BioMath

1. Tabellen kombinieren

bind_rows, bind\ cols, Joins und Pivoting mit dplyr und tidyr
Dr. Paul Schmidt

Um alle in diesem Kapitel verwendeten Pakete zu installieren und zu laden, fihrt man
folgenden Code aus:

for (pkg in c("tidyverse")) {
if (!require (pkg, character.only = TRUE)) install.packages (pkqg)
}

library (tidyverse)

Einleitung

In der Praxis liegen Daten selten in einer einzigen, perfekt aufbereiteten Tabelle vor.
Stattdessen hat man oft mehrere Datenquellen, die man zusammenfiihren muss: Messwerte
aus verschiedenen Laboren, Stammdaten und Transaktionsdaten, oder einfach Daten, die
Uber mehrere Excel-Sheets verteilt sind. Dieses Kapitel zeigt, wie man in R Tabellen auf
verschiedene Arten kombinieren kann.

Wir unterscheiden dabei drei grundlegende Ansatze:

1. Stapeln: Tabellen einfach untereinander (bind_rows ()) oder nebeneinander

(Ppind_cols ()) zusammenflgen

2. Joinen: Tabellen anhand gemeinsamer Schllisselspalten intelligent verkntpfen
3. Umstrukturieren: Daten zwischen “breitem” und “langem” Format transformieren

1/30

BioMath

Tabellen stapein

Die einfachste Art, Tabellen zu kombinieren, ist das “Stapeln” - also Tabellen entweder

untereinander oder nebeneinander zusammenzufligen. Hierflr gibt es bind rows () und

bind cols() .

Beispieldaten
Fir diesen Abschnitt erstellen wir drei kleine Tibbles mit Obstdaten:

obst 1 <- tibble (
sorte = c("Apfel", "Birne"),
preis = c(1.20, 1.50)

)

obst 2 <- tibble (
sorte = c("Orange", "Banane"),
preis = c(0.80, 1.10)

)

obst 3 <- tibble (
sorte = c("Kirsche", "Pflaume"),
preis = c(3.50, 2.20),
herkunft = c("Deutschland", "Spanien")

Iobstil

A tibble: 2 x 2
sorte preis
<chr> <dbl>

1 Apfel 1.2

2 Birne 1.5

Iobstiz

A tibble: 2 x 2
sorte preis
<chr> <dbl>

1 Orange 0.8

2 Banane 1.1

Iobst73

A tibble: 2 x 3
sorte preis herkunft
<chr> <dbl> <chr>
1 Kirsche 3.5 Deutschland
2 Pflaume 2.2 Spanien

Man beachte: obst_1 und obst_2 haben dieselben Spalten (sorte und preis), wahrend

obst_3 eine zusatzliche Spalte herkunft hat.

bind_rows|()

Die Funktion bind rows () stapelt Tabellen untereinander - sie flgt also Zeilen hinzu. Das

ist nttzlich, wenn man z.B. Daten aus verschiedenen Zeitrdumen oder verschiedenen
Quellen hat, die dieselbe Struktur haben.

2/30

Ibindirows(obst_l, obst 2)

A tibble: 4 x 2
sorte preis
<chr> <dbl>

1 Apfel 1.2
2 Birne 1.5
3 Orange 0.8
4 Banane 1.1

Das funktioniert wie erwartet: Die Zeilen werden einfach untereinander gehangt.

Unterschiedliche Spalten

Der grof3e Vorteil von bind_rows () gegeniber der base-R-Funktion rbind() zeigt sich,
wenn die Tabellen unterschiedliche Spalten haben. Wahrend rbind() in diesem Fall einen
Fehler wirft, figt bind rows () die Tabellen trotzdem zusammen und flllt fehlende Werte mit

NA

Ibind rows (obst 1, obst 3)

A tibble: 4 x 3
sorte preis herkunft
<chr> <dbl> <chr>

1 Apfel 1.2 <NA>

2 Birne 1.5 <NA>

3 Kirsche 3.5 Deutschland
4 Pflaume 2.2 Spanien

Man sieht: obst_1 hatte keine herkunft -Spalte, also werden diese Werte mit Nna aufgeflllt.

Das ist sehr praktisch, wenn man Daten aus verschiedenen Quellen kombiniert, die nicht
exakt dieselben Spalten haben.

Herkunft markieren mit .id

Wenn man mehrere Tabellen zusammenfugt, méchte man oft wissen, aus welcher
Ursprungstabelle jede Zeile stammt. Dafir gibt es das .id -Argument:

bind rows (

"Laden A" = obst 1,
"Laden B" = obst 2,
.id = "quelle"

A tibble: 4 x 3

quelle sorte preis
<chr> <chr> <dbl>
Laden A Apfel 1.2
Laden A Birne 1.5
Laden B Orange 0.8
Laden B Banane 1.1

Sw NP

Hier haben wir den Tabellen Namen gegeben (“‘Laden_A”, “Laden_B”) und mit
.id = "quelle" eine neue Spalte erstellt, die diese Namen enthalt.

Alle drei Tabellen kombinieren

Man kann auch mehr als zwei Tabellen auf einmal stapeln:

BioMath

3/30

I bind rows (obst 1, obst 2, obst 3)

Die Spalte herkunft existiert nur fir die letzten zwei Zeilen (aus obst_3), alle anderen

bekommen N2 .

BioMath

bind_cols()

Die Funktion bind_cols() fugt Tabellen nebeneinander zusammen - sie klebt also Spalten
aneinander.

Achtung

Bei bind cols() gibt es keine intelligente Verkniipfung tber Schilsselspalten! Die
Tabellen werden einfach “blind” nebeneinander geklebt. Das bedeutet: Die Zeilen
mussen in exakt derselben Reihenfolge stehen, und die Tabellen mussen gleich viele
Zeilen haben.

Ein Beispiel:

namen <- tibble (
vorname = c ("Anna", "Ben", "Clara"),
nachname = c("Mueller", "Schmidt", "Weber")

)

alter <- tibble(
alter = c(28, 34, 22),
beruf = c("Aerztin", "Ingenieur", "Studentin")

)

bind cols (namen, alter)

A tibble: 3 x 4
vorname nachname alter beruf

<chr> <chr> <dbl> <chr>
1 Anna Mueller 28 RAerztin
2 Ben Schmidt 34 Ingenieur
3 Clara Weber 22 Studentin

Das funktioniert, weil beide Tibbles drei Zeilen haben und wir wissen, dass Zeile 1 in beiden
Tibbles zur selben Person gehort.

Wann ist bind_cols() gefahrlich?

bind_cols() kann zu falschen Ergebnissen fihren, wenn die Reihenfolge der Zeilen nicht
Ubereinstimmt:

namen_sortiert <- namen %>% arrange (vorname)
alter original <- alter
bind cols(namen sortiert, alter original)

A tibble: 3 x 4
vorname nachname alter beruf

<chr> <chr> <dbl> <chr>
1 Anna Mueller 28 RAerztin
2 Ben Schmidt 34 Ingenieur
3 Clara Weber 22 Studentin

Hier wurden die Namen alphabetisch sortiert, aber die Alter-Daten nicht - Anna bekommt
jetzt das Alter 28 zugewiesen, obwohl das eigentlich zu “Anna Mueller” vor der Sortierung
gehorte (und jetzt zufallig stimmt, aber Ben und Clara sind vertauscht!). Das ist ein haufiger
Fehler!

5/30

Wann sollte man bind_cols() verwenden?

bind_cols () ist sicher, wenn:

 Die Daten aus derselben Quelle stammen und garantiert dieselbe Reihenfolge haben
* Man gerade selbst mehrere Berechnungen auf denselben Daten durchgefiihrt hat
* Man nach dem Zusammenfiigen die Korrektheit Gberpruft

In den meisten anderen Fallen ist ein Join die bessere Wahl, weil dort tber eine
SchlUsselspalte verknUpft wird.

BioMath

6/30

BioMath

Tabellen joinen

Joins sind die machtigste Methode, um Tabellen zu kombinieren. Sie verknlpfen Tabellen
intelligent Uber eine oder mehrere gemeinsame Spalten (die “Schllissel” oder “Keys”).
Dadurch ist es egal, in welcher Reihenfolge die Zeilen stehen - R findet die
zusammengehdrigen Zeilen automatisch.

Beispieldaten

Fur die Joins verwenden wir einen anderen Datensatz: Stadtedaten. Wir erstellen drei
Tibbles mit unterschiedlichen Informationen Uber Stadte:

Tibble 1: Sechs Grossstaedte in Zentraleuropa mit Einwohnerzahlen
staedte europa <- tibble (
stadt = c("Berlin", "Hamburg", "Muenchen", "Kopenhagen", "Amsterdam", "London"),

einwohner mio = ¢(3.9, 1.9, 1.5, 0.7, 0.9, 9.0)
)

Tibble 2: Zehn deutsche Staedte mit Mietpreisen (Euro pro Quadratmeter)
staedte miete <- tibble(
stadt = c("Berlin", "Hamburg", "Muenchen", "Frankfurt", "Koeln",

"Duesseldorf", "Stuttgart", "Leipzig", "Dresden", "Nuernberg"),
miete gm = c(18.29, 17.18, 22.64, 19.62, 15.21,
16.04, 17.26, 11.38, 7.33, 9.65)

Tibble 3: Dieselben zehn deutschen Staedte mit weiteren Statistiken
staedte stats <- tibble(
stadt = c("Berlin", "Hamburg", "Muenchen", "Frankfurt", "Koeln",

"Duesseldorf", "Stuttgart", "Leipzig", "Dresden", "Nuernberg"),
flaeche km2 = c (892, 755, 310, 248, 405, 217, 207, 297, 328, 186),
gruenflaeche pct = c(14.4, 16.8, 11.9, 21.5, 17.2, 18.9, 24.0, 14.8, 12.3, 19.1)

)

staedte europa

A tibble: 6 x 2

stadt einwohner mio

<chr> <dbl>
1 Berlin 3.9
2 Hamburg 1.9
3 Muenchen 1.5
4 Kopenhagen 0.7
5 Amsterdam 0.9
6 London ©

Istaedte_miete

A tibble: 10 x 2

stadt miete gm
<chr> <dbl>
1 Berlin 18.3
2 Hamburg 17.2
3 Muenchen 22.6
4 Frankfurt 19.6
5 Koeln 15.2
6 Duesseldorf 16.0
7 Stuttgart 17.3
8 Leipzig 11.4
9 Dresden 7.33
10 Nuernberg 9.65

Istaedte_stats

7/30

BioMath

A tibble: 10 x 3

stadt flaeche km2 gruenflaeche pct
<chr> <dbl> <dbl>
1 Berlin 892 14.4
2 Hamburg 755 16.8
3 Muenchen 310 11.9
4 Frankfurt 248 21.5
5 Koeln 405 17.2
6 Duesseldorf 217 18.9
7 Stuttgart 207 24
8 Leipzig 297 14.8
9 Dresden 328 12.3
10 Nuernberg 186 19.1

Man beachte: staedte europa enthalt drei deutsche Stadte (Berlin, Hamburg, Muenchen),
die auch in den anderen beiden Tibbles vorkommen, plus drei nicht-deutsche Stadte. Die
Tibbles staedte miete und staedte stats haben exakt dieselben zehn deutschen Stadte,
aber unterschiedliche Spalten.

Das Konzept: Schlusselspalten

Bei einem Join gibt man an, welche Spalte(n) als “Schllssel” verwendet werden sollen. R
sucht dann nach Ubereinstimmenden Werten in dieser Spalte und fligt die entsprechenden
Zeilen zusammen.

In unseren Beispieldaten ist stadt die offensichtliche Schliisselspalte - sie kommt in allen
drei Tibbles vor und identifiziert eindeutig jede Zeile.
Mutating Joins

“Mutating Joins” figen Spalten aus einer Tabelle zu einer anderen hinzu - sie “mutieren” also
die Ausgangstabelle, indem sie sie um neue Spalten erweitern. Es gibt vier Varianten, die
sich darin unterscheiden, welche Zeilen im Ergebnis enthalten sind.

left_join()

Der 1eft join() behalt alle Zeilen aus der linken Tabelle und fligt passende Spalten aus
der rechten Tabelle hinzu. Wenn es keinen passenden Partner in der rechten Tabelle gibt,
werden die neuen Spalten mit Na gefUllt.

8/30

left_join(x, vy)

1 Quelle der Visualisierungen

Die animierten Grafiken in diesem Kapitel stammen von Garrick Aden-Buie. Er hat dort
eine fantastische Sammlung von Visualisierungen erstellt, die die verschiedenen Join-
Typen und andere tidyverse-Operationen veranschaulichen. Ein Besuch lohnt sich!

staedte europa %>%

left join(staedte miete, by = "stadt")
A tibble: 6 x 3

stadt einwohner mio miete gm

<chr> <dbl> <dbl>
1 Berlin 3.9 18.3
2 Hamburg 1.9 17.2
3 Muenchen 1.5 22.6
4 Kopenhagen 0.7 NA
5 Amsterdam 0.9 NA
6 London 9 NA
Man sieht:

* Alle 6 Stadte aus staedte_europa sind im Ergebnis
» Berlin, Hamburg und Muenchen haben Mietpreise bekommen

* Kopenhagen, Amsterdam und London haben N2 bei miete_agm , weil sie nicht in

staedte miete vorkommen

Der 1eft _join() ist der am haufigsten verwendete Join, weil man oft eine “Haupttabelle

”

hat, die man um zuséatzliche Informationen erweitern mochte, ohne Zeilen zu verlieren.

BioMath

9/30

https://www.garrickadenbuie.com/project/tidyexplain/

BioMath

right_join()

Der right_join() ist das Spiegelbild des left_join () : Er behalt alle Zeilen aus der
rechten Tabelle.

right_join(x, vy)

staedte europa $>%
right join(staedte miete, by = "stadt")

A tibble: 10 x 3

stadt einwohner mio miete gm
<chr> <dbl> <dbl>
1 Berlin 3.9 18.3
2 Hamburg 1.9 17.2
3 Muenchen 1.5 22.6
4 Frankfurt NA 19.6
5 Koeln NA 15.2
6 Duesseldorf NA 16.0
7 Stuttgart NA 17.3
8 Leipzig NA 11.4
9 Dresden NA 7.33
10 Nuernberg NA 9.65

Jetzt haben wir:

* Alle 10 deutschen Stadte aus staedte miete
* Berlin, Hamburg und Muenchen haben Einwohnerzahlen
* Die 7 anderen deutschen Stadte haben NA bei einwohner mio

10
10/30

BioMath

Q Tipp

In der Praxis kann man statt right join(a, b) auch einfach left join(b, a)
schreiben - das Ergebnis ist dasselbe (nur die Spaltenreihenfolge unterscheidet sich).
Viele R-Nutzer verwenden daher fast ausschlieRlich left join() .

inner_join()
Der inner join() behalt nur Zeilen, die in beiden Tabellen vorkommen. Zeilen ohne
Partner werden komplett ausgeschlossen.

inner_join(x, vy)

staedte europa %>%
inner join(staedte miete, by = "stadt")

A tibble: 3 x 3

stadt einwohner mio miete gm
<chr> <dbl> <dbl>
1 Berlin 3.9 18.3
2 Hamburg 1.9 17.2
3 Muenchen 1.5 22.6

Nur Berlin, Hamburg und Muenchen sind (brig - die einzigen Stadte, die in beiden Tabellen
vorkommen. Es gibt keine N2 -Werte im Ergebnis.

full_join()
Der full join() behdlt alle Zeilen aus beiden Tabellen. Das ist die “gro3zligigste”

Variante.

11
11/30

full _join(x, vy)

staedte europa $>%
full join(staedte miete, by = "stadt")

A tibble: 13 x 3

stadt einwohner mio miete gm
<chr> <dbl> <dbl>
1 Berlin 3.9 18.3
2 Hamburg 1.9 17.2
3 Muenchen 1.5 22.6
4 Kopenhagen 0.7 NA
5 Amsterdam 0.9 NA
6 London 9 NA
7 Frankfurt NA 19.6
8 Koeln NA 15.2
9 Duesseldorf NA 16.0
10 Stuttgart NA 17.3
11 Leipzig NA 11.4
12 Dresden NA 7.33
13 Nuernberg NA 9.65

Das Ergebnis hat 13 Zeilen: 3 deutsche Stadte mit vollstdndigen Daten, 3 nicht-deutsche
Stadte (nur Einwohner), und 7 weitere deutsche Stadte (nur Miete).

Ubung: Joins mit Pflanzendaten

Bereite zunachst die Daten vor:

PlantGrowth-Datensatz laden und erweitern
data (PlantGrowth)

Datensatz 1: Gewichtsmessungen mit eindeutiger ID
pflanzen gewicht <- PlantGrowth %>%

mutate (plant id = 1:n()) %>%

select (plant id, group, weight)

12

BioMath

12/30

Datensatz 2: Hohenmessungen (nur fir einen Teil der Pflanzen verfigbar!)

set.seed (123)

pflanzen hoehe <- tibble (
plant dd-="e (1, 3, 5,7, 9, 14, 3, 15, 7, S0, = 208,523,025, 25, 29)),
hoehe cm = round(rnorm(l5, mean = 26, sd = 3), 1)

)

Die Datensédtze anschauen
pflanzen gewicht

Ipflanzen_hoehe

© Ubung

Beantworte die folgenden Fragen mithilfe der passenden Join-Funktionen:

a) Fuge die Hbhenmessungen zu allen Pflanzen hinzu. Pflanzen ohne H6henmessung
sollen na bekommen. Wie viele Pflanzen haben eine Ho6henmessung?

b) Erstelle einen Datensatz mit nur den Pflanzen, fur die sowohl Gewicht als auch Hohe
gemessen wurden.

c) Welche Pflanzen (plant_id) haben keine Hohenmessung? Nutze einen Filtering Join.

d) Berechne fiir die Pflanzen mit beiden Messungen das Verhaltnis weight / hoehe cm

und speichere es in einer neuen Spalte ratio .

14

BioMath

14/30

1 Lésungsvorschlag

a) left join: Alle Pflanzen behalte Hohe
pflanzen komplett <- pflanzen_gew1cht u>%
left join(pflanzen hoehe, by = "plant id")

pflanzen komplett

plant id group weight hoehe cm

1 1 ctrl 4.17 24.3
2 2 ctrl 5.58 NA
3 3 ctrl 5.18 25.3
4 4 ctrl 6.11 NA
5 5 ctrl 4.50 30.7
6 6 ctrl 4.61 NA
7 7 ctrl 5.17 26.2
8 8 ctrl 4.53 NA
9 9 ctrl 5.33 26.4
10 10 ctrl 5.14 NA
11 11 trtl 4.81 31.1
12 12 trtl 4.17 NA
13 13 trtl 4.41 27.4
14 14 trtl 3.59 NA
15 15 trtl 5.87 22.2
16 16 trtl 3.83 NA
17 17 trtl 6.03 23.9
18 18 trtl 4.89 NA
19 19 trtl 4.32 24.7
20 20 trtl 4.69 NA
21 21 trt2 6.31 29.7
22 22 trt2 5.12 NA
23 23 trt2 5.54 27.1
24 24 trt2 5.50 NA
25 25 trt2 5.37 27.2
26 26 trt2 5.29 NA
27 27 trt2 4.92 26.3
28 28 trt2 6.15 NA
29 29 trt2 5.80 24.3
30 30 trt2 5.26 NA
Anzahl der Pflanzen mit HOhenmessung
pflanzen komplett $>%
filter(!is.na(hoehe cm)) %>%
nrow ()
I[l] 15
b) inner join: Nur Pflanzen mit beiden !

pflanzen beide <- pflanzen gewicht %>%
inner join(pflanzen hoehe, by = "plant id")

pflanzen beide

plant id group weight hoehe cm

hinzufltigen

WO

vorhanden

1 1 ctrl 4.17 24.3

2 3 ctrl 5.18 25.3

3 5 ctrl 4.50 30.7

4 7 ctrl 5.17 26.2

5 9 ctrl 5,33 26.4

6 11 trtl 4.81 31.1

7 13 trtl 4.41 27.4

8 15 trtl 5.87 22.2

9 17 trtl 6.03 23.9

10 19 trtl 4.32 24.7

11 21 trt?2 6.31 29.7
%3dplant_égbgg% EJW é'§$ oeh % ﬂraﬁio
?glanzen 9%de§§% pf% §§en be%% @ 171
%5mntat@®§§tp@%%%we g @@ ehobk §§:§m912647 am
3 b ctrl 4.60 30.7 0.1465798
pflanzen b8idetrl §.53 26.2 0.1973282

BioMath

15/30

BioMath

Unterschiedliche Spaltennamen

Manchmal heif3t die Schlisselspalte in den beiden Tabellen unterschiedlich. Dann kann man
das im by -Argument angeben:

Beispiel: Eine Tabelle hat "stadt", die andere "city"
staedte englisch <- tibble (
city = c("Berlin", "Hamburg", "Muenchen"),

population = c(3.8, 1.9, 1.5)
)

staedte miete %>%
leftijoin(staedte_englisch, by = c("stadt" = "city"))

A tibble: 10 x 3

stadt miete gm population
<chr> <dbl> <dbl>
1 Berlin 18.3 3.8
2 Hamburg 17.2 1.9
3 Muenchen 22.6 1.5
4 Frankfurt 19.6 NA
5 Koeln 15.2 NA
6 Duesseldorf 16.0 NA
7 Stuttgart 17.3 NA
8 Leipzig 11.4 NA
9 Dresden 7.33 NA
10 Nuernberg 9.65 NA
Die Syntax by = c("stadt" = "city") bedeutet: “Verknipfe die Spalte stadt aus der

linken Tabelle mit der Spalte city aus der rechten Tabelle.”

16
16/30

BioMath

Filtering Joins

Im Gegensatz zu den Mutating Joins fligen Filtering Joins keine neuen Spalten hinzu. Sie
filtern nur die Zeilen der linken Tabelle basierend darauf, ob es einen Partner in der rechten
Tabelle gibt.

semi_join()

Der semi join() behalt alle Zeilen aus der linken Tabelle, die einen Partner in der rechten
Tabelle haben.

semi_join(x, vy)

staedte europa $>%
semi join(staedte miete, by = "stadt")

A tibble: 3 x 2

stadt einwohner mio
<chr> <dbl>
1 Berlin 3.9
2 Hamburg 1.9
3 Muenchen 1.5

Das Ergebnis enthalt nur Berlin, Hamburg und Muenchen - die europaischen Stadte, fur die
wir Mietdaten haben. Aber: Es wurden keine Spalten aus staedte_miete hinzugefiigt! Das

Ergebnis hat nur die Spalten von staedte_europa .

Der semi_join() beantwortet die Frage: “Welche Zeilen aus Tabelle A haben einen Partner
in Tabelle B?”

17
17/30

BioMath

anti_join()
Der anti_join() ist das Gegenteil: Er behalt alle Zeilen aus der linken Tabelle, die keinen
Partner in der rechten Tabelle haben.

anti_join(x, vy)

staedte europa $>%
anti join(staedte miete, by = "stadt")

A tibble: 3 x 2

stadt einwohner mio

<chr> <dbl>
1 Kopenhagen 0.7
2 Amsterdam 0.9
3 London ©

Kopenhagen, Amsterdam und London - die europdischen Stadte, fur die wir keine Mietdaten
haben.

Der anti_join() ist sehr nutzlich zur Datenqualitatsprifung: “Welche Datensatze fehlen?”
oder “Welche IDs aus System A gibt es nicht in System B?”

18
18/30

BioMath

Set Operations

Set Operations behandeln Tabellen wie mathematische Mengen. Sie funktionieren nur, wenn
beide Tabellen exakt dieselben Spalten haben. Sie vergleichen dann ganze Zeilen (nicht
einzelne Schlisselspalten).

Fir die Beispiele erstellen wir zwei kleine Tabellen mit identischen Spalten:

menge a <- tibble (

stadt = c("Berlin", "Hamburg", "Muenchen"),

land = c("Deutschland", "Deutschland", "Deutschland")
)

menge b <- tibble (
stadt = c("Hamburg", "Muenchen", "Frankfurt"),
land = c("Deutschland", "Deutschland", "Deutschland")

union()

union () gibt alle einzigartigen Zeilen aus beiden Tabellen zuriick - also die
Vereinigungsmenge.

union(x, vy)
e
2] b

Iunion(menge_a, menge_b)

A tibble: 4 x 2

stadt land
<chr> <chr>
Berlin Deutschland

Hamburg Deutschland
Muenchen Deutschland
Frankfurt Deutschland

BSw N P

19
19/30

BioMath

Hamburg und Muenchen kommen in beiden Tabellen vor, erscheinen im Ergebnis aber nur
einmal.

intersect()

intersect () gibt nur die Zeilen zurlck, die in beiden Tabellen vorkommen - also die
Schnittmenge.

intersect(x, vy)

Iintersect(mengeia, menge b)

A tibble: 2 x 2
stadt land
<chr> <chr>
1 Hamburg Deutschland
2 Muenchen Deutschland

Nur Hamburg und Muenchen sind in beiden Tabellen.
setdiff()

setdiff () gibt die Zeilen zurtick, die in der ersten, aber nicht in der zweiten Tabelle
vorkommen - also die Differenzmenge.

20
20/30

setdiff(x, vy)

M
Ml HD
HE

Isetdiff(menge_a, menge_b)

A tibble: 1 x 2
stadt land
<chr> <chr>

1 Berlin Deutschland

Berlin ist nur in menge_a .

1 Hinweis
Bei setdiff () ist die Reihenfolge wichtig! setdiff(a, b) und setdiff (b, a) liefern
unterschiedliche Ergebnisse:
Isetdiff(menge_b, menge a)
A tibble: 1 x 2
stadt land

<chr> <chr>
1 Frankfurt Deutschland

Frankfurt ist nur in menge b .

21

BioMath

21/30

BioMath

Daten umstrukturieren (Wide — Long)

Oft muss man Daten zwischen zwei Formaten transformieren:

* Wide Format (breit): Jede Variable hat eine eigene Spalte
* Long Format (lang): Variablennamen werden zu Werten in einer Spalte

Welches Format “richtig” ist, hangt vom Anwendungsfall ab. Fur viele tidyverse-Funktionen
und ggplot2 ist das Long Format besser geeignet, wahrend das Wide Format oft
Ubersichtlicher fur Menschen ist.

wide

id X ' V4

22
22/30

BioMath

pivot_longer()

pivot_longer () transformiert Daten vom Wide ins Long Format - es macht die Tabelle
‘langer” (mehr Zeilen, weniger Spalten).

Betrachten wir staedte_stats :

Istaedte_stats

A tibble: 10 x 3
stadt flaeche km2 gruenflaeche pct
<chr> <dbl> <dbl>
1 Berlin 892 14.4
2 Hamburg 755 16.8
3 Muenchen 310 11,9
4 Frankfurt 248 21.5
5 Koeln 405 17.2
6 Duesseldorf 217 18.9
7 Stuttgart 207 24
8 Leipzig 297 14.8
9 Dresden 328 12.3
10 Nuernberg 186 19,1

Das ist ein typisches Wide Format: Jede Kennzahl (Flache, Grinflache) hat eine eigene
Spalte. Fur manche Analysen oder Visualisierungen méchten wir das in ein Long Format
bringen:

staedte stats %>%
pivot longer (
cols = c(flaeche km2, gruenflaeche pct),
names_to = "kennzahl",
values to = "wert"
)
A tibble: 20 x 3
stadt kennzahl wert
<chr> <chr> <dbl>
1 Berlin flaeche km2 892
2 Berlin gruenflaeche pct 14.4
3 Hamburg flaeche km2 755
4 Hamburg gruenflaeche pct 16.8
5 Muenchen flaeche km2 310
6 Muenchen gruenflaeche pct 11.9
7 Frankfurt flaeche km2 248
8 Frankfurt gruenflaeche pct 21.5
9 Koeln flaeche km2 405
10 Koeln gruenflaeche pct 17.2
11 Duesseldorf flaeche km2 217
12 Duesseldorf gruenflaeche pct 18.9
13 Stuttgart flaeche km2 207
14 Stuttgart gruenflaeche pct 24
15 Leipzig flaeche km2 297
16 Leipzig gruenflaeche pct 14.8
17 Dresden flaeche km2 328
18 Dresden gruenflaeche pct 12.3
19 Nuernberg flaeche km2 186
20 Nuernberg gruenflaeche pct 19.1

Die wichtigsten Argumente:

* cols : Welche Spalten sollen “zusammengeklappt” werden?

* names_to : Wie soll die neue Spalte heilen, die die alten Spaltennamen enthalt?

23
23/30

values_to : Wie soll die neue Spalte heilen, die die Werte enthalt?

Jetzt hat jede Stadt zwei Zeilen - eine pro Kennzahl. Das ist ideal fir ggplot2, wenn man z.B.
beide Kennzahlen in einem Facetten-Plot darstellen mdchte.

Spaltenauswahl mit Hilfsfunktionen

Statt die Spalten einzeln aufzulisten, kann man auch Hilfsfunktionen verwenden:

Alle Spalten auBer "stadt"
staedte stats %>%
pivot longer (

cols = -stadt,
names_to = "kennzahl",
values to = "wert"

)

A tibble: 20 x 3

stadt kennzahl
<chr> <chr>

1 Berlin flaeche km2

2 Berlin gruenflaeche pct
3 Hamburg flaeche km2

4 Hamburg gruenflaeche pct
5 Muenchen flaeche km2

6 Muenchen gruenflaeche pct
7 Frankfurt flaeche km2

8 Frankfurt gruenflaeche pct
9 Koeln flaeche km2

10 Koeln gruenflaeche pct
11 Duesseldorf flaeche km2

12 Duesseldorf gruenflaeche pct
13 Stuttgart flaeche km2

14 Stuttgart gruenflaeche pct
15 Leipzig flaeche km2

16 Leipzig gruenflaeche pct
17 Dresden flaeche km2

18 Dresden gruenflaeche pct
19 Nuernberg flaeche km2
20 Nuernberg gruenflaeche pct

Alle numerischen Spalten
staedte stats %>%
pivot longer (

cols = where (is.numeric),
names to = "kennzahl",
values to = "wert"

)

A tibble: 20 x 3

stadt kennzahl
<chr> <chr>
1 Berlin flaeche km2
2 Berlin gruenflaeche pct
3 Hamburg flaeche km2
4 Hamburg gruenflaeche pct
5 Muenchen flaeche km2
6 Muenchen gruenflaeche pct
7 Frankfurt flaeche km2
8 Frankfurt gruenflaeche pct
9 Koeln flaeche km2
10 Koeln gruenflaeche pct
11 Duesseldorf flaeche km2
12 Duesseldorf gruenflaeche pct
13 Stuttgart flaeche km2
14 Stuttgart gruenflaeche pct

wert
<dbl>
892
14.4
755
16.8
310
11.9
248
21.5
405
17.2
217
18.9
207
24
297
14.8
328
12.3
186
19.1

wert
<dbl>
892
14.4
755
16.8
310
11.9
248
21.5
405
17.2
217
18.9
207
24

24

BioMath

24/30

pivot_wider()
pivot_wider () istdie Umkehrfunktion: Sie transformiert vom Long ins Wide Format - die
Tabelle wird “breiter” (weniger Zeilen, mehr Spalten).

Zuerst erstellen wir eine Long-Format-Tabelle:

staedte long <- staedte stats %>%
pivot longer (

cols = -stadt,
names_to = "kennzahl",
values to = "wert"

)

staedte long

A tibble: 20 x 3

stadt kennzahl wert
<chr> <chr> <dbl>
1 Berlin flaeche km2 892
2 Berlin gruenflaeche pct 14.4
3 Hamburg flaeche km2 755
4 Hamburg gruenflaeche pct 16.8
5 Muenchen flaeche km2 310
6 Muenchen gruenflaeche pct 11.9
7 Frankfurt flaeche km2 248
8 Frankfurt gruenflaeche pct 21.5
9 Koeln flaeche km2 405
10 Koeln gruenflaeche pct 17.2
11 Duesseldorf flaeche km2 217
12 Duesseldorf gruenflaeche pct 18.9
13 Stuttgart flaeche km2 207
14 Stuttgart gruenflaeche pct 24
15 Leipzig flaeche km2 297
16 Leipzig gruenflaeche pct 14.8
17 Dresden flaeche km2 328
18 Dresden gruenflaeche pct 12.3
19 Nuernberg flaeche km2 186

20 Nuernberg gruenflaeche pct 19.1

Jetzt transformieren wir zurtick ins Wide Format:

staedte long $>%
pivot wider (
names_ from = kennzahl,
values from = wert

)

A tibble: 10 x 3

stadt flaeche km2 gruenflaeche pct
<chr> <dbl> <dbl>
1 Berlin 892 14.4
2 Hamburg 755 16.8
3 Muenchen 310 11.9
4 Frankfurt 248 21.5
5 Koeln 405 17.2
6 Duesseldorf 217 18.9
7 Stuttgart 207 24
8 Leipzig 297 14.8
9 Dresden 328 12.3
10 Nuernberg 186 19.1

Die wichtigsten Argumente:

names_from : Welche Spalte enthalt die zukinftigen Spaltennamen?

26

BioMath

26/30

values_from : Welche Spalte enthalt die Werte?

1 Alternative Funktionsnamen in anderen Paketen

Mdglicherweise hast du in diesem Kontext bereits andere Funktionen verwendet. Hier
sind einige Alternativen, die mittlerweile teilweise veraltet sind:

melt () & decast() aus {data.table}

fold()

melt ()

& unfold() aus {databases}
melt () & cast() aus {reshape}
&

decast () aus {reshape2}

unpivot () & pivot () aus {spreadsheets}

gather () & spread() aus {tidyr} <v1.0.0

Typischer Anwendungsfall: Kreuztabellen

pivot_wider () istauch nutzlich, um Kreuztabellen zu erstellen. Angenommen, wir haben

Ve

)

#

1
2

Jetzt haben wir eine Ubersichtliche Kreuztabelle mit Produkten in den Zeilen und Quartalen

rkaufsdaten:

verkaeufe <- tibble (

produkt = c("Apfel", "Apfel",

gquartal = c("Ql", "Q2",

umsatz = ¢ (100, 120, 80,

verkaeufe

A tibble: 4 x 3
produkt quartal umsatz
<chr> <chr> <dbl>

1 Apfel 01 100

2 Apfel 02 120

3 Birne Q1 80

4 Birne 02 90

verkaeufe %$>%

pivot wider (
names from = quartal,
values_ from = umsatz

)

A tibble: 2 x 3

produkt 01 Q2
<chr> <dbl> <dbl>
Apfel 100 120
Birne 80 90

in den Spalten.

"o,
90)

"Birne",
"QZH) 0

Ubung: Pivoting-Workflow

"Birne"),

Bereite zunachst einen Datensatz im Long-Format vor:

#

pflanzen long <- PlantGrowth $>%

PlantGrowth mit mehreren Messungen simulieren
set.seed(42)

27

BioMath

27/30

BioMath

mutate (
plant id = 1:n(),
hoehe cm = weight * 5 + rnorm(n(), mean = 0, sd = 2)

) $>%
pivot longer (

cols = c(weight, hoehe cm),
names_to = "messung",
values to = "wert"

) $>%
select (plant id, group, messung, wert)

pflanzen long

A tibble: 60 x 4

plant id group messung wert

<int> <fct> <chr> <dbl>

ctrl weight 4.17
ctrl hoehe cm 23.6
ctrl weight 5.58
ctrl hoehe cm 26.8
ctrl weight 5.18
ctrl hoehe cm 26.6
ctrl weight 6.11
ctrl hoehe cm 31.8
ctrl weight 4.5
ctrl hoehe cm 23.3
i 50 more rows

O W o Jo U d WN -
O oUW w NN

=

© Ubung
Fuhre die folgenden Transformationen durch:

a) Transformiere pflanzen long ins Wide-Format, sodass weight und hoehe cm
jeweils eigene Spalten sind.

b) Fiige eine neue Spalte bmi (Body Mass Index fiir Pflanzen) hinzu, die das Verhaltnis

weight / hoehe_cm berechnet.

c) Transformiere den Datensatz zuriick ins Long-Format, sodass nun alle drei Variablen
(weight , hoehe_cm und bmi)in der Spalte messung erscheinen.

28
28/30

1 Lésungsvorschlag

a) Wide-Format erstellen
pflanzen wide <- pflanzen long %>%
pivot wider (
names from = messung,
values from = wert

)

pflanzen wide

A tibble: 30 x 4
plant id group weight hoehe cm

<int> <fct> <dbl> <dbl>
1 1 ctrl 4.17 23.6
2 2 ctrl 5.58 26.8
3 3 ctrl 5.18 26.6
4 4 ctrl 6.11 31.8
5 5 ctrl 4.5 23.3
6 6 ctrl 4.61 22.8
7 7 ctrl 5.17 28.9
8 8 ctrl 4.53 22.5
9 9 ctrl 5.33 30.7
10 10 ctrl 5.14 25.6

i 20 more rows

b) Neue Spalte hinzufiigen

pflanzen wide <- pflanzen wide %>%
mutate (bmi = weight / hoehe cm)

pflanzen wide

A tibble: 30 x 5
plant id group weight hoehe cm bmi

<int> <fct> <dbl> <dbl> <dbl>

1 1 ctrl 4.17 23.6 0.177
2 2 ctrl 5.58 26.8 0.208
3 3 ctrl 5.18 26.6 0.195
4 4 ctrl 6.11 31.8 0.192
5 5 ctrl 4.5 23.3 0.193
6 6 ctrl 4.61 22.8 0.202
7 7 ctrl 5.17 28.9 0.179
8 8 ctrl 4.53 22.5 0.202
9 9 ctrl 5.33 30.7 0.174
10 10 ctrl 5.14 25.6 0.201

i 20 more rows

c) Zurick ins Long-Format (alle drei Variablen)
pflanzen final long <- pflanzen wide %>%
pivot longer (

cols = c(weight, hoehe cm, bmi),
names to = "messung",
values to = "wert"

)

pflanzen final long

A tibble: 90 x 4

plant id group messung wert
<int> <fct> <chr> <dbl>
1 1 ctrl weight 4.17
2 1 ctrl hoehe cm 23.6
3 1 ctrl bmi 0.177
4 2 ctrl weight 5.58
5 2 ctrl hoehe cm 26.8
6 ctri—bmt 0-208
7 3 ctrl weight 5.18
8 3 ctrl hoehe cm 26.6 29
9 3 ctrl bmi 0.195
0 4 ctrl weight 6.11

=

2T QN MmMATA AT

BioMath

29/30

Zusammenfassung

Gut gemacht! Man beherrscht jetzt die wichtigsten Techniken, um Tabellen in R zu
kombinieren und umzustrukturieren.

1 Wichtige Erkenntnisse

1. Tabellen stapeln:

* bind_rows () : Zeilen untereinander stapeln - funktioniert auch bei unterschiedlichen

Spalten (fehlende werden mit NA gefullt)
* bind_cols () : Spalten nebeneinander kleben - Vorsicht: keine intelligente

VerknlUpfung, Reihenfolge muss stimmen!
2. Mutating Joins (fligen Spalten hinzu):

* left_join() : Alle Zeilen aus der linken Tabelle behalten - der Standardfall

* right join() : Alle Zeilen aus der rechten Tabelle behalten

inner_join () : Nur Zeilen mit Partner in beiden Tabellen
* full join() : Alle Zeilen aus beiden Tabellen

3. Filtering Joins (nur filtern, keine neuen Spalten):
* semi_join() : Zeilen aus x, die einen Partner in y haben

* anti_join() : Zeilen aus x, die keinen Partner in y haben - ideal fir “Was fehlt?”-

Fragen
4. Set Operations (Tabellen als Mengen, brauchen identische Spalten):

* union() : Alle einzigartigen Zeilen aus beiden
* intersect() : Nur Zeilen, die in beiden vorkommen
* setdiff () : Zeilen aus x, die nicht in y sind
5. Pivoting (Datenformat andern):
* pivot_longer () : Wide — Long (mehr Zeilen, weniger Spalten)
* pivot wider () : Long — Wide (weniger Zeilen, mehr Spalten)
6. Best Practices:

* Bei unterschiedlichen Spaltennamen: by = c("name_links" = "name rechts")

* Im Zweifel left join() statt bind cols()

* anti_join() zur Datenqualitatsprifung nutzen

Bibliography

30

BioMath

30/30

	Einleitung
	Tabellen stapeln
	Beispieldaten
	bind_rows()
	Unterschiedliche Spalten
	Herkunft markieren mit .id
	Alle drei Tabellen kombinieren

	bind_cols()
	Wann ist bind_cols() gefährlich?
	Wann sollte man bind_cols() verwenden?

	Tabellen joinen
	Beispieldaten
	Das Konzept: Schlüsselspalten
	Mutating Joins
	left_join()
	right_join()
	inner_join()
	full_join()

	Übung: Joins mit Pflanzendaten
	Unterschiedliche Spaltennamen

	Filtering Joins
	semi_join()
	anti_join()

	Set Operations
	union()
	intersect()
	setdiff()

	Daten umstrukturieren (Wide ↔ Long)
	pivot_longer()
	Spaltenauswahl mit Hilfsfunktionen

	pivot_wider()
	Typischer Anwendungsfall: Kreuztabellen

	Übung: Pivoting-Workflow

	Zusammenfassung
	Bibliography

