BioMath

3. Datenimport und -export

Wie man Daten in R hinein- und herausbekommt
Dr. Paul Schmidt

Um alle in diesem Kapitel verwendeten Pakete zu installieren und zu laden, fihrt man
folgenden Code aus:

Pakete insta ieren (nur notwendig, falls noch nicht installiert
for (pkg in c("here", "openxlsx", "readxl", "tidyverse")) {

if (!require (pkg, character.only = TRUE)) install.packages (pkqg)
}

Pakete laden
library (tidyverse)
library (here)
library (openxlsx)
library (readxl)

Einfuhrung in R-Projekte

Bevor wir uns mit den Besonderheiten des Importierens und Exportierens von Daten
beschaftigen, ist es wichtig zu verstehen, wie R-Projekte das Leben viel einfacher machen
konnen, wenn man mit Dateien auf3erhalb von R arbeitet.

R-Projekte einrichten

R-Projekte sind eine Funktion von RStudio, die dabei hilft, die Arbeit zu organisieren. Sie
halten alle Dateien, die mit einer bestimmten Analyse verbunden sind - Daten, R-Skripte,
Ergebnisse, Abbildungen - in einem Verzeichnis zusammen. Das hat mehrere Vorteile:

» Bessere Organisation der Arbeit
* Einfachere Zusammenarbeit mit anderen
» Vereinfachte Pfadbehandlung beim Importieren und Exportieren von Daten

Um ein neues R-Projekt zu erstellen:

1. In RStudio geht man zu File -> New Project

2. Man wahlt entweder “New Directory” oder “Existing Directory” je nach Bedarf. (Wir haben
normalerweise bereits vorher einen neuen Ordner erstellt und wahlen dann “Existing
Directory” in diesem Schritt.)

3. Man folgt dem Assistenten, um die Einrichtung abzuschlieen

Um zu Uberprifen, ob das wie beabsichtigt funktioniert hat, kann man zwei Dinge
Uberprifen: (1) In der oberen rechten Ecke von RStudio sollte man jetzt den Namen des
Ordners sehen, den man als R-Projekt-Ordner ausgewahlt hat. (2) AuRerhalb von RStudio,

im Datei-Explorer, sollte man eine Datei mit der Erweiterung .Rproj in dem ausgewahlten
Ordner sehen. Diese Datei ist die R-Projekt-Datei und sie enthalt alle Informationen Uber das
Projekt.

Die Hauptvorteile, die zusatzlichen Schritte zur Erstellung eines R-Projekts zu unternehmen,
sind:

114

+ Automatisches Arbeitsverzeichnis: Wenn man ein R-Projekt 6ffnet, wird das sogenannte
Arbeitsverzeichnis automatisch auf den Projektordner gesetzt. Das Arbeitsverzeichnis ist
im Grunde der Ort/Ordner auf dem Computer, wo R nach zu lesenden Dateien sucht und
wo es Dateien speichert. Bevor man ein R-Projekt einrichtet, befindet sich dieses
Arbeitsverzeichnis wahrscheinlich an einem zufalligen Ort auf dem Computer - man kann

das herausfinden, indem man den Code getwd () in der Konsole ausfiihrt.

* Projektverwaltung: R-Projekte helfen dabei, Dateien und Skripte auf strukturierte Weise
zu verwalten. Man kann einfach zwischen Projekten wechseln, ohne sich um Dateipfade
oder Arbeitsverzeichnisse sorgen zu mussen. Ein Projekt merkt sich sogar, welche R-
Skripte gedffnet waren, als man das Projekt zuletzt geschlossen hat, sodass man genau
dort weitermachen kann, wo man aufgehdrt hat. Sogar das Teilen eines ganzen Projekts
mit jemand anderem ist einfach, da man einfach den gesamten Ordner senden kann und
sie ihn in RStudio 6ffnen konnen. Das ist viel einfacher, als ihnen eine Reihe von Dateien
zu senden und ihnen zu sagen, sie sollen sie an die richtige Stelle auf ihnrem Computer
legen.

» Versionskontrolle: Etwas Fortgeschritteneres ware die Integration mit Versionskontroll-
Systemen wie Git, was es einfacher macht, Anderungen zu verfolgen und mit anderen
zusammenzuarbeiten. Wir werden das jedoch in diesem Einflhrungskurs nicht behandeiln.

1 Weitere Quellen

Schau dir die offizielle RStudio-Erklarung zu Using RStudio Projects und Kapitel 1.6
Projects in RStudio im Buch “An Introduction to R” an

Organisation mit Unterordnern

Es ist nicht unbedingt notwendig, aber eine gute Praxis, den R-Projekt-Ordner mit einer
konsistenten Ordnerstruktur zu organisieren, d.h. mit Unterordnern wie

* data/ : Fur Roh- und verarbeitete Datendateien

* code/ oder R/ :Fur R-Skripte und Funktionen

* out/ oder results/: FUr Ausgaben wie Diagramme, Tabellen und Analyseergebnisse

Diese Organisation macht es einfacher, Dateien zu finden und einen sauberen Arbeitsablauf
zu erhalten.

BioMath

214

https://www.wikiwand.com/en/articles/Version_control
https://git-scm.com/
https://support.posit.co/hc/en-us/articles/200526207-Using-RStudio-Projects
https://intro2r.com/rsprojs.html
https://intro2r.com/rsprojs.html
https://intro2r.com/

BioMath

| Wichtig

Von diesem Moment an wird der Code, den man sieht, nur funktionieren, wenn man ein
R-Projekt erstellt hat und die Unterordner data/, out/ und code/ darin erstellt hat. Der
Name des Hauptordners (d.h. R-Projekt-Name) kann also alles sein, was man gewahilt
hat, aber die Namen der Unterordner und Dateien innerhalb der Unterordner miissen auf
dem PC identisch mit denen hier sein, damit der Code funktioniert. Wenn man andere
Namen verwenden moéchte, kann man das tun, aber dann muss man den Code
entsprechend andern. Hier ist ein Screenshot davon, wie es in deinem R-Projekt-Ordner
gerade aussehen sollte:

s

Mame

Rproj.user
code

data

out

E| example_project.Rproj

AuBerdem (!) muss man die Dateien herunterladen, die im data -Ordner hier auf GitHub

verfligbar sind (Download-Link). Diese Dateien sollten dann in deinem data -Ordner
gespeichert werden:

» an_excel_file.xlsx

» Clewer&Scarisbrick2001.csv
Mead1993.csv

* vision fixed.xls

* vision.xls

* yield_increase.csv

Das {here}-Paket

Wieder - nicht unbedingt notwendig, aber eine gute Praxis: Das {here}-Paket ist ein
grolartiges Werkzeug zur Verwaltung von Dateipfaden in R-Projekten. Es erkennt
automatisch das Projektverzeichnis und ermdéglicht es, Dateipfade relativ dazu zu erstellen,
was den Code portabler und einfacher mit anderen zu teilen macht. Angenommen, es gabe

zum Beispiel eine Datei mydata.xlsx im data -Unterordner, kdnnte man einfach schreiben
I here ("data", "mydata.xlsx")

Aulerdem ist das {here}-Paket sehr nitzlich zum Erstellen von Dateipfaden, die
plattformunabhéangig sind. Das bedeutet, dass man denselben Code auf verschiedenen
Betriebssystemen (Windows, Mac, Linux) verwenden kann, ohne sich um Unterschiede in
der Dateipfad-Syntax sorgen zu missen.

CSV

Eine der einfachsten Mdglichkeiten, mit dem Datenimport zu beginnen, ist das direkte Lesen
von einer URL. Dieser Ansatz erfordert nicht, dass man Dateien herunterladt und wirde auch

3/14

https://github.com/SchmidtPaul/ExampleData/tree/main/project_data
https://download-directory.github.io/?url=https://github.com/SchmidtPaul/ExampleData/tree/main/project_data
https://here.r-lib.org/

ohne ein eingerichtetes R-Projekt funktionieren. Man kann zum Beispiel die folgende CSV-
Datei so importieren:

x<-"https://raw.githubusercontent.com/SchmidtPaul /ExampleData/refs/heads/main/mead
1993/Meadl1993.csv"
mydf <- read.csv(file = x)

head (mydf, n = 3)

variety yield row col

1 vl 25.12 4 2
2 vl 17.25 1 6
3 vl 26.42 4 1

Wenn also die Internetverbindung funktioniert, kann man diesen Code Uberall ausfihren und
er wird funktionieren. Zuerst speichern wir die URL, wo die Datei gespeichert ist (als String

mit ") in einer Variable = . Dann Ubergeben wir diese Variable an die Importfunktion

read.csv () . Man kdnnte natirlich auch einfach die URL direkt in die Funktion einfligen.

Man beachte, dass man diese URL auch einfach in den Browser einfligen und die Datei
sehen kénnte - es ist wirklich nur eine CSV-Datei, aber anstatt auf dem Computer zu sein, ist
sie im Internet.

Importieren

AuRerdem sehen wir, dass die Funktion, die das Importieren Glbernommen hat, read.csv ()
heil3t. Das ist eine Funktion, die Teil von base R ist, was bedeutet, dass sie eingebaut ist und
keine zusatzlichen Pakete erfordert. Die meisten Importfunktionen in R beginnen mit read.

und enden mit dem Dateityp, den sie zum Lesen/Importieren entwickelt wurden. CSV ist die
Abkurzung fir “Comma-Separated Values” und ist ein gangiges Format zur Speicherung
tabellarischer Daten. Es ist eine reine Textdatei, die (normalerweise) Kommas zur Trennung
von Werten verwendet - man kann gerne der obigen URL folgen und sich die Daten
tatsachlich ansehen. Man wird feststellen, dass sie tatsachlich einfach alle Datenpunkte pro
Zeile enthalt, getrennt durch Kommas.

Nach unserem erfolgreichen Import kénnen wir sehen, dass die Daten jetzt in einer Variable
namens mydata gespeichert sind. Diese Variable ist ein data frame , weil read.csv() eine

baseR-Funktion ist und daher in den baseR-Datentyp fiir Tabellen importiert: data.frame .
Man beachte, dass das Tidyverse auch sein eigenes Paket nur zum Importieren von Daten
hat, das {readr} genannt wird. Dieses Paket ist Teil des Tidyverse und ist darauf ausgelegt,
schneller und benutzerfreundlicher als base R-Funktionen zu sein. Um stattdessen seine
Funktion zu verwenden, misste man die Funktion read csv() anstelle von read.csv()
verwenden. Wie man erwartet haben kdnnte, importiert sie in den Tidyverse-Datentyp flr
Tabellen: tibble . AuRerdem zeigt sie auch einige zusatzliche Informationen Uber die Daten
beim Importieren:

Imytbl <- read csv(file = x)

Rows: 24 Columns: 4

— Column specification
Delimiter: ","

chr (1): variety

dbl (3): yield, row, col

BioMath

4/14

BioMath

i Use 'spec() to retrieve the full column specification for this data.
i Specify the column types or set “show col types = FALSE' to quiet this message.

3)

Ihead(mytbl, n

A tibble: 3 x 4
variety yield row col
<chr> <dbl> <dbl> <dbl>

1 vl 25.1 4 2
2 vl 17.2 1 6
3 vl 26.4 4 1

Man beachte, dass in unserem Fall die einzige Information, die die Funktionen zum
Importieren dieses Datensatzes bendtigen, sein Ort/Pfad ist. Dieser Pfad kann entweder eine
URL wie oben oder ein Dateipfad auf dem Computer sein. Es gibt jedoch mehrere
Argumente, die man zur Funktion hinzufiigen kann, um den Importprozess anzupassen. Man
kann zum Beispiel angeben, ob die erste Zeile der Datei Spaltennamen enthalt oder nicht,
welches Zeichen/Symbol zur Trennung von Werten verwendet wird, wie mit fehlenden
Werten umgegangen werden soll oder sogar ob die ersten paar Zeilen in den Daten
Ubersprungen werden sollen. All dies kann einem ersparen, die Daten vor dem Importieren

manuell korrigieren zu missen. Man kann mehr herausfinden, indem man 2read.csv() oder

?read_csv () ausfihrt und die Hilfeseite durchgeht.

Exportieren

Wie man vielleicht erraten hat, heif3t die Funktion zum Exportieren von Daten write.csv() .

Im Gegensatz zu den Importfunktionen benétigt sie mindestens zwei Informationen: Die
Daten, die man exportieren mdchte, und den Ort/Pfad, wo man sie speichern méchte. Die
Funktion erstellt dann eine CSV-Datei an diesem Ort. Um zum Beispiel unsere Tabelle
mytbl zu exportieren, wirden wir folgenden Code ausfuhren:
write.csv (

x = mytbl,

file = here("data", "mytbl.csv")
)

Wie man sehen kann, verwenden wir die here-Funktion, die wir friiher eingefiihrt haben, um
den Dateipfad zu erstellen. Das Ausfiihren davon erstellt eine CSV-Datei namens mytbl.csv

im data -Unterordner des R-Projekt-Ordners. Wieder gibt es mehrere zusatzliche

Argumente, die man zur Funktion hinzufiigen kann, um den Exportprozess anzupassen. Man
kann zum Beispiel angeben, ob Zeilennamen eingeschlossen werden sollen oder nicht,

indem man das Argument row.names = FALSE setzt. StandardmaRig ist dies auf TRUE

gesetzt, sodass Zeilennamen exportiert werden, wie man in den Daten (oder den
Screenshots der Daten unten) sehen kann.

Herzlichen Glickwunsch, man hat jetzt erfolgreich Daten in R importiert und exportiert! Das
meiste, was jetzt folgt, sind nur verschiedene Versionen desselben Prozesses.

5/14

BioMath

1 CSV-Dateien und Microsoft Excel

Hier ist eine ziemlich irritierende Tatsache Uber CSV-Dateien und Microsoft Excel.
Obwohl wir gerade eine perfekt funktionierende CSV-Datei exportiert haben, bemerkt
man, dass wenn man sie in Excel 6ffnet, sie méglicherweise nicht gut aussieht, da die
Spalten nicht korrekt getrennt sind:

A B
,variety","yield","row","col
1,"v1",25.12,4,2
2,"v1",17.25,1,6
3,"v1",26.42,4,1
4,"v1",16.08,1,4

B " 22151 9

b I o B S U R L B

Das liegt daran, dass Excel in vielen regionalen Einstellungen Semikolons (;) anstelle

von Kommas (,) als Trennzeichen verwendet, obwohl CSV fur “Comma-Separated
Values” steht. Das macht zum Beispiel flr Deutschland Sinn, wo ein Komma als
Dezimaltrennzeichen verwendet wird: Ein halber ist 0,5 anstatt 0.5, also wenn man ein
Komma als Trennzeichen verwenden wurde, wirde es nicht richtig funktionieren.

Wenn man also eine CSV-Datei erstellt, die in Excel (in der jeweiligen regionalen
Einstellung) gedffnet werden muss, kann man die Funktion write.csv2 () anstelle von
write.csv () verwenden. Diese Funktion verwendet Semikolons als Trennzeichen und
erstellt eine CSV-Datei, die sich korrekt in Excel 6ffnet. Man kann auch die read.csv2() /

read_csv2 () -Funktionen verwenden, um solche Dateien zu importieren.

write.csv2 (

x = mytbl,

file = here("data", "mytbl.csv")
)

A B C D E

1| variety yield row col
2 1wl 25,12 4 2
3 2wl 17.25 1 &6
4 Jwl 26,42 4 1
5 4 vl 16,086 1 4
A Rl 27 15 1 p

TXT

Textdateien (.txt) sind CSV-Dateien sehr ahnlich, mit dem Hauptunterschied, dass sie oft ein
Tabulatorzeichen (Tabulator) als Trennzeichen anstelle eines Kommas verwenden. Im
Wesentlichen sind beide reine Textformate, die tabellarische Daten speichern - sie
verwenden nur unterschiedliche Zeichen zur Trennung der Werte.

6/14

https://www.wikiwand.com/en/articles/Tab_key

Um eine tabulator-getrennte Textdatei zu importieren, kdnnen wir die allgemeinere
read.delim() -Funktion in base R oder read delim() im Tidyverse verwenden. Man
beachte, dass die folgenden Codes nur Beispiele sind und nicht funktionieren werden, es sei

denn, man hat eine Datei namens mydata.txt im data -Unterordner des R-Projekt-Ordners.

txt data base <- read.delim(file = here("data", "mydata.txt"), sep = "\t")

txt data tidy <- read delim(file = here("data", "mydata.txt"), delim = "\t")

Das Exportieren von Textdateien folgt einem ahnlichen Muster wie CSV-Dateien:

write.table(x = mytbl,
file = here("data", "mytbl.txt"),
sep = "\t")

write delim(x = mytbl,
file = here("data", "mytbl.txt"),
delim = "\t")

Die delim-und sep -Argumente ermdglichen es zu spezifizieren, welches Zeichen Werte in
der Ausgabedatei trennen soll. Haufige Trennzeichen sind Tabulatoren ("\t"), Kommas
(" "), Semikolons (";") und sogar Leerzeichen (" ").

Da CSV- und TXT-Dateien beide im Wesentlichen reine Textformate mit unterschiedlichen
Trennzeichen sind, gelten fir beide dieselben Prinzipien. Nachdem wir diese einfachen

textbasierten Formate behandelt haben, gehen wir nun zur Arbeit mit komplexeren
Dateitypen wie Excel Uber.

BioMath

7/14

BioMath

Excel

Excel-Dateien mit {readxl} importieren

Excel-Dateien (.xIsx, .xIs) werden in vielen Bereichen sehr haufig verwendet. Sie
unterstitzen mehrere Arbeitsblatter, Formatierung, Formeln und vieles mehr. Um Excel-
Dateien in R zu importieren, verwenden wir das {readxl}-Paket, das wir bereits am Anfang
dieses Kapitels geladen haben.

| Wichtig

Bitte stelle sicher, dass du die Excel-Datei an excel file.xlsx von der Kurs-Website

heruntergeladen und im data -Unterordner deines R-Projekt-Ordners platziert haben.

Andernfalls wird der Code unten nicht funktionieren.

lesx_path <- here("data", "an excel file.xlsx")

dat sheetl <- read excel (path = xlsx path)
dat sheetl

A tibble: 3 x 2
Name Value
<chr> <dbl>

1A 12
2 B 13
3 C 12

Diese Funktion versucht standardmaRig, das erste Blatt in der Excel-Datei zu lesen. Wenn
die Daten in einem anderen Blatt sind, muss man es spezifizieren. Wir kdnnen alle

Blattnamen in der Datei mit der excel sheets () -Funktion herausfinden:

Iexcelisheets(path = xlsx path)

I[l] "datal" "otherdata"

und dann das zweite Blatt entweder nach Namen oder nach Index importieren:

Ein spezifisches Blatt nach Namen lese
dat sheet2 <- read excel (path = xlsx path, sheet = "otherdata")

Oder nach Blatt-Index
dat sheet2 <- read excel (path = xlsx path, sheet

2)

dat sheet2

Ahnlich wie bei CSV-Importen kann man anpassen, wie die Daten mit zusatzlichen
Argumenten wie col_names , na usw. importiert werden. Man kann sogar einen spezifischen

Bereich von Zellen zum Importieren Uber z.B. range = "a1:c10" auswahlen. Schau dir die

Dokumentation mit 2read excel flr weitere Details an.

Exportieren nach Excel mit {openxlsx}

Zum Exportieren von Daten in das Excel-Format verwenden wir das {openxIsx}-Paket, das
wir am Anfang geladen haben. Dieses Paket bietet zwei Hauptansatze: eine einfache Ein-

8
8/14

https://readxl.tidyverse.org/
https://ycphs.github.io/openxlsx/

BioMath

Zeilen-Funktion und einen detaillierteren Ansatz flr gréRere Kontrolle. Und ja, wir verwenden
hier zwei verschiedene Pakete: {readx1} zum Importieren und {openxlsx} zum
Exportieren von Excel-Dateien.

Eine Tabelle zu einem Blatt

Der einfachste Weg, einen data.frame nach Excel zu exportieren, ist:

I write.xlsx (x = mytbl, file = here("data", "exported data.xlsx"))

Wie man sehen kann, fiihlt sich das sehr dhnlich an wie write.csv() , write delim() USW.,
was schon ist.

Mehrere Tabellen zu mehreren Blattern

Fir mehr Kontrolle Giber das Aussehen der Excel-Datei kann man einen detaillierteren Ansatz
verwenden. Nehmen wir an, wir mochten eine Excel-Datei mit zwei Blattern namens

“SheetA” und “SheetB” erstellen. Das erste soll mytbl enthalten, wahrend das zweite die

pPlantGrowth -Daten enthalten soll. Der minimale Code daflir wiirde so aussehen:

Eine neue Arbeitsmappe erstellen

mywb <- createWorkbook ()

Blatt

addWorksheet (wb = mywb, sheetName = "SheetA")

writeData (wb = mywb, sheet = "SheetA", x = mytbl)

Blatt B

addWorksheet (wb = mywb, sheetName = "SheetB")

writeData (wb = mywb, sheet = "SheetB", x = PlantGrowth)

Die Arbeitsmappe speichern

saveWorkbook (wb = mywb, here("data", "formatted excel.xlsx"), overwrite = TRUE)

Wie man sehen kann, erstellen wir zuerst eine sogenannte Arbeitsmappe, figen dann Blatter
hinzu und schreiben Daten in diese Blatter. Schliel3lich speichern wir die Arbeitsmappe in

eine Datei. Das Argument overwrite = TRUE ermdglicht es, eine bestehende Datei mit
demselben Namen zu Uberschreiben.

Man beachte, dass das bei weitem nicht alles ist, was man mit dem {openxlsx} -Paket

erreichen kann. Man kann auch Zellen formatieren, Diagramme hinzufiigen und vieles mehr.
Schauen dir die Dokumentation fiir weitere Details an.

9/14

https://ycphs.github.io/openxlsx/articles/Introduction.html

Andere Dateiformate

Wahrend CSV und Excel die haufigsten Dateiformate sind, kann man in der Arbeit auf
andere Typen stolRen. Hier sind einige Pakete zur Behandlung dieser:

* Statistische Software: Das haven -Paket kann SPSS (.sav), SAS (.sas7bdat) und Stata
(.dta) Dateien importieren/exportieren.
Haven installieren und laden falls ndétig

install.packages ("haven")
library (haven)

SPSS-Datei importieren

spss_data <- read sav("data/myfile.sav")

Nach SPSS exportieren

write sav(mytbl, "data/exported.sav")

* Datenbanken: Pakete wie DBI , RsoLite und RMySQL bieten Verbindungen zu
verschiedenen Datenbanksystemen.

* JSON & XML: Die Pakete jsonlite und =ml2 behandeln diese web-orientierten
Formate.

» Spezialisierte Formate: Flir bereichsspezifische Formate sucht man auf CRAN nach
geeigneten Paketen - es gibt wahrscheinlich eine Lésung fur die jeweiligen Bedurfnisse.

In den meisten Fallen folgen die Funktionen zum Importieren/Exportieren dieser Formate
ahnlichen Mustern wie das, was wir mit CSV und Excel gesehen haben, beginnend mit

read_ oder write gefolgt vom Formatnamen.

10

BioMath

10/14

BioMath

Diagramme exportieren mit gssave

Wir wissen, dass wir eigentlich noch nicht gelernt haben, wie man ein ggplot erstellt, aber da
wir Uber Import und Export sprechen, werden wir auch behandeln, wie man Diagramme
exportiert.

Wahrend RStudios “Export”-Button im Plots-Panel funktioniert, bietet die ggsave () -Funktion
einen reproduzierbareren Ansatz.

Erstellen wir zuerst ein einfaches Diagramm zur Demonstration, wieder mit dem
PlantGrowth-Datensatz:

Ein Beispieldiagramm erstellen
myplot <- ggplot(data = PlantGrowth, aes(x = group, y = weight)) +
geom boxplot ()

Das Diagramm anzeigen

myplot

6.0-

55-

weight
(6)]
o

45-

4.0-

35 L 1 1 1
ctrl trt1 trt2
group

Jetzt kdnnen wir dieses Diagramm mit ggsave() exportieren:

Das Diagramm in eine Datei speichern
ggsave (

filename = "myexportedplot.png",

plot = myplot,

path here ("out"),

width = 15,

height = 10,

units = "cm",

dpi = 300

Die ggsave () -Funktion hat mehrere wichtige Argumente:

+ filename: Der Name der Datei (einschlie3lich Erweiterung)

» plot: Das zu speichernde Diagrammobjekt (standardmaRig das zuletzt angezeigte
Diagramm, wenn nicht spezifiziert)

» path: Wo die Datei gespeichert werden soll

11
11/14

BioMath

+ width, height: Dimensionen des Bildes

* units: Einheit fir Breite/Hohe (“‘cm”, “in”, “mm”, usw.)
« dpi: Auflésung in Punkten pro Zoll (héher = bessere Qualitat aber gréfiere Datei)

Die Dateierweiterung im Dateinamen bestimmt das Ausgabeformat. Oben haben wir ein
PNG exportiert, aber wir kbnnen genauso gut ein PDF oder SVG exportieren, die
Vektorformate sind. Vektorformate sind ideal fir publikationsqualitative Abbildungen, da sie
ohne Qualitatsverlust vergroRert werden kénnen. Das einzige, was man andern muss, ist die
Dateierweiterung im filename-Argument.

ggsave (
filename = "myexportedplot.pdf",
plot = p,

path = here("out"),
width = 15,

height = 10,

units = "cm"

)

ggsave (
filename = "myexportedplot.svg",
plot = p,
path = here("out"),
width = 15,
height = 10,
units = "cm"

© Tipp
Bei der Wahl eines Dateiformats flir Diagramme:

* PNG (.png): Gut fir Prasentationen und Web-Verwendung

JPEG (.jpg): Kleinere Dateigrdlie aber geringere Qualitat

PDF (.pdf): Vektorformat ideal fir Publikationen und Druck

SVG (.svg): Vektorformat gut fir Web-Verwendung und weitere Bearbeitung
+ TIFF (.tiff): Hochqualitatsformat oft von Zeitschriften gefordert

Fur publikationsqualitative Abbildungen werden normalerweise PDF oder TIFF bevorzugt.
Fur Prasentationen oder Web-Verwendung funktioniert PNG oft am besten.

12
12/14

Schnellere Alternativen fur groRe Daten

Wahrend die Funktionen, die wir bisher behandelt haben, fir die meisten alltaglichen

Datenanalysen vollkommen ausreichend sind, kann es bei sehr gro3en Datensatzen (mit
Millionen von Zeilen) vorkommen, dass der Import merklich lange dauert. Fir solche Falle
gibt es spezialisierte Pakete, die darauf ausgelegt sind, Daten deutlich schneller zu lesen.

Das {data.table}-Paket

Das {data.table}-Paket ist bekannt fur seine extrem schnelle fread() -Funktion (kurz fur “fast

read”). Diese Funktion kann CSV-Dateien oft 5-10 mal schneller importieren als die
Standard-Funktionen:

data.table insta ieren und laden falls notig

install.packages ("data.table")
library(data.table)

Sehr schneller Import von CSV-Dateien

fast data <- fread(file = "some large dataset.csv")

Zusatzlich zum schnellen Import erstellt fread() ein data.table -Objekt, das auch fir sehr
schnelle Datenmanipulation optimiert ist. Wenn man die Daten jedoch als hormalen
data.frame oder tibble bendtigt, kann man sie einfach konvertieren.

Das {vroom}-Paket

Das {vroom}-Paket ist eine weitere Alternative, die Teil des erweiterten Tidyverse-
Okosystems ist. Es ist besonders darauf spezialisiert, sehr groRe Dateien extrem schnell zu
lesen:

vroom insta ieren und laden falls notig
install.packages ("vroom")
library (vroom)

Extrem schneller Import, besonders bei sehr groBen Dateien

vroom data <- vroom(file = "some huge dataset.csv")

Das Besondere an vroom() ist, dass es einen sogenannten “lazy loading”’-Ansatz verwendet

- es liest nicht sofort alle Daten in den Speicher, sondern nur die Teile, die man tatsachlich
verwendet. Das kann bei gigantischen Datensatzen von Vorteil sein.

1 Wann sollte man diese Pakete verwenden?

FUr normale Datenanalyseprojekte mit Datensatzen, die weniger als 100.000 Zeilen
haben, sind die Standard-Importfunktionen véllig ausreichend. Die spezialisierten
Geschwindigkeitspakete werden erst bei sehr gro3en Daten (Millionen von Zeilen) oder
bei wiederholten Importen derselben grofien Datei wirklich nitzlich.

Wenn man sich fur diese leistungsstarken Alternativen interessiert, sollte man sich die
jeweilige Paket-Dokumentation ansehen, da sie auch erweiterte Funktionen flr die
Datenmanipulation bieten, die Gber den reinen Import hinausgehen.

13

BioMath

13114

https://rdatatable.gitlab.io/data.table/
https://vroom.r-lib.org/

Zusammenfassung

Man weil} jetzt, wie man Daten effizient in R hinein- und herausbewegt, eine grundlegende

Fahigkeit, die einem unzahlige Stunden in der Datenanalyse-Reise sparen wird.

1 Wichtige Erkenntnisse

1. R-Projekte bieten ein robustes Framework zur Organisation der Arbeit, Verwaltung
von Dateipfaden und Gewahrleistung der Reproduzierbarkeit.

2. Fir Datenimport/-export:
* CSV-Dateien: read.csv () [write.csv () (base R) oder read csv() [write csv ()

(tidyverse) verwenden
* TXT-Dateien: read.delim() [/ write.table () (base R) oder read delim() /

write delim() (tidyverse) verwenden

* Excel-Dateien: read_excel() aus {readxl} fir Importund write.xlsx() aus
{openxlIsx} flr Export verwenden

und einfacher zu teilen.
4. Bei der Arbeit mit Excel-Dateien sollte man beachten, dass man:

» Spezifische Blatter nach Namen oder Index lesen kann
* Mehrere Tabellen in verschiedene Blatter innerhalb derselben Arbeitsmappe
exportieren kann

S. Fir Diagramme verwendet man ggsave () , um in verschiedenen Formaten (PNG,
PDF, SVG) mit praziser Kontrolle tber Dimensionen und Qualitat zu exportieren.

organisieren, um einen sauberen Arbeitsablauf zu erhalten.

3. Das {here}-Paket vereinfacht die Dateipfad-Verwaltung und macht den Code portabler

6. Man sollte das Projekt immer mit einer konsistenten Ordnerstruktur (data/, code/, out/)

Bibliography

14

BioMath

14/14

	Einführung in R-Projekte
	R-Projekte einrichten
	Organisation mit Unterordnern
	Das {here}-Paket

	CSV
	Importieren
	Exportieren

	TXT
	Excel
	Excel-Dateien mit {readxl} importieren
	Exportieren nach Excel mit {openxlsx}
	Eine Tabelle zu einem Blatt
	Mehrere Tabellen zu mehreren Blättern

	Andere Dateiformate
	Diagramme exportieren mit ggsave()
	Schnellere Alternativen für große Daten
	Das {data.table}-Paket
	Das {vroom}-Paket

	Zusammenfassung
	Bibliography

