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4. Korrelation & Regression

Zusammenhänge zwischen numerischen Variablen verstehen
Dr. Paul Schmidt

Um alle in diesem Kapitel verwendeten Pakete zu installieren und zu laden, führe den
folgenden Code aus:

# Pakete installieren (nur nötig, falls noch nicht installiert)
for (pkg in c("here", "readxl", "tidyverse")) {
  if (!require(pkg, character.only = TRUE)) install.packages(pkg)
}

# Pakete laden
library(tidyverse)
library(here)
library(readxl)

Daten
Dieser Datensatz enthält Informationen von zwei Landwirten, Max und Peter, die
unterschiedliche Mengen Dünger auf ihre Felder ausbrachten und den resultierenden
Ertragszuwachs im Vergleich zu ungedüngten Kontrollparzellen aufzeichneten¹.

Import
dat <- read_csv(
  file = here("data", "yield_increase.csv")
)

dat

Rows: 20 Columns: 3
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr (1): farmer
dbl (2): fert, yield_inc

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.

# A tibble: 20 × 3
   farmer  fert yield_inc
   <chr>  <dbl>     <dbl>
 1 Max        1       0.2
 2 Max        2       0.3
 3 Max        3       0.5
 4 Max        3       0.6
 5 Max        4       0.6
 6 Max        4       0.5
 7 Max        4       0.7
 8 Max        5       0.6
 9 Max        7       0.8
10 Max        8       1  

¹Die Zahlen für ausgebrachten Dünger in kg/ha und Ertragssteigerung in t/ha sind erfunden und wurden
der Einfachheit halber gewählt, anstatt realistisch zu sein.
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11 Peter      1       0.1
12 Peter      1       0.1
13 Peter      1       0.2
14 Peter      1       0.2
15 Peter      1       0.1
16 Peter      3       0.3
17 Peter      5       0.5
18 Peter      6       0.8
19 Peter      8       0.9
20 Peter      9       1.3

Ziel
Das Ziel dieser Analyse ist es, die Frage zu beantworten, wie die Düngerausbringung mit der
Ertragssteigerung zusammenhängt. Man kann dabei die Spalte farmer  ignorieren, da es
nicht wichtig ist, ob die Daten von Peter oder Max stammen. Wir konzentrieren uns daher nur
auf die beiden numerischen Spalten fert  und yield_inc . Für diese führen wir eine
Korrelations- und eine Regressionsanalyse durch.

Exploration
Um diesen Datensatz zu erkunden, kann man zunächst einen schnellen Blick auf die Daten
werfen mit

summary(dat)

    farmer               fert        yield_inc    
 Length:20          Min.   :1.00   Min.   :0.100  
 Class :character   1st Qu.:1.00   1st Qu.:0.200  
 Mode  :character   Median :3.50   Median :0.500  
                    Mean   :3.85   Mean   :0.515  
                    3rd Qu.:5.25   3rd Qu.:0.725  
                    Max.   :9.00   Max.   :1.300  

um zu erfahren, dass die ausgebrachte Düngermenge von 1 bis 9 kg/ha reicht mit einem
Mittelwert von etwa 3,7 kg/ha, während die gemessenen Ertragssteigerungen von 0,1 bis 1,3
Tonnen/ha reichen mit einem Mittelwert von etwa 0,5 Tonnen/ha.

Und nun ist es endlich Zeit, unseren ersten ggplot zu erstellen. Unser Ziel ist es, ihn so zu
erstellen:
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Die Grafik zeigt einen klaren Trend steigender Ernteerträge bei höherer Düngerausbringung -
was wir erwarten würden.

 Wo ist der ggplot Code?!

Um den Code zu sehen und zu verstehen, der für die Erstellung dieses ggplots und aller
anderen ggplots in diesem Kapitel benötigt wird, gehe zum nächsten Kapitel. Man kann
dies jetzt tun oder nach dem Lesen dieses Kapitels.
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Korrelation
Eine Möglichkeit, tatsächlich eine Zahl für diesen Zusammenhang zu ermitteln, ist die
Schätzung der Korrelation. Wenn Leute in der Statistik über Korrelation (𝜌 oder 𝑟) sprechen,
meinen sie normalerweise den Pearson-Korrelationskoeffizienten, der ein Maß für die lineare
Korrelation zwischen zwei numerischen Variablen ist. Korrelation kann nur Werte zwischen
−1 und 1 haben, wobei 0 keine Korrelation bedeutet, während alle anderen möglichen Werte
entweder negative oder positive Korrelationen sind. Je weiter von 0 entfernt, desto stärker ist
die Korrelation. Hier sind einige Beispiele:

Einfach ausgedrückt bedeutet eine positive Korrelation “wenn eine Variable größer wird, wird
die andere auch größer” und eine negative Korrelation bedeutet “wenn eine Variable größer
wird, wird die andere kleiner”. Daher spielt es keine Rolle, welche der beiden Variablen die
erste (“x”) oder die zweite (“y”) Variable ist. Außerdem ist eine Korrelationsschätzung nicht
wie ein Modell und kann keine Vorhersagen treffen. Schließlich bedeutet “Korrelation
impliziert keine Kausalität”, dass man nur weil man eine (starke) Korrelation zwischen zwei
Dingen gefunden hat, nicht schließen kann, dass es einen Ursache-Wirkungs-
Zusammenhang zwischen den beiden gibt.

4

https://www.wikiwand.com/en/articles/Pearson_correlation_coefficient


BioMath

5/12

 Tipp

• Schau dir diese Scheinkorrelationen für einige lustige Beispiele von Korrelation ohne
Kausalität an.

• Spiele mit diesem praktischen Tool herum, um ein besseres Gefühl für den
Zusammenhang zwischen Korrelation und Daten zu bekommen.

Berechnung
Wenn man nur die tatsächliche Korrelationsschätzung erhalten möchte, kann man die
Funktion cor()  verwenden und die beiden numerischen Variablen (als Vektoren)
bereitstellen. In unserem Fall können wir die Spalte mit der Düngerausbringung aus unserem
Datenobjekt dat  mit dat$fert  extrahieren und die Spalte mit der Ertragssteigerung mit
dat$yield_inc . Zur Erinnerung: Das $ -Zeichen kann verwendet werden, um eine Spalte
aus einer Tabelle zu extrahieren. Der Befehl zur Ermittlung der Korrelation zwischen
Düngerausbringung und Ertragssteigerung sieht also so aus:

cor(dat$fert, dat$yield_inc)

[1] 0.9559151

Dementsprechend ist die Korrelation zwischen Düngerausbringung und Ertragssteigerung in
unserer Stichprobe sehr stark, da sie nahe bei 1 liegt. Dies deutet darauf hin, dass eine
Erhöhung des Düngers tendenziell mit einer Erhöhung des Ernteertrags verbunden ist.

Test
Wenn man zusätzliche Informationen wie ein Konfidenzintervall und einen Test mit einem p-
Wert haben möchte, kann man stattdessen cor.test()  verwenden.

mycor <- cor.test(dat$fert, dat$yield_inc)
mycor

    Pearson's product-moment correlation

data:  dat$fert and dat$yield_inc
t = 13.811, df = 18, p-value = 5.089e-11
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.8897837 0.9827293
sample estimates:
      cor 
0.9559151 

 p-Werte und statistische Signifikanz

Das Thema Hypothesentests, p-Werte und statistische Signifikanz ist etwas komplexer
und hat ein eigenes Kapitel. Man kann es jetzt oder nach diesem Kapitel lesen.

Bei diesem längeren Output kann man die Stichprobenschätzung unten sehen, ein
Konfidenzintervall darüber und einen p-Wert mit der entsprechenden Testhypothese darüber.
Führe ?cor.test()  aus und schaue dir den Abschnitt “Details” für weitere Informationen an.
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Hier ist unsere Korrelationsschätzung signifikant von 0 verschieden, da der p-Wert viel
kleiner als 0,05 ist. Außerdem bedeutet das gezeigte Konfidenzintervall, dass wir zu 95%
sicher sind, dass die wahre Korrelation irgendwo in diesem Bereich liegt.

Menschen würden dies in ihrem Ergebnisabschnitt berichten als z.B. “Die Korrelation
zwischen Düngerausbringung und Ertragssteigerung betrug 0,96 (95% KI: 0,89, 0,98) und
war statistisch signifikant (p < 0,001).”
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Einfache lineare Regression
Wenn Leute in der Statistik über Regression sprechen, meinen sie normalerweise die
einfache lineare Regression, die - einfach ausgedrückt - die beste gerade Linie findet, die
durch Punkte in einem Streudiagramm von zwei numerischen Variablen geht.

Das lineare Modell hinter einer solchen geraden Linie ist einfach:

𝑦 = 𝛼 + 𝛽𝑥

wobei 𝛼 oder 𝑎 der Achsenabschnitt und 𝛽 oder 𝑏 die Steigung ist, während 𝑦 und 𝑥 unsere
Datenpunkte sind. Eine solche Regression anzupassen bedeutet wirklich nur, die optimalen
Schätzungen für 𝛼 und 𝛽 zu finden.

Im Gegensatz zur Korrelation ist eine einfache lineare Regression ein Modell und es ist
daher wichtig, welche Variable 𝑦 (abhängige Variable) und welche 𝑥 (unabhängige) ist, denn
nach der Anpassung der Regression kann letztere verwendet werden, um erstere
vorherzusagen.

 Tipp

Besuche diese Website, gib “y=a+bx” in das Feld oben links ein, drücke Enter und spiele
dann mit den Werten von 𝑎 und 𝑏 in den Feldern darunter herum. Man kann sehen, wie
das Ändern der Steigung und des Achsenabschnitts die Linie verändert. Die Steigung (𝑏)
gibt an, um wie viel 𝑦 zunimmt, wenn 𝑥 um 1 Einheit zunimmt, während der
Achsenabschnitt (𝑎) den erwarteten Wert von 𝑦 angibt, wenn 𝑥 gleich 0 ist.

Berechnung
In R können wir die Funktion lm()  für die Anpassung linearer Modelle verwenden, sodass
sie die oben gezeigte einfache lineare Regressionsgleichung einfach anpasst:

reg <- lm(formula = yield_inc ~ fert,
          data = dat)

Wie man sehen kann, verweisen wir auf unser Datenobjekt dat  im data =  Argument,

sodass wir im formula =  Argument nur die Namen der jeweiligen Spalten in dat  schreiben

müssen. Außerdem speichern wir die Ergebnisse im reg  Objekt. Wenn wir uns dieses
Objekt ansehen, erhalten wir die folgenden Ergebnisse:

reg

Call:
lm(formula = yield_inc ~ fert, data = dat)

Coefficients:
(Intercept)         fert  
    0.04896      0.12105  

Zuerst wird unser Befehl wiederholt und dann werden die “Coefficients” gezeigt, die
tatsächlich die Schätzungen für 𝑎 und 𝑏 sind. Die beste gerade Linie ist also:

𝑦𝑖𝑒𝑙𝑑_𝑖𝑛𝑐 = 0, 049 + 0, 121*𝑓𝑒𝑟𝑡
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was so aussieht:

Hier ist ein wenig mehr Information darüber, warum formula = yield_inc ~ fert  dazu

führt, dass R die gewünschten 𝑎 und 𝑏 schätzt: Was Sinn macht ist, dass yield_inc  𝑦 ist,
fert  ist 𝑥 und ~  wäre daher das = in unserer Gleichung. Aber warum mussten wir nie
etwas über 𝑎 oder 𝑏 schreiben? Die Antwort ist, dass (i) bei der Anpassung eines linearen
Modells normalerweise standardmäßig immer ein Achsenabschnitt (=𝑎) vorhanden ist und (ii)
wenn man eine numerische Variable (= fert ) auf der rechten Seite der Gleichung schreibt,
automatisch angenommen wird, dass sie eine Steigung (=𝑏) multipliziert mit ihr hat.
Dementsprechend übersetzt sich yield_inc ~ fert  automatisch zu
yield_inc = a + b*fert  sozusagen.

Ist das richtig?
Nach der Anpassung eines Modells kann man es verwenden, um Vorhersagen zu treffen.
Hier ist eine Möglichkeit, die erwartete Ertragssteigerung für die Ausbringung von 0 bis 10
kg/ha Dünger gemäß unserer einfachen linearen Regression zu erhalten:

preddat <- tibble(fert = seq(0, 10))
preddat %>%
  mutate(predicted_yield_inc = predict(reg, newdata = preddat))

# A tibble: 11 × 2
    fert predicted_yield_inc
   <int>               <dbl>
 1     0              0.0490
 2     1              0.170 
 3     2              0.291 
 4     3              0.412 
 5     4              0.533 
 6     5              0.654 
 7     6              0.775 
 8     7              0.896 
 9     8              1.02  
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10     9              1.14  
11    10              1.26  

Man kann bemerken, dass die erwartete Ertragssteigerung bei der Ausbringung von 0 kg/ha
Dünger tatsächlich 0,049 Tonnen/ha beträgt und somit größer als 0 ist. Dies ist unerwartet.
Wenn kein zusätzlicher Dünger ausgebracht wird, sollte es keine zusätzliche Ernte im
Vergleich zu den ungedüngten Kontrollparzellen geben. Was ist also schief gelaufen?

Zunächst einmal werden Daten niemals perfekt sein. Selbst wenn der wahre Wert für etwas
0 ist, wird seine Schätzung basierend auf gemessenen Daten niemals genau 0,000000…
sein. Stattdessen gibt es immer “Rauschen” in den Daten, z.B. Messfehler: Die Landwirte
haben möglicherweise die genaue Menge des Düngers falsch berechnet oder es könnte
Fehler bei der Messung der Ertragssteigerung oder zufällige Umwelteinflüsse usw. geben.

Ich möchte also, dass man über das Problem aus zwei anderen Blickwinkeln nachdenkt:

1. Sagen die Ergebnisse wirklich, dass der Achsenabschnitt > 0 ist?
2. Haben wir überhaupt die richtige Frage gestellt oder hätten wir ein anderes Modell

anpassen sollen?

Sagen die Ergebnisse wirklich, dass der Achsenabschnitt > 0 ist?
Nein, das tun sie nicht. Ja, die Stichprobenschätzung für den Achsenabschnitt ist 0,049, aber
wenn man sich detailliertere Informationen über z.B. summary()  ansieht, können wir mehr
sehen:

summary(reg)

Call:
lm(formula = yield_inc ~ fert, data = dat)

Residuals:
      Min        1Q    Median        3Q       Max 
-0.154206 -0.070011 -0.004206  0.039202  0.187891 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 0.048963   0.040592   1.206    0.243    
fert        0.121049   0.008764  13.811 5.09e-11 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1009 on 18 degrees of freedom
Multiple R-squared:  0.9138,    Adjusted R-squared:  0.909 
F-statistic: 190.8 on 1 and 18 DF,  p-value: 5.089e-11

Man kann sehen, dass der p-Wert für den Achsenabschnitt größer als 0,05 ist und somit
besagt, dass wir den Achsenabschnitt nicht als signifikant von 0 verschieden feststellen
konnten (siehe Kapitel “033_tests_and_pvalues” für Details zur Interpretation).

Hätten wir ein anderes Modell anpassen sollen?
Wir hätten das sicherlich können und werden es jetzt tatsächlich tun. Es muss klar sein,
dass statistisch gesehen nichts falsch mit unserer Analyse war. Jedoch hätten wir aus
agronomischer Sicht oder mit anderen Worten - aufgrund unseres Hintergrundwissens und
unserer Expertise als Agrarwissenschaftler - tatsächlich aktiv für eine Regressionsanalyse
entscheiden können, die keinen Achsenabschnitt hat und somit gezwungen ist, bei 0 in

9



BioMath

10/12

Bezug auf die Ertragssteigerung zu beginnen. Schließlich ist Statistik nur ein Werkzeug, um
uns bei Schlussfolgerungen zu helfen. Es ist ein mächtiges Werkzeug, aber es wird immer
unsere Verantwortung bleiben, “die richtigen Fragen zu stellen”, d.h. zweckmäßige Methoden
anzuwenden.

Eine einfache lineare Regression ohne Achsenabschnitt ist streng genommen nicht mehr
“einfach”, da sie nicht mehr die typische Gleichung hat, sondern stattdessen diese:

𝑦 = 𝛽𝑥

Um lm()  zu sagen, dass es nicht den standardmäßigen Achsenabschnitt schätzen soll,

fügen wir einfach 0 +  direkt nach dem ~  hinzu. Wie erwartet erhalten wir nur eine
Schätzung für die Steigung:

reg_noint <- lm(formula = yield_inc ~ 0 + fert, data = dat)
reg_noint

Call:
lm(formula = yield_inc ~ 0 + fert, data = dat)

Coefficients:
  fert  
0.1298  

Das bedeutet, dass diese Regression ohne Achsenabschnitt geschätzt wird als

𝑦𝑖𝑒𝑙𝑑_𝑖𝑛𝑐 = 0, 1298*𝑓𝑒𝑟𝑡

und definitiv 0 yield_inc  vorhersagen muss, wenn 0 kg/ha fert  ausgebracht werden. Als
Endergebnis können wir beide Regressionslinien visuell in einem ggplot vergleichen:
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 Tipp

Schließlich noch ein kleiner Tipp: Das Paket {broom}  ist ein sehr nützliches Paket zum
Aufräumen der Ausgabe von Modellen oder anderen statistischen Analysen. Es ist nicht
eingebaut, daher muss man es zuerst mit install.packages("broom")  installieren und

mit library(broom)  laden. Man kann dann seine drei Funktionen tidy() , glance()

und augment()  verwenden, um die Ergebnisse der statistischen Analyse in einem
“aufgeräumten” Tibble-Format zu erhalten. Dies ist besonders nützlich, wenn das Ziel der
Export dieser Ergebnisse ist. Zum Beispiel können wir tidy()  sowohl auf unsere
Korrelations- als auch auf unsere linearen Regressionsergebnisse anwenden:

library(broom)
tidy(mycor)

# A tibble: 1 × 8
  estimate statistic  p.value parameter conf.low conf.high method    alternative
     <dbl>     <dbl>    <dbl>     <int>    <dbl>     <dbl> <chr>     <chr>      
1    0.956      13.8 5.09e-11        18    0.890     0.983 Pearson'… two.sided  

tidy(reg)

# A tibble: 2 × 5
  term        estimate std.error statistic  p.value
  <chr>          <dbl>     <dbl>     <dbl>    <dbl>
1 (Intercept)   0.0490   0.0406       1.21 2.43e- 1
2 fert          0.121    0.00876     13.8  5.09e-11

Versuche den Code selbst auszuführen und vergleiche dies mit dem einfachen Ausführen
von mycor  und reg  ohne die tidy()  Funktion. Eine Liste aller Dinge, die mit dieser
Funktion aufgeräumt werden können, findest du hier.

Zusammenfassung
Glückwunsch! Du hast die Grundlagen der Korrelations- und Regressionsanalyse gelernt,
zwei der am häufigsten verwendeten statistischen Techniken zur Analyse von Beziehungen
zwischen numerischen Variablen in der Agrarforschung.
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 Wichtige Erkenntnisse

1. Korrelation misst die Stärke und Richtung einer linearen Beziehung zwischen zwei
Variablen:
• Werte reichen von −1 bis 1
• Näher zu 1: Starke positive Korrelation
• Näher zu −1: Starke negative Korrelation
• Nahe 0: Wenig bis keine Korrelation
• Korrelation impliziert keine Kausalität

2. Einfache lineare Regression passt eine gerade Linie an Daten an, um die
Beziehung zwischen Variablen zu modellieren:
• Formel: y = α + βx (mit Achsenabschnitt) oder y = βx (ohne Achsenabschnitt)
• Hier gibt die Steigung (β) an, um wie viel der Ertrag zunimmt, wenn die

Düngerzufuhr um 1 kg/ha zunimmt
• Hier gibt der Achsenabschnitt (α) die erwartete Ertragssteigerung an, wenn kein

Dünger ausgebracht wird
• Ermöglicht Vorhersagen von Ertragssteigerungen basierend auf geplanten

Düngeranwendungen
3. Modellbewertung ist entscheidend für die Bestimmung, ob die Regression Sinn

macht:
• Prüfe, ob Koeffizienten statistisch signifikant sind

4. Statistische vs. praktische Signifikanz
• Manchmal kann Fachwissen (wie das Wissen, dass die Ertragssteigerung bei null

Dünger null sein sollte) Einschränkungen darüber nahelegen, wie das Modell
aussehen sollte.

• Vergiss nicht, dass statistische Werkzeuge Leitfäden sind, aber deine Expertise
sollte deine endgültige Interpretation und Modellierungsauswahl informieren.
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