationen, in denen man mehrere weitere Bedingungen kombinieren müsste, ist der
%in% -Operator eine effizientere Möglichkeit, dies zu tun. Er ermöglicht es zu überprüfen, ob
ein Wert in einem Vektor von Werten ist. Wir könnten zum Beispiel dasselbe wie oben so
machen:

dat1 %>% filter(group %in% c("trt1", "trt2"))

# A tibble: 20 × 2
   weight group
    <dbl> <fct>
 1   4.81 trt1 
 2   4.17 trt1 
 3   4.41 trt1 
 4   3.59 trt1 
 5   5.87 trt1 
 6   3.83 trt1 
 7   6.03 trt1 
 8   4.89 trt1 
 9   4.32 trt1 
10   4.69 trt1 
11   6.31 trt2 
12   5.12 trt2 
13   5.54 trt2 
14   5.5  trt2 
15   5.37 trt2 
16   5.29 trt2 
17   4.92 trt2 
18   6.15 trt2 
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19   5.8  trt2 
20   5.26 trt2 

Schließlich könnten wir auch den != -Operator verwenden, um zu überprüfen, ob die Gruppe
nicht gleich “ctrl” ist:

dat1 %>% filter(group != "ctrl")

# A tibble: 20 × 2
   weight group
    <dbl> <fct>
 1   4.81 trt1 
 2   4.17 trt1 
 3   4.41 trt1 
 4   3.59 trt1 
 5   5.87 trt1 
 6   3.83 trt1 
 7   6.03 trt1 
 8   4.89 trt1 
 9   4.32 trt1 
10   4.69 trt1 
11   6.31 trt2 
12   5.12 trt2 
13   5.54 trt2 
14   5.5  trt2 
15   5.37 trt2 
16   5.29 trt2 
17   4.92 trt2 
18   6.15 trt2 
19   5.8  trt2 
20   5.26 trt2 

In diesem spezifischen Fall ist die letzte der drei Optionen die kürzeste und am leichtesten
zu lesen.

 Weitere Quellen

• 5.2 Filter rows with filter() in R for data science
• Subset rows using column values with filter()
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arrange()
Die arrange() -Funktion ermöglicht es, die Zeilen einer Tabelle basierend auf den Werten

einer oder mehrerer Spalten zu ordnen (d.h. zu sortieren). Hier verwenden wir dat3 , das 4
Zeilen für jede der drei Gruppen hat:

dat3

# A tibble: 12 × 2
   weight group
    <dbl> <fct>
 1   4.17 ctrl 
 2   5.58 ctrl 
 3   5.18 ctrl 
 4   6.11 ctrl 
 5   4.81 trt1 
 6   4.17 trt1 
 7   4.41 trt1 
 8   3.59 trt1 
 9   6.31 trt2 
10   5.12 trt2 
11   5.54 trt2 
12   5.5  trt2 

Wir können die Tabelle nach der weight -Spalte so sortieren:

dat3 %>% arrange(weight)

# A tibble: 12 × 2
   weight group
    <dbl> <fct>
 1   3.59 trt1 
 2   4.17 ctrl 
 3   4.17 trt1 
 4   4.41 trt1 
 5   4.81 trt1 
 6   5.12 trt2 
 7   5.18 ctrl 
 8   5.5  trt2 
 9   5.54 trt2 
10   5.58 ctrl 
11   6.11 ctrl 
12   6.31 trt2 

Wie man sehen kann, ist sie standardmäßig aufsteigend sortiert. Wenn man sie absteigend
sortieren möchte, kann man die desc() -Hilfsfunktion verwenden und sie um den jeweiligen
Spaltennamen wickeln:

dat3 %>% arrange(desc(weight))

# A tibble: 12 × 2
   weight group
    <dbl> <fct>
 1   6.31 trt2 
 2   6.11 ctrl 
 3   5.58 ctrl 
 4   5.54 trt2 
 5   5.5  trt2 
 6   5.18 ctrl 
 7   5.12 trt2 
 8   4.81 trt1 
 9   4.41 trt1 
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10   4.17 ctrl 
11   4.17 trt1 
12   3.59 trt1 

Man kann auch nach mehreren Spalten sortieren. Man kann zum Beispiel zuerst nach
group  und dann nach weight  sortieren. Das funktioniert hier wegen der doppelten Werte in

der group -Spalte: Die resultierende Tabelle hat die drei Gruppen in alphabetischer

Reihenfolge, aber die Zeilen innerhalb jeder Gruppe sind nach weight  sortiert:

dat3 %>% arrange(group, weight)

# A tibble: 12 × 2
   weight group
    <dbl> <fct>
 1   4.17 ctrl 
 2   5.18 ctrl 
 3   5.58 ctrl 
 4   6.11 ctrl 
 5   3.59 trt1 
 6   4.17 trt1 
 7   4.41 trt1 
 8   4.81 trt1 
 9   5.12 trt2 
10   5.5  trt2 
11   5.54 trt2 
12   6.31 trt2 

Man beachte, dass man hier group , weight  oder beide in die desc() -Funktion einwickeln
könnte, wenn man absteigend sortieren wollte.

Schließlich wäre ein etwas fortgeschritteneres Beispiel das Sortieren nach einer bestimmten
benutzerdefinierten Reihenfolge. Das ist manchmal notwendig, weil man nicht immer z.B.
seine Gruppen in alphabetischer Reihenfolge (oder umgekehrt alphabetischer Reihenfolge)
haben möchte. Nehmen wir an, man möchte nach group  in der Reihenfolge “trt2”, “ctrl”,
“trt1” sortieren. Wir können das erreichen, indem wir unsere benutzerdefinierte Reihenfolge
definieren und die Hilfsfunktion match()  verwenden:

myorder <- c("trt1", "ctrl", "trt2")

dat3 %>% arrange(match(group, myorder))

# A tibble: 12 × 2
   weight group
    <dbl> <fct>
 1   4.81 trt1 
 2   4.17 trt1 
 3   4.41 trt1 
 4   3.59 trt1 
 5   4.17 ctrl 
 6   5.58 ctrl 
 7   5.18 ctrl 
 8   6.11 ctrl 
 9   6.31 trt2 
10   5.12 trt2 
11   5.54 trt2 
12   5.5  trt2 

Und natürlich könnte man sogar weitergehen und z.B. weight innerhalb jeder Gruppe
absteigend sortieren dat3 %>% arrange(match(group, myorder), desc(weight)) .
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 Weitere Quellen

• 5.3 Arrange rows with arrange() in R for data science
• Arrange rows by column values with arrange()
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mutate()
Die mutate() -Funktion ermöglicht es, die Werte bestehender Spalten zu mutieren (d.h. zu

ändern) oder neue Spalten zu erstellen. Verwenden wir wieder dat2 , das nur 6 Zeilen hat,
und erstellen eine neue Spalte namens “kg”, die das Gewicht in Kilogramm enthält (d.h.
angenommen, weight ist in Gramm, also teilen wir durch 1000):

dat2 %>% mutate(kg = weight / 1000)

# A tibble: 6 × 3
  weight group      kg
   <dbl> <fct>   <dbl>
1   4.17 ctrl  0.00417
2   5.58 ctrl  0.00558
3   5.18 ctrl  0.00518
4   6.11 ctrl  0.00611
5   4.5  ctrl  0.0045 
6   4.61 ctrl  0.00461

Wie man sehen kann, funktioniert mutate, indem es (d.h. mit = ) einen neuen Spaltennamen

(in diesem Fall kg ) dem Ergebnis der Operation (in diesem Fall Division durch 1000) auf der

bestehenden Spalte weight  zuweist.

Wir könnten stattdessen genau dieselbe Operation durchführen, aber sie dem Spaltennamen
weight  zuweisen. Das wird die bestehende Spalte weight  mit den neuen Werten

überschreiben oder anders gesagt, es wird die bestehende Spalte weight  mutieren/ändern:

dat2 %>% mutate(weight = weight / 1000)

# A tibble: 6 × 2
   weight group
    <dbl> <fct>
1 0.00417 ctrl 
2 0.00558 ctrl 
3 0.00518 ctrl 
4 0.00611 ctrl 
5 0.0045  ctrl 
6 0.00461 ctrl 

Wir können auch mehrere Spalten gleichzeitig erstellen und sie müssen nicht mit
bestehenden Spalten in Beziehung stehen:

dat2 %>%
  mutate(
    `Name with Space` = "Hello!",
    number10 = 10
  )

# A tibble: 6 × 4
  weight group `Name with Space` number10
   <dbl> <fct> <chr>                <dbl>
1   4.17 ctrl  Hello!                  10
2   5.58 ctrl  Hello!                  10
3   5.18 ctrl  Hello!                  10
4   6.11 ctrl  Hello!                  10
5   4.5  ctrl  Hello!                  10
6   4.61 ctrl  Hello!                  10
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Hier werden also zwei Spalten erstellt und einfach mit demselben Wert für alle Zeilen gefüllt.
Man beachte, dass der Spaltenname Name with Space  Leerzeichen enthält, was in R nicht

erlaubt ist. Wenn man es jedoch wirklich will, kann man Backticks ( ` ) verwenden, um
Spaltennamen mit Leerzeichen oder anderen Sonderzeichen zu erstellen.

Etwas fortgeschrittener, aber sehr mächtig ist die Kombination von mutate()  und
case_when() . Das ermöglicht es, neue Spalten basierend auf Bedingungen zu erstellen. Im

folgenden Beispiel erstellen wir eine Spalte namens size , die die Werte “large”, “small” oder

“normal” enthält, abhängig vom Wert der weight -Spalte. Wenn das Gewicht größer als 5,5
ist, ist es “large”, wenn es kleiner als 4,5 ist, ist es “small” und alles andere ist “normal”:

dat2 %>%
  mutate(size = case_when(
    weight > 5.5 ~ "large",
    weight < 4.5 ~ "small",
    TRUE ~ "normal" # alles andere
  ))

# A tibble: 6 × 3
  weight group size  
   <dbl> <fct> <chr> 
1   4.17 ctrl  small 
2   5.58 ctrl  large 
3   5.18 ctrl  normal
4   6.11 ctrl  large 
5   4.5  ctrl  normal
6   4.61 ctrl  normal

Man kann also sehen, dass die jeweilige Bedingung genauso funktioniert wie bei der
filter() -Funktion. Wir schreiben jedoch dann eine Tilde ( ~ ) und den Wert, den wir der
neuen Spalte zuweisen möchten, wenn die Bedingung wahr ist. Diese Bedingungen werden
tatsächlich in der Reihenfolge ausgewertet, in der sie geschrieben sind. Das bedeutet, dass
wenn die erste Bedingung wahr ist, die zweite Bedingung nicht ausgewertet wird. Für dieses
Beispiel bedeutet das, dass sobald eine Größe auf “large” gesetzt ist, sie nicht auf die
folgenden Bedingungen überprüft wird. Wegen diesem Verhalten können wir einfach ein
TRUE  als letzte Bedingung setzen, da es einfach für alle verbleibenden Werte wahr sein wird
und ihnen den Wert “normal” zuweisen wird.

Man kann so viele Bedingungen haben, wie man möchte, und sie so kompliziert machen, wie
man möchte - z.B. mit & - und | -Operatoren. Das kann viel Zeit und manuelle Arbeit
sparen.

Schließlich ist eine weitere sehr mächtige Funktionskombination, die viel Zeit und manuelle
Arbeit sparen kann, die von mutate()  und across() . Sie ist darauf ausgelegt, dabei zu
helfen, Änderungen an mehreren Spalten gleichzeitig vorzunehmen. Vielleicht muss man
zum Beispiel nicht nur die weight -Spalte in Kilogramm umwandeln, sondern auch die var1

-, var2 -, var3 - und var4 -Spalten. Sicher, man könnte das ohne across()  so machen:

dat4 %>%
  mutate(
    weight = weight / 1000,
    var1 = var1 / 1000,
    var2 = var2 / 1000,
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    var3 = var3 / 1000,
    var4 = var4 / 1000
  )

# A tibble: 6 × 6
   weight group  var1  var2  var3  var4
    <dbl> <fct> <dbl> <dbl> <dbl> <dbl>
1 0.00417 ctrl  0.001 0.022 0.003 0.004
2 0.00558 ctrl  0.002 0.023 0.004 0.005
3 0.00481 trt1  0.003 0.024 0.005 0.006
4 0.00417 trt1  0.004 0.025 0.006 0.007
5 0.00631 trt2  0.005 0.026 0.007 0.008
6 0.00512 trt2  0.006 0.027 0.008 0.009

Man stelle sich jedoch vor, man hätte 500 statt 5 Spalten zu bearbeiten. Es ist viel effizienter,
die across() -Funktion zu verwenden. Hier ist, wie es funktioniert:

dat4 %>% mutate(across(c(weight, var1:var4), ~ .x / 1000))

# A tibble: 6 × 6
   weight group  var1  var2  var3  var4
    <dbl> <fct> <dbl> <dbl> <dbl> <dbl>
1 0.00417 ctrl  0.001 0.022 0.003 0.004
2 0.00558 ctrl  0.002 0.023 0.004 0.005
3 0.00481 trt1  0.003 0.024 0.005 0.006
4 0.00417 trt1  0.004 0.025 0.006 0.007
5 0.00631 trt2  0.005 0.026 0.007 0.008
6 0.00512 trt2  0.006 0.027 0.008 0.009

Ja, das sieht ganz anders aus als die Art, wie wir mutate()  bis hier verwendet haben, aber
es ist immer dieselbe Struktur:

• mutate(across(TEIL1, TEIL2))

• TEIL1: Die Spalten, die man mutieren möchte.
• TEIL2: Die Operation, die man auf diesen Spalten durchführen möchte - mit .x  als

Platzhalter für die Spaltenwerte.

Das Auswählen der Spalten in TEIL1 funktioniert genauso wie bei der select() -Funktion,

also kann man dieselben Hilfsfunktionen wie starts_with() , ends_with() , contains() ,
where(is.numeric())  usw. verwenden. TEIL2 erwartet eine Funktion und in unserem Fall

brauchen wir den ~ -Operator, um R zu sagen, dass es eine Funktion erstellen soll, die die

Eingabe .x  nimmt und durch 1000 teilt.

 Weitere Quellen

• 5.5 Add new variables with mutate() in R for data science
• Create, modify, and delete columns with mutate()
• A general vectorised if with case_when()
• Apply a function (or functions) across multiple columns with across()
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 Übung: dplyr-Verben kombinieren

Verwende dat1  und schreibe eine einzelne Pipe, die folgende Schritte umsetzt (nicht
unbedingt in dieser Reihenfolge):

1. Behalte nur die Zeilen, in denen weight  größer als 5 ist
2. Füge eine neue Spalte namens weight_kg  hinzu, die das Gewicht geteilt durch 1000

enthält
3. Sortiere das Ergebnis absteigend nach weight
4. Behalte nur die Spalten group  und weight_kg

Das Endergebnis sollte ein Tibble mit 2 Spalten und weniger als 30 Zeilen sein.

 Lösungsvorschlag

dat1 %>%
  filter(weight > 5) %>%
  mutate(weight_kg = weight / 1000) %>%
  arrange(desc(weight)) %>%
  select(group, weight_kg)

# A tibble: 17 × 2
   group weight_kg
   <fct>     <dbl>
 1 trt2    0.00631
 2 trt2    0.00615
 3 ctrl    0.00611
 4 trt1    0.00603
 5 trt1    0.00587
 6 trt2    0.0058 
 7 ctrl    0.00558
 8 trt2    0.00554
 9 trt2    0.0055 
10 trt2    0.00537
11 ctrl    0.00533
12 trt2    0.00529
13 trt2    0.00526
14 ctrl    0.00518
15 ctrl    0.00517
16 ctrl    0.00514
17 trt2    0.00512

Hinweis: Die Reihenfolge von filter() , mutate()  und arrange()  könnte geändert

werden, ohne das Ergebnis zu beeinflussen. Allerdings muss select()  am Ende stehen

(oder zumindest nach mutate()  und filter() ), da wir die weight -Spalte für diese
Operationen benötigen.
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summarize()
Die summarize() -Funktion ermöglicht es, eine Tabelle zusammenzufassen, indem man
zusammenfassende Statistiken für eine oder mehrere Spalten berechnet.

Wir verwenden wieder dat1 , das 30 Zeilen hat. Nehmen wir an, wir möchten das mittlere

Gewicht aller Pflanzen im Datensatz berechnen. Das können wir mit der summarize() -
Funktion so machen:

dat1 %>% summarize(mean_weight = mean(weight))

# A tibble: 1 × 1
  mean_weight
        <dbl>
1        5.07

Das wird eine neue Tabelle mit einer einzigen Spalte namens mean_weight  zurückgeben, die
das mittlere Gewicht aller Pflanzen im Datensatz enthält. Man beachte, dass die Syntax
ziemlich ähnlich zu der von mutate()  ist, aber anstatt eine neue Spalte zur bestehenden
Tabelle hinzuzufügen, erstellt sie eine neue Tabelle mit den zusammenfassenden Statistiken.

Bisher ist das eigentlich nicht sehr nützlich, da wir auch einfach das hier hätten machen
können: mean(dat1$weight) , um diese Zahl zu erhalten. Die wahre Macht von summarize()
kommt jedoch ins Spiel, wenn man zusammenfassende Statistiken für mehrere Gruppen
berechnen möchte und summarize()  und die group_by() -Funktion so kombiniert:

dat1 %>%
  group_by(group) %>%
  summarize(mean_weight = mean(weight))

# A tibble: 3 × 2
  group mean_weight
  <fct>       <dbl>
1 ctrl         5.03
2 trt1         4.66
3 trt2         5.53

Wie man sehen kann, erhalten wir sofort das mittlere Gewicht für jede Gruppe. Das liegt
daran, dass die group_by() -Funktion grundsätzlich den Daten sagt, alle folgenden

Funktionen auf jede Gruppe separat anzuwenden. In diesem Fall sagt sie der summarize() -
Funktion, das mittlere Gewicht für jede Gruppe separat zu berechnen. Das kann also viel
Zeit und manuelle Arbeit sparen, wenn man viele Gruppen hat.

Es wird noch besser, wenn man alle anderen deskriptiven Statistiken hinzufügt, die man
berechnen möchte. Wenn man zum Beispiel den Mittelwert, die Standardabweichung, den
Median, das Minimum und das Maximum des Gewichts für jede Gruppe berechnen möchte,
kann man das so machen:

dat1 %>%
  group_by(group) %>%
  summarize(
    mean_weight = mean(weight),
    median_weight = median(weight),
    sd_weight = sd(weight),
    min_weight = min(weight),
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    max_weight = max(weight)
  )

# A tibble: 3 × 6
  group mean_weight median_weight sd_weight min_weight max_weight
  <fct>       <dbl>         <dbl>     <dbl>      <dbl>      <dbl>
1 ctrl         5.03          5.15     0.583       4.17       6.11
2 trt1         4.66          4.55     0.794       3.59       6.03
3 trt2         5.53          5.44     0.443       4.92       6.31

Man kann also grundsätzlich die gesamte deskriptive Statistiktabelle in einem Zug erstellen.

Und nur um sicherzustellen, dass das klar ist: Gruppierung muss nicht nur für eine einzelne
Variable sein. Man kann sehr wohl ein Experiment mit mehreren Faktoren haben und möchte
das mittlere Gewicht für jede Kombination dieser Faktoren berechnen. In diesem Fall kann
man einfach mehr Variablen zur group_by() -Funktion hinzufügen. Wir können einen

solchen zweiten Faktor zu dat3  so hinzufügen:

dat3 %>%
  mutate(factor2 = rep(x = c("A", "B"), times = 6))

# A tibble: 12 × 3
   weight group factor2
    <dbl> <fct> <chr>  
 1   4.17 ctrl  A      
 2   5.58 ctrl  B      
 3   5.18 ctrl  A      
 4   6.11 ctrl  B      
 5   4.81 trt1  A      
 6   4.17 trt1  B      
 7   4.41 trt1  A      
 8   3.59 trt1  B      
 9   6.31 trt2  A      
10   5.12 trt2  B      
11   5.54 trt2  A      
12   5.5  trt2  B      

Und dann in der group_by() -Funktion verwenden:

dat3 %>%
  mutate(factor2 = rep(x = c("A", "B"), times = 6)) %>%
  group_by(group, factor2) %>%
  summarize(mean_weight = mean(weight))

`summarise()` has grouped output by 'group'. You can override using the
`.groups` argument.

# A tibble: 6 × 3
# Groups:   group [3]
  group factor2 mean_weight
  <fct> <chr>         <dbl>
1 ctrl  A              4.68
2 ctrl  B              5.85
3 trt1  A              4.61
4 trt1  B              3.88
5 trt2  A              5.92
6 trt2  B              5.31

Das gibt einem das mittlere Gewicht für jede Kombination von group  und factor2 .
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Schließlich kann man auch die across() -Funktion verwenden, um eine Funktion gleichzeitig
auf mehrere Spalten anzuwenden. Wenn man zum Beispiel den Mittelwert pro Gruppe nicht
nur für die weight -Spalte, sondern für alle numerischen Spalten in den Daten berechnen
möchte, kann man das so machen:

dat4 %>%
  group_by(group) %>%
  summarize(across(where(is.numeric), ~ mean(.x)))

# A tibble: 3 × 6
  group weight  var1  var2  var3  var4
  <fct>  <dbl> <dbl> <dbl> <dbl> <dbl>
1 ctrl    4.88   1.5  22.5   3.5   4.5
2 trt1    4.49   3.5  24.5   5.5   6.5
3 trt2    5.72   5.5  26.5   7.5   8.5

Und ja, wir können weitergehen und mehr als nur Mittelwerte berechnen. Wenn man zum
Beispiel den Mittelwert und die Standardabweichung für alle numerischen Spalten in den
Daten berechnen möchte, kann man das so machen:

dat4 %>%
  group_by(group) %>%
  summarize(across(where(is.numeric), list(mean = ~ mean(.x), sd = ~ sd(.x))))

# A tibble: 3 × 11
  group weight_mean weight_sd var1_mean var1_sd var2_mean var2_sd var3_mean
  <fct>       <dbl>     <dbl>     <dbl>   <dbl>     <dbl>   <dbl>     <dbl>
1 ctrl         4.88     0.997       1.5   0.707      22.5   0.707       3.5
2 trt1         4.49     0.453       3.5   0.707      24.5   0.707       5.5
3 trt2         5.72     0.841       5.5   0.707      26.5   0.707       7.5
# ℹ 3 more variables: var3_sd <dbl>, var4_mean <dbl>, var4_sd <dbl>

In Ordnung, man hat es geschafft - die dplyr-Einführung ist vorbei. Man kennt jetzt viele der
wichtigsten Funktionen des dplyr-Pakets und wie man sie verwendet. Offensichtlich ist es
ziemlich überwältigend und niemand verlangt, dass man sich all das auswendig merkt.
Stattdessen hoffen wir, dass man sehen kann, wie mächtig diese Funktionen sind und wie
sie viel Zeit und manuelle Arbeit sparen können.

 Weitere Quellen

• 5.6 Grouped summaries with summarise() in R for data science
• Summarise each group to fewer rows with summarise()
• Group by one or more variables with group_by()
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! Warnung

Es gibt eine letzte, aber wichtige Information: Sobald man group_by()  auf eine Tabelle

angewendet hat, bleibt sie gruppiert, es sei denn, man verwendet danach ungroup()

darauf. Jede Funktion, die man auf einen Datensatz anwendet, der durch group_by()
gegangen ist, wird also separat pro Gruppe angewendet. Das verursachte oben keine
Probleme, da wir nie etwas anderes getan haben, als die summarize() -Funktion auf die
gruppierten Daten anzuwenden, aber man muss sich dessen bewusst sein, wenn man
die gruppierten (Zusammenfassungs-)Ergebnisse für weitere Schritte verwendet.
Andernfalls kann das zu unerwarteten Ergebnissen führen. Man kann ein Beispiel und
weitere Ressourcen zu solchen unbeabsichtigten Ergebnissen hier finden.
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Zusammenfassung
Gut gemacht! Man hat die grundlegenden Tidyverse-Fähigkeiten erworben, auf die
Datenwissenschaftler täglich angewiesen sind, um unordentliche Daten in saubere,
analysierbare Datensätze zu verwandeln.

 Wichtige Erkenntnisse

1. Das Tidyverse ist eine Sammlung von R-Paketen, die für die Datenwissenschaft
entwickelt wurden und die Datenmanipulation einfacher, schneller und mächtiger
macht.

2. Tibbles sind die moderne Neuvorstellung von data.frames im Tidyverse und bieten
verbesserte Anzeigeformatierung und konsistenteres Verhalten.

3. Der Pipe-Operator ( %>%  oder |> ) ist ein mächtiges Werkzeug, das Code lesbarer
macht, indem er es ermöglicht, Operationen in einer logischen Links-nach-rechts-
Sequenz zu verketten.

4. Die zentralen dplyr-“Verben” bieten eine konsistente Grammatik für die
Datenmanipulation:

• select() : Bestimmte Spalten nach Name, Position oder Muster auswählen
• filter() : Zeilen extrahieren, die bestimmte Bedingungen erfüllen
• arrange() : Daten basierend auf Spaltenwerten sortieren
• mutate() : Neue Spalten erstellen oder bestehende modifizieren
• summarize() : Zusammenfassende Statistiken berechnen

5. Diese Verben werden besonders mächtig, wenn sie kombiniert werden mit:

• group_by() : Operationen separat innerhalb von Gruppen durchführen
• across() : Dieselbe Funktion auf mehrere Spalten anwenden
• Hilfsfunktionen wie starts_with() , contains()  und where()

6. Man sollte daran denken, ungroup()  nach gruppierten Operationen zu verwenden,
um unerwartete Ergebnisse in nachfolgenden Analyseschritten zu vermeiden.
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