BioMath

2. Das Tidyverse

Ein moderner Weg, R zu verwenden - Datenverarbeitung und mehr
Dr. Paul Schmidt

Da wir die absoluten Grundlagen im letzten Abschnitt behandelt haben, sind wir gespannt
darauf, endlich mit echten Tabellen zu arbeiten und nicht nur mit einzelnen Werten und
Vektoren. Und genau das werden wir jetzt tun. Dies ist jedoch auch ein guter Punkt, um Gber
das Tidyverse zu sprechen.

Das Tidyverse ist nicht nur ein einzelnes, sondern eine Sammlung mehrerer R-Pakete, die
zusammenarbeiten und - einfach ausgedrtickt - die Verwendung von R flir alle Arten der
Datenverarbeitung gleichzeitig einfacher, schneller und machtiger machen. Es folgen
mehrere Vergleiche zwischen der Durchfihrung von Aufgaben mit base R einerseits und mit
dem Tidyverse andererseits. Man muss verstehen, dass R all diese Dinge auch ohne die
Verwendung von Funktionen und Paketen aus dem Tidyverse bewaltigen kann - schlief3lich
existierte R lange Zeit ohne die Tidyverse-Pakete. Das Tidyverse ist jedoch ein sehr
popularer und machtiger Weg, Dinge zu erledigen, und ich bin nicht der einzige, der es der
base R-Methode vorzieht.

Um alle in diesem Kapitel verwendeten Pakete zu installieren und zu laden, fiihrt man
folgenden Code aus:

for (pkg in c("tidyverse")) {
if (!require (pkg, character.only = TRUE)) install.packages (pkqg)
}

library (tidyverse)

Man bemerkt, dass wir eine ziemlich lange Ausgabe erhalten, wenn wir das Paket namens
Tidyverse laden. Das liegt u.a. daran, dass das Tidyverse nicht nur ein Paket ist, sondern

eine Sammlung mehrerer Pakete. Der library(tidyverse) -Befehl |adt sie alle auf einmal.

Das ist eine sehr praktische Funktion, da wir normalerweise mehrere Pakete aus dem
Tidyverse gleichzeitig verwenden. Daher listet der erste Teil der Ausgabe einfach alle 9
Pakete auf, die geladen wurden. Der zweite Teil Uber die Konflikte wird spater besprochen.

1/30

BioMath

Q Tipp

Wie man oben sehen kann, habe ich ein # nicht nur zum Schreiben von Kommentaren
verwendet, sondern auch zum “Auskommentieren” von Code. Genauer gesagt habe ich
ein # vorden install.packages ("tidyverse") -Befehl gesetzt, was bedeutet, dass

dieser Befehl nicht ausgeflihrt wird, wenn man den Code ausfiihrt, aber der Code ist
leicht verfugbar, falls man ihn ausfiihren muss.

Das ist eine sehr nitzliche Funktion in R und vielen anderen Programmiersprachen.
Wenn man einen Befehl ausfiihren méchte, aber nicht gerade jetzt, kann man ihn
auskommentieren und den Rest des Codes ausfihren. Man beachte, dass es sogar eine
Tastenkombination in RStudio zum Auskommentieren von Code gibt: Nachdem man eine

oder sogar mehrere Zeilen Code markiert hat, driickt man ctrl + shift + C,umden

Code auszukommentieren. Wenn man dieselbe Kombination erneut driickt, wird der
Code wieder einkommentiert.

Tabellen

Tabelle in base R: data.frame

Fir uns sind Tabellen wahrscheinlich die wichtigste Datenstruktur in R. Oft sind die Daten in
einer .xIsx-, .csv- oder ahnlichen Datei gespeichert und man liest sie dann in R ein. Eine

Tabelle in R wird in der base R-Terminologie als data.frame bezeichnet. Hier ist ein

Beispiel, wie man selbst eine erstellt und in einer Variable namens my_df speichert:

(In der Praxis erstellt man offensichtlich nicht oft Tabellen manuell, wie unten gezeigt. Wir
werden bald das Importieren von Daten besprechen.)

my df <- data.frame (

name = c("Wei", "Priya", "Kwame", "Juan"),
age = c(25, 30, 35, 28),

height = ¢ (180, 170, 190, 175)

)

my df

name age height

1 Wei 25 180
2 Priya 30 170
3 Kwame 35 190
4 Juan 28 175

Wie man sehen kann, haben wir eine Funktion namens data.frame () verwendet, um eine
Tabelle mit drei Spalten zu erstellen: name , age und height . Diese drei funktionieren also

nicht als vordefinierte Argumentnamen wie bei der seq() -Funktion im letzten Abschnitt,

sondern stattdessen als Namen der zu erstellenden Spalten. Auferdem wird der Inhalt jeder
Spalte durch einen Vektor der Lange 4 definiert, sodass letztendlich eine Tabelle mit 3
Spalten und 4 Zeilen erstellt wird.

Man beachte, dass ein data.frame wirklich eine Sammlung von Vektoren ist. Diese Tatsache
hilft dabei zu verstehen, wie man mit Tabellen in R arbeitet. Zur Erinnerung: Ein Vektor ist

2/30

BioMath

eine Sammlung von Werten desselben Typs. Im obigen Beispiel ist die name -Spalte ein
Vektor von character-Werten, die age -Spalte ist ein Vektor von numerischen Werten und die

height -Spalte ist ebenfalls ein Vektor von numerischen Werten. Man kann versuchen, Uber
Daten nachzudenken, mit denen man im taglichen Leben arbeitet, und es ist wahrscheinlich,
dass jede Spalte Werte desselben Typs enthalt.

Man hat mehrere Méglichkeiten, auf Teile eines data.frame zuzugreifen. Zum Beispiel kann
man auf eine einzelne Spalte zugreifen, indem man den s -Operator verwendet. Dadurch
wird der einzelne Vektor zurlickgegeben, der die Spalte reprasentiert:

Imy_dename
I[l] "Wei "Priya" "Kwame" "Juan"

Man kann auch die eckigen Klammern ([1) verwenden, um bestimmte Teile der Tabelle zu

extrahieren - genau wie wir es mit Vektoren im letzten Abschnitt getan haben. Man muss
jedoch daran denken, dass eine Tabelle zweidimensional ist und daher sowohl die Zeile als
auch die Spalte angeben muss, auf die man zugreifen mochte. Das kann man mit der

[zeile, spalte] -Syntax tun. Um zum Beispiel auf das Alter der zweiten Person in der
Tabelle zuzugreifen, kann man verwenden:

Imy_df[Z, "age"]

| [1] 30

SchlieBlich gibt es hier zwei Funktionen, die man typischerweise in jedem R-Tutorial findet,
um die Struktur einer Tabelle zu untersuchen:

Istr(my_df)
'data.frame': 4 obs. of 3 variables:
$ name : chr "Wei" "Priya" "Kwame" "Juan"
$ age : num 25 30 35 28

$ height: num 180 170 190 175

Zuerst sehen wir, dass der data.frame 4 Beobachtungen (=Zeilen) von 3 Variablen (=Spalten)
hat. Dann erhalten wir eine Art Ubersicht Uber jede Spalte, die uns ihre Namen, Datentypen
und die ersten paar Werte anzeigt (in diesem Fall alle Werte).

Isummary(my_df)

name age height
Length:4 Min. :25.00 Min. :170.0
Class :character 1st Qu.:27.25 1st Qu.:173.8
Mode :character Median :29.00 Median :177.5
Mean :29.50 Mean :178.8
3rd Qu.:31.25 3rd Qu.:182.5
Max. :35.00 Max. :190.0

Diese Funktion liefert auch Informationen Uber die Spalten der Tabelle, aber auf eine andere
Weise. Zum Beispiel: fir numerische Spalten gibt sie das Minimum, 1. Quartil, Median,
Mittelwert, 3. Quartil und den Maximalwert an.

3/30

BioMath

Tabelle im Tidyverse: tibble

Alles, was man bisher gesehen hat, ist die base R-Art, mit Tabellen umzugehen. Nun
schauen wir uns an, wie das Tidyverse es macht. Das Tidyverse hat seine eigene
Tabellenstruktur namens tibble . Laut den Autoren ist das tibble “eine moderne
Neuvorstellung des data.frame, die beibehélt, was sich als effektiv erwiesen hat, und das
verwirft, was es nicht ist.” Mit anderen Worten, das tibble ist etwas benutzerfreundlicher und
hat einige Vorteile gegenuber dem data.frame. Man beachte, dass es keine vollig separate
Datenstruktur ist, sondern vielmehr eine modifizierte Version des data.frame - und immer
noch auf diesem basiert.

Bevor wir mit tibbles arbeiten kbnnen, missen wir das erforderliche Paket installieren und
laden - was wir am Anfang dieses Kapitels getan haben. Wenn man nach oben zur Liste der
Pakete scrollt, die beim Laden des Tidyverse angezeigt wurde, wird man bemerken, dass

eines davon tibble hiel. Das ist das Paket, das die tibble-Datenstruktur und alle
dazugehorigen Funktionen bereitstellt.

Hier ist, wie wir dieselbe Tabelle wie oben erstellen wirden, aber diesmal als tibble und in
einer Variable namens my_tbl speichern:
my tbl <- tibble (

name = c("Wei", "Priya", "Kwame", "Juan"),

age = c(25, 30, 35, 28),

height c(180, 170, 190, 175)
)

my tbl

A tibble: 4 x 3

name age height
<chr> <dbl> <dbl>
1 Wei 25 180
2 Priya 30 170
3 Kwame 35 190
4 Juan 28 175

Man beachte, dass es bezlglich des Codes wirklich nur einen Unterschied zur base R-Art
der Tabellenerstellung gibt: Wir verwenden die tibble () -Funktion anstelle der

data.frame () -Funktion. Die Ausgabe ist jedoch etwas anders und hier kommen die Vorteile

des tibble zum Tragen. Obwohl es immer noch dieselbe Tabelle in Bezug auf ihren Inhalt ist,
wird das tibble automatisch auf eine benutzerfreundlichere Weise ausgegeben. Um
moglichst alle Vorteile zu zeigen, wird hier beispielhaft ein gréRerer Datensatz ausgegeben.

Dieser hat 153 Zeilen, 12 Spalten, Fehlwerte (N2) und negative Werte:

4/30

BioMath

A tibble: 153 x 12
ozone_1 solar_r_2 wind_3 temp_4 month_5 day_6 ozone_7

L prap | N Y P L . g iy
<int> <dbl> <int> <int> <int> <dbl>

198 7.4
118 8
149 12.
313 11.
14.
14.
8.
99 13.
19 20.
194 8.
i 143 more rows

O 00 <~ oo kB w N

1
2
3
4
5
6
7
8
9

Oh = 0 O O Wl O
L% L. ¥ DV n LY o B o BLY S BN B ¥ RV

=
@
=
@

i 5 more variables: solar_r_8 <int>, wind_9 <dbl>,

temp_1@ <int>, month_11 <int>, day <int>
i Use print(n = ...)" Se rows

Man sieht also:

1. Es gibt eine zusatzliche erste Zeile, die uns Uber die Anzahl der Zeilen und Spalten
informiert.

2. Es gibt eine zusatzliche Zeile unter den Spaltennamen, die uns Utber den Datentyp jeder
Spalte informiert.

3. Nur die ersten zehn Datenzeilen werden ausgegeben.

4. Nur die ersten Spalten werden ausgegeben.

3. Fehlende Werte N2 und negative Zahlen werden rot ausgegeben.

All diese kleinen Dinge summieren sich wirklich tber die Zeit und machen das Arbeiten mit
tibbles angenehmer als mit data.frames. Schlielich ist zu beachten, dass ein tibble in
seinem Kern immer noch ein data.frame ist und man in den meisten Fallen alles mit einem
tibble machen kann, was man mit einem data.frame machen kann. Hier sind dieselben
Befehle, die wir oben verwendet haben, als Beweis:

Imy_tbl$name
I[l] "Wei" "Priya" "Kwame" "Juan"
Istr(my_tbl)

tibble [4 x 3] (S3: tbl df/tbl/data.frame)
$ name : chr [1:4] "Wei" "Priya" "Kwame" "Juan"
S age : num [1:4] 25 30 35 28
$ height: num [1:4] 180 170 190 175

Isummary(my_tbl)

5/30

name age height
Length:4 Min. 225,00 Min. :170.0
Class :character st Qu.:27.25 lst Qu.:173.8
Mode :character Median :29.00 Median :177.5
Mean :29.50 Mean :178.8
3rd Qu.:31.25 3rd Qu.:182.5
Max. :35.00 Max. :190.0

Daher gibt es grundsatzlich keinen Nachteil und stattdessen nur Vorteile bei der Verwendung
von tibbles gegenuber data.frames. Und was hier fur Tabellen gilt, veranschaulicht auch die
allgemeine Idee des Tidyverse: Es ist nicht unbedingt eine vollig neue Art, Dinge zu tun,
sondern vielmehr eine benutzerfreundlichere und machtigere Art, Dinge zu tun, die bereits
vorher mdglich waren.

1 Weitere Quellen

An dieser Stelle méchte ich ein kostenloses Online-Buch empfehlen, das eine groRRartige
Ressource zum Erlernen des Tidyverse und R im Allgemeinen ist: “R for Data Science
(2e)”. Es wurde von Hadley Wickham, Mine Cetinkaya-Rundel und Garrett Grolemund
geschrieben, die selbst Autoren einiger der wichtigsten Tidyverse-Pakete sind.

Ein neuer Beispieldatensatz

Bevor wir weitermachen, verwerfen wir die kleinen Tabellen, die wir oben erstellt haben, und
verwenden stattdessen einen Datensatz, der mit R geliefert wird. Dieser Datensatz heif3t

PlantGrowth und enthalt Daten zum Gewicht von 30 Pflanzen in 3 verschiedenen Gruppen.

Da er sozusagen in R eingebaut ist (genau wie pi ; siehe letztes Kapitel), kbnnen wir direkt
Uber seinen Namen darauf zugreifen. Es ist jedoch ein data.frame und wir méchten
stattdessen mit einem tibble arbeiten. Daher konvertieren wir es mit der as_tibble() -

Funktion in ein tibble und speichern es in einer Variable namens tbl :

tbl <- as tibble (PlantGrowth)

tbl

A tibble: 30 x 2
weight group
<dbl> <fct>
4.17 ctrl
.58 ctrl
.18 ctrl
.11 ctrl
.5 ctrl
.61 ctrl
.17 ctrl
.53 ctrl
.33 ctrl
.14 ctrl
i 20 more rows

O W o Joy U d WN -
G O > U1 DD oY U1 U1

=

Wir sehen, dass nicht alle 30 Datenzeilen, sondern stattdessen nur die ersten 10 Zeilen
anzeigt werden und darunter ein “... with 20 more rows” Hinweis steht. Das ist eine sehr
natzliche Funktion beim Arbeiten mit grol3en Datensatzen.

BioMath

6/30

https://r4ds.hadley.nz/
https://r4ds.hadley.nz/

Diagramme

Diagramm in base R: plot()

Base R hat eine plot () -Funktion, die gut darin ist, erste Datenvisualisierungen mit sehr

wenig Code zu erstellen. Sie errat, welche Art von Diagramm man sehen méchte, Uber den
Datentyp der jeweiligen zu plottenden Daten:

plot (tblSweight) # Streudiagramm der Werte in der Reihenfolge ihres Auftretens
plot (tblSgroup) # Balkendiagramm der H&ufigkeit jeder Stufe
plot (x = tblSgroup, y = tblSweight) # Boxplot fir Werte jeder Stufe

1
o
1

o

L
3
o

L
!

thl$weight

L
o
o

35 40 45 50 55 60
o
o
y

35 40 45 50 55 60

0 5 10 15 20 25 30 ctrl trt1 trt2 ctrl trt1 rt2

Diagramm im Tidyverse: ggplot()

Ich verwende plot () jedoch wirklich nur, um einen schnellen ersten Blick auf Daten zu
werfen. Um professionelle Visualisierungen zu erhalten, verwende ich immer das Tidyverse-
Paket {ggplot2} und seine Funktion ggplot () . Es scheint, als kdnnte es jedes vorstellbare

Diagramm erstellen. Seine hohe Leistungsfahigkeit geht jedoch mit dem Preis einer langen
Lernkurve einher. Daher verweise ich vorerst nur auf zusatzliche Ressourcen und werde in
den nachsten Abschnitten einige Grundlagen behandeln. Als Appetitanreger ist hier jedoch
ein Screenshot einiger mit ggplot erstellter Diagramme von Cédric Scherer:

US National Parks Visitation 2000-2016

e ko Bk T

THE DOMINANT TREE SPECIES" PLANTED ALONG SAN FRANCISCO'S ROADS

Food Carbon Footprint Index 2018

THE RISE OF CRAFT BEER !

AT

BioMath

7/30

https://www.cedricscherer.com/2021/01/01/review-2020-personal-dataviz-highlights/

+ How | use ggplot2
* ggplot2 extensions gallery

https://schmidtpaul.github.io/dsfair_quarto/ch/summaryarticles/ggplot2intro.html
https://exts.ggplot2.tidyverse.org/gallery/

BioMath

Der Pipe-Operator

Der Pipe-Operator (5>% oder 1>) “verdnderte véllig die Art, wie wir in R programmieren,
und machte es einfacher und lesbarer” (Alvarez, 2001). Wir haben angefangen, die Pipe als
$>% aus dem {dplyr}-Paket zu verwenden’. Seit dem 18. Mai 2021 (= R 4.1.0) ist die Pipe

jedoch offiziell Teil von Base R - obwohl als 1> geschrieben. Man beachte, dass es einige

Unterschiede zwischen %>% und |> gibt - mehr dazu findet man z.B. hier, hier oder hier.

Um zu verstehen, was ihn so groRRartig macht, missen wir anfangen, mehr als eine Funktion
gleichzeitig zu verwenden. Bisher haben wir Funktionen nur einzeln verwendet. Im wirklichen
Leben wird man jedoch oft feststellen, dass man mehrere Funktionen kombinieren muss.

Als Beispiel nehmen wir an, wir haben drei Zahlen 1, 4 und 10 (d.h. einen Vektor

c(1, 4, 10))und wir méchten (i) ihre Quadratwurzel nehmen, dann (ii) den Mittelwert
dieser Werte ermitteln und (iii) die Quadratwurzel dieses Mittelwerts nehmen. Schliellich
mochten wir das Ergebnis in einer Variable namens result speichern.

© Ubung: Mehrere Funktionen kombinieren

Bevor du weiterliest: Versuche dies mit dem bereits vorhandenen Wissen zu erreichen,
d.h. ohne den Pipe-Operator.

1 Lésungsvorschlag

Siehe die folgenden drei Abschnitte fiir verschiedene Lésungsansatze.

Losung 1: Zwischenergebnisse

Eine Mdoglichkeit, unser Ziel hier zu erreichen, ist es schrittweise zu tun und jedes
Zwischenergebnis in einer Variable zu speichern. Das ist ein sehr haufiger Ansatz in der
Programmierung und wird “schrittweiser” oder “iterativer” Ansatz genannt. So wirde es in R
aussehen:

X <- c(1, 4, 10)
stepl <- sqgrt (x)
step2 <- mean (stepl)
result <- sqrt(step2)
result

I [1] 1.433211

Das funktioniert perfekt und es ist leicht zu lesen, da wir jeden Schritt sehen kénnen. Es
braucht jedoch auch ziemlich viel Code und erstellt Variablen, die uns nicht wirklich
interessieren.

'Aber es war nicht das erste Paket, das es verwendete. Dieser Blogpost hat eine schéne
Zusammenfassung der Geschichte des Pipe-Operators in R.

9
9/30

http://adolfoalvarez.cl/blog/2021-09-16-plumbers-chains-and-famous-painters-the-history-of-the-pipe-operator-in-r/
https://twitter.com/TimTeaFan/status/1582118234220007424
http://adolfoalvarez.cl/blog/2021-09-16-plumbers-chains-and-famous-painters-the-history-of-the-pipe-operator-in-r/#base-r
https://stackoverflow.com/questions/67633022/what-are-the-differences-between-rs-new-native-pipe-and-the-magrittr-pipe
http://adolfoalvarez.cl/blog/2021-09-16-plumbers-chains-and-famous-painters-the-history-of-the-pipe-operator-in-r/

BioMath

Losung 2: Verschachtelte Funktionen

Eine andere Moglichkeit, dasselbe Ergebnis zu erreichen, ist die Verwendung
verschachtelter Funktionen - genau wie man es in Microsoft Excel tun wirde. Das bedeutet,
dass wir eine Funktion in eine andere Funktion setzen:

X <- c(1, 4, 10)
result <- sqgrt (mean (sqrt(x)))
result

I [1] 1.433211

Der offensichtliche Vorteil ist, dass es weniger Code braucht und keine unnétigen Variablen
erstellt. Es ist jedoch auch weniger lesbar, weil man von innen nach auf3en lesen muss. Das
ist bei einfachen Funktionen wie dieser kein Problem, aber es kann bei komplexeren
Funktionen sehr verwirrend werden.

Losung 3: Der Pipe-Operator

Dies kombiniert die Vorteile beider obigen Ansatze, da er (i) es ermdglicht, Funktionen von
links nach rechts / oben nach unten zu schreiben und somit in der Reihenfolge, in der sie
ausgefiihrt werden und wie man uber sie denkt, und (ii) keine zusatzlichen Variablen flr
Zwischenschritte erstellt:

x <= c(1, 4, 10)
result <- x %>% sqgrt() %$>% mean() %>% sqgrt()
result

I [1] 1.433211

Man kann es sich so vorstellen: Etwas (in diesem Fall =) geht in die Pipe und wird zur

nachsten Funktion sart () geleitet. StandardmaRig nimmt diese Funktion das, was aus der
vorherigen Pipe herauskam, und setzt es als ihr erstes Argument ein. Das passiert bei jeder
Pipe.

Vielleicht hilft es zu erkennen, dass diese beiden identische Dinge tun:

® sqgrt(9)

9 $>% sqrt ()

Q Tipp

Die Tastenkombination zum Schreiben von %>% in RStudio ist CTRL+SHIFT+M.
Tastenkombinationen kénnen in RStudio angepasst werden, wie hier beschrieben.

10
10/30

https://support.rstudio.com/hc/en-us/articles/206382178-Customizing-Keyboard-Shortcuts-in-the-RStudio-IDE

BioMath

dplyr-Verben

Wir haben nun eine Vorstellung davon, wie das Erstellen von Tabellen, Diagrammen und
generell das Programmieren schoéner ist, wenn man das Tidyverse verwendet. Ein weiterer

sehr wichtiger Teil des Tidyverse ist das Paket {dplyr} . Dieses Paket stellt eine Reihe von
Funktionen bereit, die sehr nitzlich fur die Datenmanipulation sind. Diese Funktionen werden
oft als “Verben” bezeichnet, weil sie beschreiben, was man mit seinen Daten machen
mdchte. Direkt aus der Dokumentation Gbernommen:

{dplyr} ist eine Grammatik der Datenmanipulation, die eine konsistente Reihe von
Verben bereitstellt, die dabei helfen, die haufigsten Herausforderungen der
Datenmanipulation zu I6sen:

* mutate () flgt neue Variablen hinzu, die Funktionen bestehender Variablen sind.
select () wahlt Variablen basierend auf ihnren Namen aus.

* filter () wahlt Falle basierend auf ihren Werten aus.

* summarise () reduziert mehrere Werte auf eine einzige Zusammenfassung.

* arrange () andert die Reihenfolge der Zeilen.

Diese alle kombinieren sich natirlich mit group_by () , was es ermdglicht, jede

Operation “nach Gruppen” durchzuflihren. Wenn man neu bei dplyr ist, ist der beste
Startpunkt das Kapitel zur Datentransformation in R for data science.

Nach unserer Erfahrung kann man wirklich den grof3ten Teil der Datenmanipulation vor und
nach der eigentlichen Statistik mit diesen Funktionen erledigen. Mit anderen Worten, es sind
genau diese Funktionen, die die manuelle Arbeit ersetzen kénnen und sollten, die man
mdglicherweise gerade in MS Excel macht, um seine Daten zu bearbeiten. In den folgenden
Abschnitten geben wir sehr kurze Beispiele, wie diese Funktionen zu verwenden sind,
wahrend wir immer auf grindlichere Ressourcen verweisen.

Bevor wir anfangen, sie zu verwenden, erstellen wir einige Spielzeugdatensatze, mit denen
es schon zu arbeiten ist. Bitte ignoriert, dass wir einige der unten verwendeten Funktionen
noch nicht eingefuhrt haben. Wir werden sie in den nachsten Abschnitten behandeln. Vorerst
wollen wir nur diese vier Datensatze erstellen, mit denen wir arbeiten konnen:

datl <- as tibble (PlantGrowth)

dat2 <- datl %>% head()

dat3 <- datl %>% slice(1:4, 11:14, 21:24)

dat4 <- datl %$>% slice(l, 2, 11, 12, 21, 22) %>%

mutate (varl = 1:6, var2 = 22:27, var3 = 3:8, vard = 4:9)

11
11/30

https://dplyr.tidyverse.org/
https://r4ds.hadley.nz/data-transform

1 Hinweis
Hier ist etwas, was man verstehen muss, bevor wir weitermachen.

Was man oben sieht, ist Code, der 4 neue Datensatze/Objekte/Variablen (dat1 - dat3)
erstellt hat, jeder durch das Nehmen eines anderen Datensatzes und dessen
Manipulation auf irgendeine Weise. Der erste Datensatz ist der eingebaute Datensatz

PlantGrowth , aber als tibble formatiert. Der Grund, warum die manipulierte Version (d.h.
die tibble-Version von PlantGrowth) dauerhaft als datl verfiigbar ist, liegt daran, dass
wir den <- -Operator verwendet und diese manipulierte Version in dieser neuen Variable
namens datl gespeichert haben. Man beachte weiter, dass wir diese neuen Datensatze
eigentlich nicht sehen. Wenn wir datl sehen wollten, missten wir dat1 (oder

print (datl)) ausfiihren, damit sein Inhalt in die Konsole ausgegeben wird.

In den folgenden Abschnitten werden wir sehr viele Datenmanipulationen durchfiihren,
weil das ist, was wir lernen werden. Wir werden jedoch eigentlich nie die manipulierten
Datensatze in neuen Variablen speichern. Stattdessen werden wir den Code ohne das

. <= ausflhren und somit immer einfach die manipulierte Version des Datensatzes in
die Konsole ausgeben. Das ist gut fir den Zweck zu sehen, was eine Funktion macht. Es
ist jedoch offensichtlich nicht das, was man im wirklichen Leben machen wird. Im

wirklichen Leben wird man immer die manipulierte Version des Datensatzes in einer
neuen Variable speichern.

12

BioMath

12/30

select()

Die select () -Funktion ermdglicht es, bestimmte Spalten aus einer Tabelle auszuwahlen.
Das ist sehr nutzlich, wenn man eine grof3e Tabelle hat und nur mit wenigen Spalten arbeiten

mochte. Das ist also unser Datensatz:

Idat4

<db
4.

o U b W N
a1 o B U1

Und wenn ich die select () -Funktion verwende, um die Spalte group auszuwahlen, wird sie
eine neue Tabelle mit nur dieser Spalte zurtickgeben:

1>
17

.58
-
o L
.31
.12

A tibble: 6

weight group

x 6
var

1

<fct> <int>

ctrl
ctrl
trtl
trtl
trt2
trt2

1

o U1 b W N

var?2
<int>
22

23

24

25

26

27

Idat4 $>% select (group)

<fct
ctrl
ctrl
trtl
trtl
trt2
trt2

o U W N

AuRerdem kann man mehr als eine Spalte benennen:

>

A tibble: 6
group

x 1

var3
<int>
3

@ J o U1 >

vard
<int>

O O J o Ul >

Idat4 $>% select (group, var2, vari4)

A tibble: 6 x 3
group var2 varé
<fct> <int> <int>

1 ctrl 22 4

2 ctrl 23 5

3 trtl 24 6

4 trtl 25 7

5 trt2 26 8

6 trt2 27 9

1 Hinweis

Nochmals eine Erinnerung, dass der Pipe-Operator (5>%) hier nicht unbedingt notwendig
ist. Die Funktion select () funktioniert fur sich allein und sie bendtigt die Daten als ihr
erstes Argument. Daher kdnnte man auch select(dat4, group) oder

select (dat4, group, var2, var4) schreiben. Wir werden jedoch weiterhin den Pipe-

Operator verwenden, weil er den Code leichter zu lesen und zu verstehen macht -
zumindest auf lange Sicht.

13

BioMath

13/30

BioMath

Man kann sogar mehrere Spalten auf einmal auswahlen, indem man den : -Operator

verwendet. Wenn man zum Beispiel alle Spalten von var2 bis var4 auswadhlen mochte,
kann man das so machen:

Idat4 $>% select (group, varz:varid)
A tibble: 6 x 4

group var2 var3 var4
<fct> <int> <int> <int>

1 ctrl 22 3 4
2 ctrl 23 5
3 trtl 24 5 6
4 trtl 25 6 7
5 trt2 26 7 8
6 trt2 27 8 9

Man kann auch den - -Operator verwenden, um bestimmte Spalten auszuschlieRen. Wenn
man zum Beispiel alle Spalten auBer varl auswahlen mochte, kann man das so machen:
Idat4 $>% select (-varl)

A tibble: 6 x 5

weight group var2 var3 var4
<dbl> <fct> <int> <int> <int>

1 4.17 ctrl 22 3 4
2 5.58 ctrl 23 4 5
3 4.81 trtl 24 5 6
4 4.17 trtl 25 6 7
5 6.31 trt2 26 7 8
6 5.12 trt2 27 8 9

SchlieRlich gibt es mehrere Hilfsfunktionen, die es ermdglichen, Spalten basierend auf ihren
Namen auszuwahlen. Wenn man zum Beispiel alle Spalten auswahlen mochte, die mit “var”

beginnen, kann man die Hilfsfunktion starts_with() so verwenden:
I dat4 $>% select(starts with("var"))
A tibble: 6 x 4

varl var2 var3 varéd
<int> <int> <int> <int>

1 1 22 3 4
2 2 23 5
3 3 24 5 6
4 4 25 6 7
5 5 26 7 8
6 6 27 8 9

Andere, dhnliche Funktionen sind ends with() , contains() , matches() und num range() .

Es gibt auch Funktionen wie is.numeric() , is.character() usw., die es ermdglichen,

Spalten basierend auf ihrem Datentyp auszuwahlen. Wenn man zum Beispiel alle
numerischen Spalten auswahlen méchte, kann man das so machen:

I datd4 %$>% select (where(~is.numeric(.x)))

A tibble: 6 x 5
weight wvarl wvar2 var3 var4
<dbl> <int> <int> <int> <int>
1 4.17 1 22 3 4

14
14/30

BioMath

2 5056 2 23 4 5
3 4.81 3 24 5 6
4 4.17 4 25 6 7
5 6.31 5 26 7 8
6 5.12 6 27 8 9

Das sind sehr machtige Funktionen der select () -Funktion und ermdglichen es, Spalten
basierend auf ihren Namen oder Datentypen auszuwahlen, ohne sie alle manuell eingeben
zu mussen. Schliel3lich gibt es sogar eine Hilfsfunktion namens everything() , die es

ermdglicht, alle Spalten auszuwahlen. Das mag zunachst nicht sehr nitzlich erscheinen,
aber man konnte sie z.B. verwenden, um Spalten neu zu ordnen, indem man spezifische
Spalten zuerst auswahlt und dann alle anderen Spalten danach:

I dat4 $>% select(var2, everything())
A tibble: 6 x 6

var2 weight group varl var3 var4
<int> <dbl> <fct> <int> <int> <int>

1 22 4.17 ctrl 1 3 4
2 23 5.58 ctrl 2 4 5
3 24 4.81 trtl 3 5 6
4 25 4.17 trtl 4 6 7
5 26 6.31 trt2 5 7 8
6 27 5.12 trt2 6 8 9

1 Weitere Quellen

5.4 Select columns with select() in R for data science
Subset columns using their names and types with select()
Select variables that match a pattern with starts_with() etc.
Select variables with a function with where()

15
15/30

https://r4ds.had.co.nz/transform.html#select
https://dplyr.tidyverse.org/reference/select.html
https://tidyselect.r-lib.org/reference/starts_with.html
https://tidyselect.r-lib.org/reference/where.html

filter()

Die filter () -Funktion erméglicht es, Zeilen basierend auf bestimmten Bedingungen zu
filtern. Man ist wahrscheinlich damit vertraut aus Excel, wo das auch Filtern genannt wird.

Um etwas zum Filtern zu haben, verwenden wir datl, da es 30 Beobachtungen hat. Um nur
die Beobachtungen zu behalten, bei denen das weight grofier als 6 ist, konnen wir die

filter () -Funktion so verwenden:
Idatl $>% filter (weight > 6)

A tibble: 4 x 2
weight group
<dbl> <fct>
6.11 ctrl
6.03 trtl
6.31 trt2
6.15 trt2

Sw NP

Man kann eine zweite Bedingung hinzuftigen, indem man den & -Operator verwendet, um es
so zu machen, dass sowohl Bedingung 1 ALS AUCH Bedingung 2 wahr sein mussen. Wenn
man zum Beispiel nur die Beobachtungen behalten mdchte, bei denen das weight groRer

als 6 UND die group “trt2” ist, kann man das so machen:
I datl %$>% filter (weight > 6 & group == "trt2")

A tibble: 2 x 2
weight group
<dbl> <fct>
1 6.31 trt2
2 6.15 trt2

Falls man verwirrt ist, warum wir == anstelle von = schreiben mussen, geht man zurtick
zum Abschnitt “Vergleichsoperatoren” im vorherigen Kapitel und erinnert sich auch daran,
dass ein einzelnes = zum Zuweisen von Werten an Variablen verwendet wird. Hier weisen

wir jedoch nichts zu, sondern Uberprifen, ob der Wert von group gleich “trt2” ist. Daher

mussen wir den doppelten == -Operator verwenden.

Man kann auch den | -Operator verwenden, um es so zu machen, dass entweder
Bedingung 1 ODER Bedingung 2 wahr sein muss. Wir kdnnten zum Beispiel nur die
Beobachtungen behalten, bei denen das weight groRer als 6 oder kleiner als 4 ist:

Idatl $>% filter (weight > 6 | weight < 4)

A tibble: 6 x 2
weight group
<dbl> <fct>
6.11 ctrl
.59 trtl
.83 trtl
.03 trtl
.31 trt2
.15 trt2

o U1 b W N
o O O W W

16

BioMath

16/30

Die nachsten drei Beispiele werden alle zum gleichen Ergebnis flihren, aber es auf
verschiedene Weise erreichen. Es ist fast immer der Fall, dass es nicht nur einen einzigen
Weg gibt, etwas in R zu tun, aber manchmal ist ein Weg effizienter oder leichter zu lesen als
ein anderer. Unser Ziel fur alle ist es, alle Beobachtungen zu behalten, die nicht zur
Kontrollgruppe gehéren.

Wir kénnten es mit dem | -Operator machen, den wir gerade gelernt haben:

I datl $>% filter (group == "trtl" | group == "trt2")
A tibble: 20 x 2
weight group
<dbl> <fct>
1 4.81 trtl
2 4.17 trtl
3 4.41 trtl
4 3.59 trtl
5 5.87 trtl
6 3.83 trtl
7 6.03 trtl
8 4.89 trtl
9 4.32 trtl
10 4.69 trtl
11 6.31 trt2
12 5.12 trt2
13 5.54 trt2
14 5.5 trt2
15 5.37 trt2
16 5.29 trt2
17 4.92 trt2
18 6.15 trt2
19 5.8 trt2
20 5.26 trt2

Fir Situationen, in denen man mehrere weitere Bedingungen kombinieren musste, ist der
%in% -Operator eine effizientere Moglichkeit, dies zu tun. Er ermoglicht es zu tberpriifen, ob

ein Wert in einem Vektor von Werten ist. Wir kdnnten zum Beispiel dasselbe wie oben so
machen:

I datl $>% filter (group %in% c("trtl", "trt2"))
A tibble: 20 x 2
weight group
<dbl> <fct>
1 4.81 trtl
2 4.17 trtl
3 4.41 trtl
4 3.59 trtl
5 5.87 trtl
6 3.83 trtl
7 6.03 trtl
8 4.89 trtl
© 4.32 trtl
10 4.69 trtl
11 6.31 trt2
12 5.12 trt2
13 5.54 trt2
14 5.5 trt2
15 5.37 trt2
16 5.29 trt2
17 4.92 trt2
18 6.15 trt2

17

BioMath

17/30

SchlieBlich kénnten wir auch den !=-Operator verwenden, um zu Uberprifen, ob die Gruppe
nicht gleich “ctrl” ist:

Idatl %>% filter (group != "ctrl")

In diesem spezifischen Fall ist die letzte der drei Optionen die kiirzeste und am leichtesten
zu lesen.

+ 5.2 Filter rows with filter() in R for data science
» Subset rows using column values with filter()

18

https://r4ds.had.co.nz/transform.html#filter-rows-with-filter
https://dplyr.tidyverse.org/reference/filter.html

arrange()

Die arrange () -Funktion ermdglicht es, die Zeilen einer Tabelle basierend auf den Werten

einer oder mehrerer Spalten zu ordnen (d.h. zu sortieren). Hier verwenden wir dat3 , das 4
Zeilen fur jede der drei Gruppen hat:

Idat3

O J oy U W N

el

10
11
12

Wir kbnnen die Tabelle nach der weight -Spalte so sortieren:

Idat3 $>% arrange (weight)

O J oy U W DN

el

10
11
12

Wie man sehen kann, ist sie standardmaRig aufsteigend sortiert. Wenn man sie absteigend
sortieren mochte, kann man die desc () -Hilfsfunktion verwenden und sie um den jeweiligen
Spaltennamen wickeln:

Idat3 $>% arrange (desc (weight))

O 0 J o U W DN -

weight
<dbl>

4.
.58
o L6
.11
.81
.17
.41
> 59
.31
212
.54
oD

G 01 U1 o W i D> oy U1 O

17

weight
<dbl>

3
.17
.17
.41
-1
.12
o 1L
o)
.54
.58
.11
o3

oY O U1 U1 U1 O U1 W DD

59

weight
<dbl>

6.
S
.58
.54
o)

.18
.12
.81
.41

SO O O 01 01 U1 O

31

A tibble: 12 x 2

group
<fct>
ctrl
ctrl
ctrl
ctrl
trtl
trtl
trtl
trtl
trt2
trt2
trt2
trt2

A tibble: 12 x 2

group
<fct>
trtl
ctrl
trtl
trtl
trtl
trt2
ctrl
trt2
trt2
ctrl
ctrl
trt2

A tibble: 12 x 2

group
<fct>
trt2
ctrl
ctrl
trt2
trt2
ctrl
trt2
trtl
trtl

19

BioMath

19/30

BioMath

10 4.17 ctrl
11 4.17 trtl
12 3.59 trtl

Man kann auch nach mehreren Spalten sortieren. Man kann zum Beispiel zuerst nach
group und dann nach weight sortieren. Das funktioniert hier wegen der doppelten Werte in

der group -Spalte: Die resultierende Tabelle hat die drei Gruppen in alphabetischer

Reihenfolge, aber die Zeilen innerhalb jeder Gruppe sind nach weight sortiert:
Idat3 $>% arrange (group, weight)

A tibble: 12 x 2
weight group
<dbl> <fct>
4.17 ctrl
.18 ctrl
.58 ctrl
.11 ctrl
.59 trtl
.17 trtl
.41 trtl
.81 trtl
.12 trt2
.5 trt2
.54 trt2
.31 trt2

O J oy U bW N

e

10
11
12

o U1 U1 U W DD W oy U1 Ol

Man beachte, dass man hier group, weight oder beide in die desc () -Funktion einwickeln
koénnte, wenn man absteigend sortieren wollte.

Schliellich ware ein etwas fortgeschritteneres Beispiel das Sortieren nach einer bestimmten
benutzerdefinierten Reihenfolge. Das ist manchmal notwendig, weil man nicht immer z.B.
seine Gruppen in alphabetischer Reihenfolge (oder umgekehrt alphabetischer Reihenfolge)

haben mdéchte. Nehmen wir an, man mdchte nach group in der Reihenfolge “trt2”, “ctrl”,
“trt1” sortieren. Wir kdnnen das erreichen, indem wir unsere benutzerdefinierte Reihenfolge
definieren und die Hilfsfunktion match() verwenden:

myorder <- c("trtl", "ctrl", "trt2")
dat3 $>% arrange (match(group, myorder))

A tibble: 12 x 2
weight group
<dbl> <fct>
4.81 trtl
.17 trtl
.41 trtl
.59 trtl
.17 ctrl
.58 ctrl
.18 ctrl
.11 ctrl
.31 trt2
.12 trt2
.54 trt2
.5 trt2

O J o Ul WD

\e]

10
11
12

g 01 O oy O U1 U1 i W D D

Und natirlich kénnte man sogar weitergehen und z.B. weight innerhalb jeder Gruppe

absteigend sortieren dat3 $>% arrange (match (group, myorder), desc(weight)) .

20
20/30

» 5.3 Arrange rows with arrange() in R for data science
* Arrange rows by column values with arrange()

21

https://r4ds.had.co.nz/transform.html#arrange-rows-with-arrange
https://dplyr.tidyverse.org/reference/arrange.html

mutate()

Die mutate () -Funktion ermdglicht es, die Werte bestehender Spalten zu mutieren (d.h. zu

andern) oder neue Spalten zu erstellen. Verwenden wir wieder dat2 , das nur 6 Zeilen hat,

und erstellen eine neue Spalte namens “kg”, die das Gewicht in Kilogramm enthalt (d.h.
angenommen, weight ist in Gramm, also teilen wir durch 1000):

|dat2 $>% mutate (kg = weight / 1000)

A tibble: 6 x 3

weight group kg
<dbl> <fct> <dbl>
1 4.17 ctrl 0.00417
2 5.58 ctrl 0.00558
3 5.18 ctrl 0.00518
4 6.11 ctrl 0.00611
5 4.5 ctrl 0.0045
6 4.61 ctrl 0.00461

Wie man sehen kann, funktioniert mutate, indem es (d.h. mit =) einen neuen Spaltennamen
(in diesem Fall kg) dem Ergebnis der Operation (in diesem Fall Division durch 1000) auf der

bestehenden Spalte weight zuweist.

Wir kénnten stattdessen genau dieselbe Operation durchfiihren, aber sie dem Spaltennamen
weight zuweisen. Das wird die bestehende Spalte weight mit den neuen Werten

Uberschreiben oder anders gesagt, es wird die bestehende Spalte weight mutieren/andern:
Idat2 *>% mutate (weight = weight / 1000)

A tibble: 6 x 2
weight group
<dbl> <fct>
.00417 ctrl
.00558 ctrl
.00518 ctrl
.00611 ctrl
.0045 ctrl
.00461 ctrl

o U W N
O O O O O o

Wir kbnnen auch mehrere Spalten gleichzeitig erstellen und sie missen nicht mit
bestehenden Spalten in Beziehung stehen:

dat2 $>%
mutate (
"Name with Space”™ = "Hello!",
numberl0 = 10

A tibble: 6 x 4
weight group "Name with Space’™ numberlO

<dbl> <fct> <chr> <dbl>
1 4.17 ctrl Hello! 10
2 5.58 ctrl Hello! 10
3 5.18 ctrl Hello! 10
4 6.11 ctrl Hello! 10
5 4.5 ctrl Hello! 10
6 4.61 ctrl Hello! 10

22

BioMath

22/30

BioMath

Hier werden also zwei Spalten erstellt und einfach mit demselben Wert fur alle Zeilen gefullt.
Man beachte, dass der Spaltenname Name with Space Leerzeichen enthalt, was in R nicht
erlaubt ist. Wenn man es jedoch wirklich will, kann man Backticks (°) verwenden, um
Spaltennamen mit Leerzeichen oder anderen Sonderzeichen zu erstellen.

Etwas fortgeschrittener, aber sehr machtig ist die Kombination von mutate () und
case_when () . Das ermoglicht es, neue Spalten basierend auf Bedingungen zu erstellen. Im

folgenden Beispiel erstellen wir eine Spalte namens size , die die Werte “large”, “small” oder

“normal” enthalt, abhangig vom Wert der weight -Spalte. Wenn das Gewicht groRRer als 5,5
ist, ist es “large”, wenn es kleiner als 4,5 ist, ist es “small” und alles andere ist “normal”:

dat2 %$>%
mutate (size = case when(
weight > 5.5 ~ "large",
weight < 4.5 ~ "small",
TRUE ~ "normal"

))

A tibble: 6 x 3
weight group size
<dbl> <fct> <chr>
4.17 ctrl small
.58 ctrl large
.18 ctrl normal
.11 ctrl large
.5 ctrl normal
.61 ctrl normal

o U b W N
SO oy U1 U1

Man kann also sehen, dass die jeweilige Bedingung genauso funktioniert wie bei der
filter () -Funktion. Wir schreiben jedoch dann eine Tilde (~) und den Wert, den wir der

neuen Spalte zuweisen mdchten, wenn die Bedingung wahr ist. Diese Bedingungen werden
tatsachlich in der Reihenfolge ausgewertet, in der sie geschrieben sind. Das bedeutet, dass
wenn die erste Bedingung wabhr ist, die zweite Bedingung nicht ausgewertet wird. Fur dieses
Beispiel bedeutet das, dass sobald eine Grélke auf “large” gesetzt ist, sie nicht auf die
folgenden Bedingungen Uberpruft wird. Wegen diesem Verhalten kdnnen wir einfach ein

TRUE als letzte Bedingung setzen, da es einfach fir alle verbleibenden Werte wahr sein wird
und ihnen den Wert “normal” zuweisen wird.

Man kann so viele Bedingungen haben, wie man méchte, und sie so kompliziert machen, wie
man mochte - z.B. mit &« -und | -Operatoren. Das kann viel Zeit und manuelle Arbeit
sparen.

SchlieBlich ist eine weitere sehr machtige Funktionskombination, die viel Zeit und manuelle
Arbeit sparen kann, die von mutate () und across() . Sie ist darauf ausgelegt, dabei zu
helfen, Anderungen an mehreren Spalten gleichzeitig vorzunehmen. Vielleicht muss man
zum Beispiel nicht nur die weight -Spalte in Kilogramm umwandeln, sondern auch die varl

-, var2 -, var3 - und var4 -Spalten. Sicher, man konnte das ohne across () so machen:

datd %>%
mutate (
weight = weight / 1000,
varl = varl / 1000,
var2 = var2 / 1000,

23
23/30

var3 = var3 / 1000,
vard = vard / 1000

A tibble: 6 x 6
weight group varl var2 var3 var4
<dbl> <fct> <dbl> <dbl> <dbl> <dbl>

1 0.00417 ctrl 0.001 0.022 0.003 0.004
2 0.00558 ctrl 0.002 0.023 0.004 0.005
3 0.00481 trtl 0.003 0.024 0.005 0.006
4 0.00417 trtl 0.004 0.025 0.006 0.007
5 0.00631 trt2 0.005 0.026 0.007 0.008
6 0.00512 trt2 0.006 0.027 0.008 0.009

Man stelle sich jedoch vor, man hatte 500 statt 5 Spalten zu bearbeiten. Es ist viel effizienter,

die across() -Funktion zu verwenden. Hier ist, wie es funktioniert:

I dat4 %$>% mutate (across(c(weight, varl:var4d), ~ .x / 1000))

A tibble: 6 x 6
weight group varl var2 var3 var4
<dbl> <fct> <dbl> <dbl> <dbl> <dbl>

1 0.00417 ctrl 0.001 0.022 0.003 0.004
2 0.00558 ctrl 0.002 0.023 0.004 0.005
3 0.00481 trtl 0.003 0.024 0.005 0.006
4 0.00417 trtl 0.004 0.025 0.006 0.007
5 0.00631 trt2 0.005 0.026 0.007 0.008
6 0.00512 trt2z 0.006 0.027 0.008 0.009

Ja, das sieht ganz anders aus als die Art, wie wir mutate () bis hier verwendet haben, aber
es ist immer dieselbe Struktur:

mutate (across (TEILl, TEIL2))

» TEIL1: Die Spalten, die man mutieren mdchte.

* TEIL2: Die Operation, die man auf diesen Spalten durchfihren méchte - mit .x als
Platzhalter fur die Spaltenwerte.

Das Auswahlen der Spalten in TEIL1 funktioniert genauso wie bei der select () -Funktion,
also kann man dieselben Hilfsfunktionen wie starts_with() , ends_with() , contains() ,
where (is.numeric()) usw. verwenden. TEIL2 erwartet eine Funktion und in unserem Fall
brauchen wir den ~ -Operator, um R zu sagen, dass es eine Funktion erstellen soll, die die

Eingabe .x nimmt und durch 1000 teilt.

1 Weitere Quellen

5.5 Add new variables with mutate() in R for data science

Create, modify, and delete columns with mutate()

» A general vectorised if with case_when()

* Apply a function (or functions) across multiple columns with across()

24

BioMath

24/30

https://r4ds.had.co.nz/transform.html#add-new-variables-with-mutate
https://dplyr.tidyverse.org/reference/mutate.html
https://dplyr.tidyverse.org/reference/case_when.html
https://dplyr.tidyverse.org/reference/across.html

© Ubung: dplyr-Verben kombinieren

Verwende datl und schreibe eine einzelne Pipe, die folgende Schritte umsetzt (nicht
unbedingt in dieser Reihenfolge):

1. Behalte nur die Zeilen, in denen weight groRer als 5 ist

2. Fiige eine neue Spalte namens weight kg hinzu, die das Gewicht geteilt durch 1000
enthalt

3. Sortiere das Ergebnis absteigend nach weight

4. Behalte nur die Spalten group und weight kg

Das Endergebnis sollte ein Tibble mit 2 Spalten und weniger als 30 Zeilen sein.

1 Lésungsvorschlag

datl %>%
filter (weight > 5) %>%
mutate (weight kg = weight / 1000) $>%
arrange (desc (weight)) $%$>%
select (group, weight kg)

A tibble: 17 x 2
group weight kg

<fct> <dbl>
1 trt2 0.00631
2 trt2 0.00615
3 ctrl 0.00611
4 trtl 0.00603
5 trtl 0.00587
6 trt2 0.0058
7 ctrl 0.00558
8 trt2 0.00554
9 trt2 0.0055
10 trt2 0.00537
11 ctrl 0.00533
12 trt2 0.00529
13 trt2 0.00526
14 ctrl 0.00518
15 ctrl 0.00517
16 ctrl 0.00514
17 trt2 0.00512

Hinweis: Die Reihenfolge von filter() , mutate() und arrange() koénnte gedndert
werden, ohne das Ergebnis zu beeinflussen. Allerdings muss select () am Ende stehen

(oder zumindest nach mutate() und filter()), da wir die weight -Spalte fur diese
Operationen bendtigen.

25

BioMath

25/30

BioMath

summarize()

Die summarize () -Funktion ermoglicht es, eine Tabelle zusammenzufassen, indem man
zusammenfassende Statistiken fir eine oder mehrere Spalten berechnet.

Wir verwenden wieder datl , das 30 Zeilen hat. Nehmen wir an, wir mochten das mittlere

Gewicht aller Pflanzen im Datensatz berechnen. Das konnen wir mit der summarize () -
Funktion so machen:

Idatl $>% summarize (mean weight = mean (weight))

A tibble: 1 x 1
mean weight
<dbl>
1 5.07

Das wird eine neue Tabelle mit einer einzigen Spalte namens mean_weight zurlickgeben, die
das mittlere Gewicht aller Pflanzen im Datensatz enthalt. Man beachte, dass die Syntax
ziemlich &hnlich zu der von mutate () ist, aber anstatt eine neue Spalte zur bestehenden
Tabelle hinzuzufligen, erstellt sie eine neue Tabelle mit den zusammenfassenden Statistiken.

Bisher ist das eigentlich nicht sehr nitzlich, da wir auch einfach das hier hatten machen
kdnnen: mean (datl$weight) , um diese Zahl zu erhalten. Die wahre Macht von summarize ()
kommt jedoch ins Spiel, wenn man zusammenfassende Statistiken fiir mehrere Gruppen
berechnen mdéchte und summarize () und die group by () -Funktion so kombiniert:

datl %>%
group by (group) %>%
summarize (mean weight = mean (weight))

A tibble: 3 x 2
group mean weight

<fct> <dbl>
1 ctrl 5.03
2 trtl 4.66
3 trt2 5.53

Wie man sehen kann, erhalten wir sofort das mittlere Gewicht fir jede Gruppe. Das liegt
daran, dass die group_by () -Funktion grundsatzlich den Daten sagt, alle folgenden

Funktionen auf jede Gruppe separat anzuwenden. In diesem Fall sagt sie der summarize () -

Funktion, das mittlere Gewicht fiir jede Gruppe separat zu berechnen. Das kann also viel
Zeit und manuelle Arbeit sparen, wenn man viele Gruppen hat.

Es wird noch besser, wenn man alle anderen deskriptiven Statistiken hinzufligt, die man
berechnen mdéchte. Wenn man zum Beispiel den Mittelwert, die Standardabweichung, den
Median, das Minimum und das Maximum des Gewichts fir jede Gruppe berechnen mdchte,
kann man das so machen:

datl %>%
group by (group) %>%
summarize (
mean weight = mean (weight),
median weight = median (weight),
sd weight = sd(weight),
min weight = min (weight),

26
26/30

BioMath

max weight = max (weight)

)

A tibble: 3 x 6
group mean weight median weight sd weight min weight max weight

<fct> <dbl> <dbl> <dbl> <dbl> <dbl>
1 ctrl 5.03 5,15 0.583 4.17 6.11
2 trtl 4.66 4.55 0.794 3.59 6.03
3 trt2 5.53 5.44 0.443 4.92 6.31

Man kann also grundsatzlich die gesamte deskriptive Statistiktabelle in einem Zug erstellen.

Und nur um sicherzustellen, dass das klar ist: Gruppierung muss nicht nur fur eine einzelne
Variable sein. Man kann sehr wohl ein Experiment mit mehreren Faktoren haben und mdchte
das mittlere Gewicht fir jede Kombination dieser Faktoren berechnen. In diesem Fall kann

man einfach mehr Variablen zur group_by () -Funktion hinzufugen. Wir kdnnen einen
solchen zweiten Faktor zu dat3 so hinzufligen:

dat3 $>%
mutate (factor2 = rep(x = c("A", "B"), times = 6))

A tibble: 12 x 3
weight group factor2
<dbl> <fct> <chr>

1 4.17 ctrl A
2 5.58 ctrl B
3 5.18 ctrl A
4 6.11 ctrl B
5 4.81 trtl A
6 4.17 trtl B
7 4.41 trtl A
8 3.59 trtl B
9 6.31 trt2 A
10 5.12 trt2 B
11 5.54 trt2 A
12 5.5 trt2 B

Und dann in der group by () -Funktion verwenden:

dat3 %>%
mutate (factor2 = rep(x = c("A", "B"), times = 6)) %>%
group by (group, factor2) %>%
summarize (mean weight = mean (weight))

‘summarise () ° has grouped output by 'group'. You can override using the
‘.groups’ argument.

A tibble: 6 x 3
Groups: group [3]
group factor2 mean weight
<fct> <chr> <dbl>
1 ctrl A 4.68
2 ctrl B 5.85
3 trtl A 4.61
4 trtl B 3.88
5 trt2 A 5.92
6 trt2 B 5.31

Das gibt einem das mittlere Gewicht fur jede Kombination von group und factor2 .

27
27/30

BioMath

Schlielich kann man auch die across () -Funktion verwenden, um eine Funktion gleichzeitig
auf mehrere Spalten anzuwenden. Wenn man zum Beispiel den Mittelwert pro Gruppe nicht
nur fUr die weight -Spalte, sondern fur alle numerischen Spalten in den Daten berechnen
mochte, kann man das so machen:

datd %>%
group by (group) %>%
summarize (across (where (is.numeric), ~ mean(.x)))

A tibble: 3 x 6
group weight wvarl wvar2 var3 vard
<fct> <dbl> <dbl> <dbl> <dbl> <dbl>
1 ctrl 4.88 1.5 22.5 3.5 4.5
trtl 4.49 3.5 24.5 5.5 6.5
3 trt2 5.72 5.5 26.5 7.5 8.5

N

Und ja, wir kdnnen weitergehen und mehr als nur Mittelwerte berechnen. Wenn man zum
Beispiel den Mittelwert und die Standardabweichung fur alle numerischen Spalten in den
Daten berechnen mochte, kann man das so machen:

dat4d $>%
group by (group) %>%
summarize (across (where (is.numeric), list(mean = ~ mean(.x), sd = ~ sd(.x))))

A tibble: 3 x 11
group weight mean weight sd varl mean varl sd var2 mean var2 sd var3 mean

<fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 ctrl 4.88 0.997 1.5 0.707 2255 0.707 3.5
2 trtl 4,49 0.453 3.5 0.707 24,5 0.707 5.5
3 trt2 5,72 0.841 5.5 0.707 26.5 0.707 7.5
i 3 more variables: var3 sd <dbl>, var4 mean <dbl>, var4 sd <dbl>

In Ordnung, man hat es geschafft - die dplyr-Einfuhrung ist vorbei. Man kennt jetzt viele der
wichtigsten Funktionen des dplyr-Pakets und wie man sie verwendet. Offensichtlich ist es
ziemlich Uberwaltigend und niemand verlangt, dass man sich all das auswendig merkt.
Stattdessen hoffen wir, dass man sehen kann, wie machtig diese Funktionen sind und wie
sie viel Zeit und manuelle Arbeit sparen kénnen.

1 Weitere Quellen

* 5.6 Grouped summaries with summarise() in R for data science
* Summarise each group to fewer rows with summarise()
* Group by one or more variables with group_by()

28
28/30

https://r4ds.had.co.nz/transform.html#grouped-summaries-with-summarise
https://dplyr.tidyverse.org/reference/summarise.html
https://dplyr.tidyverse.org/reference/group_by.html

| Warnung

Es gibt eine letzte, aber wichtige Information: Sobald man group_by () auf eine Tabelle
angewendet hat, bleibt sie gruppiert, es sei denn, man verwendet danach ungroup ()

darauf. Jede Funktion, die man auf einen Datensatz anwendet, der durch group by ()
gegangen ist, wird also separat pro Gruppe angewendet. Das verursachte oben keine
Probleme, da wir nie etwas anderes getan haben, als die summarize () -Funktion auf die

gruppierten Daten anzuwenden, aber man muss sich dessen bewusst sein, wenn man
die gruppierten (Zusammenfassungs-)Ergebnisse fur weitere Schritte verwendet.
Andernfalls kann das zu unerwarteten Ergebnissen fliihren. Man kann ein Beispiel und
weitere Ressourcen zu solchen unbeabsichtigten Ergebnissen hier finden.

29

BioMath

29/30

https://twitter.com/SchmidtPaul1989/status/1586284894556418049

Zusammenfassung

Gut gemacht! Man hat die grundlegenden Tidyverse-Fahigkeiten erworben, auf die
Datenwissenschaftler taglich angewiesen sind, um unordentliche Daten in saubere,
analysierbare Datensatze zu verwandeln.

1 Wichtige Erkenntnisse

1. Das Tidyverse ist eine Sammlung von R-Paketen, die fiir die Datenwissenschaft
entwickelt wurden und die Datenmanipulation einfacher, schneller und machtiger
macht.

2. Tibbles sind die moderne Neuvorstellung von data.frames im Tidyverse und bieten
verbesserte Anzeigeformatierung und konsistenteres Verhalten.

3. Der Pipe-Operator (> oder |>) ist ein machtiges Werkzeug, das Code lesbarer

macht, indem er es ermdglicht, Operationen in einer logischen Links-nach-rechts-
Sequenz zu verketten.

4. Die zentralen dplyr-“Verben” bieten eine konsistente Grammatik fur die
Datenmanipulation:
* select () : Bestimmte Spalten nach Name, Position oder Muster auswahlen
* filter() : Zeilen extrahieren, die bestimmte Bedingungen erfiillen
* arrange () : Daten basierend auf Spaltenwerten sortieren
* mutate () : Neue Spalten erstellen oder bestehende modifizieren

* summarize () : Zusammenfassende Statistiken berechnen
5. Diese Verben werden besonders machtig, wenn sie kombiniert werden mit:

* group_by () : Operationen separat innerhalb von Gruppen durchfihren
* across () : Dieselbe Funktion auf mehrere Spalten anwenden

* Hilfsfunktionen wie starts with() , contains() und where ()

6. Man sollte daran denken, ungroup () nach gruppierten Operationen zu verwenden,
um unerwartete Ergebnisse in nachfolgenden Analyseschritten zu vermeiden.

Bibliography

30

BioMath

30/30

	Tabellen
	Tabelle in base R: data.frame
	Tabelle im Tidyverse: tibble
	Ein neuer Beispieldatensatz

	Diagramme
	Diagramm in base R: plot()
	Diagramm im Tidyverse: ggplot()

	Der Pipe-Operator
	Lösung 1: Zwischenergebnisse
	Lösung 2: Verschachtelte Funktionen
	Lösung 3: Der Pipe-Operator

	dplyr-Verben
	select()
	filter()
	arrange()
	mutate()
	summarize()

	Zusammenfassung
	Bibliography

