
BioMath

1/17

2. Fortgeschrittenes Arbeiten mit Excel

Professioneller Import und Export mit readxl und openxlsx2
Dr. Paul Schmidt

Packages laden
for (pkg in c("glue", "openxlsx2", "readxl", "tidyverse")) {
 if (!require(pkg, character.only = TRUE)) {
 install.packages(pkg, dependencies = TRUE)
 }
 library(pkg, character.only = TRUE)
}

Lade nötiges Paket: glue

Lade nötiges Paket: openxlsx2

Lade nötiges Paket: readxl

Attache Paket: 'readxl'

Das folgende Objekt ist maskiert 'package:openxlsx2':

 read_xlsx

Lade nötiges Paket: tidyverse

── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr 1.1.4 ✔ readr 2.1.5
✔ forcats 1.0.0 ✔ stringr 1.5.2
✔ ggplot2 4.0.2 ✔ tibble 3.3.0
✔ lubridate 1.9.4 ✔ tidyr 1.3.1
✔ purrr 1.1.0
── Conflicts ── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
✖ readxl::read_xlsx() masks openxlsx2::read_xlsx()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts
to become errors

Output-Verzeichnis erstellen falls nicht vorhanden
if (!dir.exists("output")) {
 dir.create("output")
}

Beispiel-Excel-Datei vorbereiten
Für die Import-Beispiele verwenden wir eine Excel-Datei, die mit dem openxlsx2 -Paket
mitgeliefert wird. Diese enthält zwei Sheets und verschiedene Datentypen, was sie ideal für
unsere Demonstrationen macht. Wir kopieren sie in unser Output-Verzeichnis, damit wir im
gesamten Kapitel damit arbeiten können:

1

BioMath

2/17

Beispiel-Datei aus openxlsx2-Paket lokalisieren
example_file <- system.file("extdata", "openxlsx2_example.xlsx", package =
"openxlsx2")

In output-Ordner kopieren
file.copy(
 from = example_file,
 to = "output/example.xlsx",
 overwrite = TRUE
)

[1] TRUE

1. Import: Beyond the Basics
In früheren Kapiteln haben wir readxl::read_excel() kennengelernt, um einzelne Excel-
Dateien einzulesen. In der Praxis begegnen uns jedoch oft komplexere Situationen: Dateien
mit mehreren Tabellenblättern, unordentliche Strukturen mit Kopfzeilen und Fußnoten, oder
spezielle Zellbereiche, die wir gezielt auslesen möchten. Hier erweitern wir unsere
Kenntnisse um diese häufigen Spezialfälle.

1.1 Multiple Sheets importieren
Excel-Dateien enthalten häufig mehrere Tabellenblätter, die thematisch zusammengehören –
beispielsweise verschiedene Messzeitpunkte eines Experiments oder unterschiedliche
Datensätze einer Studie. Anstatt jedes Sheet einzeln und manuell zu laden, können wir mit
excel_sheets() alle vorhandenen Sheet-Namen auslesen und diese dann systematisch in
einer Schleife importieren. Das Ergebnis speichern wir in einer named list, sodass wir über
die Sheet-Namen direkt auf die jeweiligen Datensätze zugreifen können.

Unsere Beispiel-Datei
file_path <- "output/example.xlsx"

Alle Sheet-Namen auflisten
sheet_names <- excel_sheets(file_path)
sheet_names

[1] "Sheet1" "Sheet2"

Alle Sheets in eine named list importieren
all_data <- map(sheet_names, \(sheet) read_excel(file_path, sheet = sheet))

New names:
New names:
• `` -> `...3`

names(all_data) <- sheet_names

Zugriff auf einzelnes Sheet
all_data$Sheet1

A tibble: 10 × 9
 Var1 Var2 ...3 Var3 Var4 Var5 Var6 Var7
 <lgl> <dbl> <lgl> <dbl> <chr> <dttm> <chr> <dbl>
 1 TRUE 1 NA 1 a 2023-05-29 00:00:00 3209324 This NA
 2 TRUE NA NA NA b 2023-05-23 00:00:00 <NA> 0
 3 TRUE 2 NA 1.34 c 2023-02-01 00:00:00 <NA> NA
 4 FALSE 2 NA NA <NA> NA <NA> 2
 5 FALSE 3 NA 1.56 e NA <NA> NA

2

BioMath

3/17

 6 FALSE 1 NA 1.7 f 2023-03-02 00:00:00 <NA> 2.7
 7 NA NA NA NA <NA> NA <NA> NA
 8 FALSE 2 NA 23 h 2023-12-24 00:00:00 <NA> 25
 9 FALSE 3 NA 67.3 i 2023-12-25 00:00:00 <NA> 3
10 NA 1 NA 123 <NA> 2023-07-31 00:00:00 <NA> 122
ℹ 1 more variable: Var8 <dttm>

Alternativ können wir auch mit einer klassischen for-Schleife arbeiten, falls wir purrr nicht
verwenden möchten oder die Logik expliziter gestalten wollen:

all_data <- list()
for (sheet in sheet_names) {
 all_data[[sheet]] <- read_excel(file_path, sheet = sheet)
}

New names:
New names:
• `` -> `...3`

1.2 Präzises Lesen: Ranges & Skip
In der realen Arbeitswelt sind Excel-Dateien selten so aufgeräumt wie in Lehrbüchern. Oft
finden wir Beschreibungstexte oberhalb der eigentlichen Daten, Fußnoten unterhalb, leere
Zeilen als Trenner, oder die eigentlichen Daten beginnen erst in Zeile 10 und Spalte C. Für
solche Situationen bietet readxl mehrere nützliche Optionen, mit denen wir präzise steuern
können, welche Teile der Datei wir einlesen möchten.

Mit der range -Option können wir einen exakten Zellbereich in Excel-Notation angeben (z.B.
"B5:G20"), um nur diesen Bereich einzulesen. Die skip -Option überspringt eine bestimmte
Anzahl von Zeilen am Anfang der Datei – praktisch, wenn die Daten erst nach mehreren
Kopfzeilen beginnen. Falls die Spaltennamen selbst chaotisch oder unbrauchbar sind,
können wir mit col_names = FALSE das automatische Einlesen der Header deaktivieren. Und

schließlich können wir mit na festlegen, welche Zeichenketten als fehlende Werte
interpretiert werden sollen – denn nicht jeder verwendet “NA” für Missing Values.

Nur einen bestimmten Zellbereich einlesen (Beispiel mit unserer Datei)
df <- read_excel("output/example.xlsx", range = "B3:G10")

New names:
• `1` -> `1...2`
• `` -> `...3`
• `1` -> `1...4`

df

A tibble: 7 × 6
 `TRUE` `1...2` ...3 `1...4` a `45075`
 <lgl> <dbl> <lgl> <dbl> <chr> <dttm>
1 TRUE NA NA NA b 2023-05-23 00:00:00
2 TRUE 2 NA 1.34 c 2023-02-01 00:00:00
3 FALSE 2 NA NA <NA> NA
4 FALSE 3 NA 1.56 e NA
5 FALSE 1 NA 1.7 f 2023-03-02 00:00:00
6 NA NA NA NA <NA> NA
7 FALSE 2 NA 23 h 2023-12-24 00:00:00

Erste 2 Zeilen überspringen
df <- read_excel("output/example.xlsx", skip = 2)

3

BioMath

4/17

New names:
• `1` -> `1...2`
• `` -> `...3`
• `1` -> `1...4`
• `` -> `...8`

df

A tibble: 9 × 9
 `TRUE` `1...2` ...3 `1...4` a `45075` `3209324 This` ...8
 <lgl> <dbl> <lgl> <dbl> <chr> <dttm> <lgl> <dbl>
1 TRUE NA NA NA b 2023-05-23 00:00:00 NA 0
2 TRUE 2 NA 1.34 c 2023-02-01 00:00:00 NA NA
3 FALSE 2 NA NA <NA> NA NA 2
4 FALSE 3 NA 1.56 e NA NA NA
5 FALSE 1 NA 1.7 f 2023-03-02 00:00:00 NA 2.7
6 NA NA NA NA <NA> NA NA NA
7 FALSE 2 NA 23 h 2023-12-24 00:00:00 NA 25
8 FALSE 3 NA 67.3 i 2023-12-25 00:00:00 NA 3
9 NA 1 NA 123 <NA> 2023-07-31 00:00:00 NA 122
ℹ 1 more variable: `6.0590277777777778E-2` <dttm>

Keine automatischen Spaltennamen (wenn Header chaotisch ist)
df <- read_excel("output/example.xlsx", col_names = FALSE)

New names:
• `` -> `...1`
• `` -> `...2`
• `` -> `...3`
• `` -> `...4`
• `` -> `...5`
• `` -> `...6`
• `` -> `...7`
• `` -> `...8`
• `` -> `...9`

df

A tibble: 11 × 9
 ...1 ...2 ...3 ...4 ...5 ...6 ...7 ...8 ...9
 <chr> <chr> <lgl> <chr> <chr> <chr> <chr> <chr> <chr>
 1 Var1 Var2 NA Var3 Var4 Var5 Var6 Var7 Var8
 2 TRUE 1 NA 1 a 45075 3209324 This <NA> 6.0590277777777778E-2
 3 TRUE <NA> NA <NA> b 45069 <NA> 0 0.58538194444444447
 4 TRUE 2 NA 1.34 c 44958 <NA> <NA> 0.959050925925926
 5 FALSE 2 NA <NA> <NA> <NA> <NA> 2 0.72561342592592604
 6 FALSE 3 NA 1.56 e <NA> <NA> <NA> <NA>
 7 FALSE 1 NA 1.7 f 44987 <NA> 2.7 0.36525462962962968
 8 <NA> <NA> NA <NA> <NA> <NA> <NA> <NA> <NA>
 9 FALSE 2 NA 23 h 45284 <NA> 25 <NA>
10 FALSE 3 NA 67.3 i 45285 <NA> 3 <NA>
11 <NA> 1 NA 123 <NA> 45138 <NA> 122 <NA>

Custom NA-Werte definieren
df <- read_excel(
 "output/example.xlsx",
 na = c("", "NA", "#NUM!", "#DIV/0!")
)

New names:
• `` -> `...3`

df

4

BioMath

5/17

A tibble: 10 × 9
 Var1 Var2 ...3 Var3 Var4 Var5 Var6 Var7
 <lgl> <dbl> <lgl> <dbl> <chr> <dttm> <chr> <dbl>
 1 TRUE 1 NA 1 a 2023-05-29 00:00:00 3209324 This NA
 2 TRUE NA NA NA b 2023-05-23 00:00:00 <NA> 0
 3 TRUE 2 NA 1.34 c 2023-02-01 00:00:00 <NA> NA
 4 FALSE 2 NA NA <NA> NA <NA> 2
 5 FALSE 3 NA 1.56 e NA <NA> NA
 6 FALSE 1 NA 1.7 f 2023-03-02 00:00:00 <NA> 2.7
 7 NA NA NA NA <NA> NA <NA> NA
 8 FALSE 2 NA 23 h 2023-12-24 00:00:00 <NA> 25
 9 FALSE 3 NA 67.3 i 2023-12-25 00:00:00 <NA> 3
10 NA 1 NA 123 <NA> 2023-07-31 00:00:00 <NA> 122
ℹ 1 more variable: Var8 <dttm>

Kombination mehrerer Optionen
df <- read_excel(
 "output/example.xlsx",
 sheet = "Sheet1",
 range = "B2:F8",
 col_names = TRUE
)

New names:
• `` -> `...3`

df

A tibble: 6 × 5
 Var1 Var2 ...3 Var3 Var4
 <lgl> <dbl> <lgl> <dbl> <chr>
1 TRUE 1 NA 1 a
2 TRUE NA NA NA b
3 TRUE 2 NA 1.34 c
4 FALSE 2 NA NA <NA>
5 FALSE 3 NA 1.56 e
6 FALSE 1 NA 1.7 f

 Range-Syntax

Die range -Option akzeptiert Excel-Notation (z.B. "B3:F20") oder auch nur Startpunkte

(z.B. "B3" liest ab B3 bis zum Ende).

2. Export: Professional Formatting
Der Export mit openxlsx2 geht weit über das einfache Schreiben von Daten hinaus.
Während base R und viele andere Packages lediglich die nackten Zahlen und Texte in eine
Excel-Datei schreiben, ermöglicht uns openxlsx2 die Erstellung von professionell
formatierten Excel-Dateien, die direkt präsentationsreif sind. Wir können Spaltenbreiten
anpassen, Header hervorheben, bedingte Formatierungen anwenden und vieles mehr – alles
programmatisch und reproduzierbar.

5

BioMath

6/17

 Excel-Dateien direkt aus R öffnen

Nach dem Erstellen einer Excel-Datei können wir diese direkt aus R heraus öffnen, um
das Ergebnis zu überprüfen:
Windows
shell.exec("output/trial_table.xlsx")

macOS/Linux
system2("open", "output/trial_table.xlsx") # macOS
system2("xdg-open", "output/trial_table.xlsx") # Linux

Beispieldaten erstellen
Für alle folgenden Beispiele verwenden wir einen kleinen, konsistenten Datensatz aus einer
klinischen Studie. Dieser enthält Patienten-IDs, Behandlungsgruppen, Messzeitpunkte,
Outcome-Werte und Besuchsdaten. So können wir die verschiedenen
Formatierungsmöglichkeiten an einem durchgängigen Beispiel demonstrieren:

set.seed(42)
trial_data <- tibble(
 patient_id = glue("P{str_pad(1:12, width = 3, pad = '0')}"),
 treatment = rep(c("Drug A", "Drug B", "Control"), each = 4),
 timepoint = rep(c("Baseline", "Week 4", "Week 8"), times = 4),
 outcome = round(rnorm(12, mean = 50, sd = 10), 1),
 visit_date = seq.Date(from = as.Date("2024-01-15"), by = "week", length.out = 12)
)

trial_data

A tibble: 12 × 5
 patient_id treatment timepoint outcome visit_date
 <glue> <chr> <chr> <dbl> <date>
 1 P001 Drug A Baseline 63.7 2024-01-15
 2 P002 Drug A Week 4 44.4 2024-01-22
 3 P003 Drug A Week 8 53.6 2024-01-29
 4 P004 Drug A Baseline 56.3 2024-02-05
 5 P005 Drug B Week 4 54 2024-02-12
 6 P006 Drug B Week 8 48.9 2024-02-19
 7 P007 Drug B Baseline 65.1 2024-02-26
 8 P008 Drug B Week 4 49.1 2024-03-04
 9 P009 Control Week 8 70.2 2024-03-11
10 P010 Control Baseline 49.4 2024-03-18
11 P011 Control Week 4 63 2024-03-25
12 P012 Control Week 8 72.9 2024-04-01

2.1 Basics Review (sehr kurz)
Zur Erinnerung: Das grundlegende Erstellen einer Excel-Datei folgt immer demselben
Muster. Wir erstellen ein Workbook-Objekt, fügen ein oder mehrere Worksheets hinzu,
schreiben Daten hinein und speichern das Workbook als .xlsx -Datei. Dieser Workflow
bildet die Basis für alle weiteren Formatierungen:

Workbook erstellen
wb <- wb_workbook()

Worksheet hinzufügen
wb <- wb |> wb_add_worksheet("Trial Data")

Daten schreiben

6

BioMath

7/17

wb <- wb |> wb_add_data(x = trial_data)

Speichern
wb_save(wb, "output/trial_basic.xlsx", overwrite = TRUE)

2.2 Column Widths
Eine der ersten Dinge, die uns beim Öffnen einer frisch exportierten Excel-Datei auffällt, sind
oft zu schmale oder zu breite Spalten. Lange Texte werden abgeschnitten, Zahlen als ###
angezeigt, während andere Spalten unnötig viel Platz verschwenden. Mit
wb_set_col_widths() können wir dieses Problem elegant lösen: Die Option
widths = "auto" berechnet automatisch die optimale Breite basierend auf dem Inhalt jeder
Spalte. So werden alle Daten vollständig und übersichtlich dargestellt, ohne dass wir manuell
in Excel nacharbeiten müssen.

wb <- wb_workbook() |>
 wb_add_worksheet("Trial Data") |>
 wb_add_data(x = trial_data) |>
 # Automatische Breite für alle Spalten
 wb_set_col_widths(cols = 1:ncol(trial_data), widths = "auto")

wb_save(wb, "output/trial_colwidths.xlsx", overwrite = TRUE)

 Tipp

Alternativ können wir auch spezifische Breiten in Excel-Einheiten setzen, beispielsweise
wenn wir genau wissen, wie breit bestimmte Spalten sein sollen:
wb_set_col_widths(cols = 1:3, widths = c(15, 20, 12))

2.3 Header Styling
Die Header-Zeile ist der wichtigste visuelle Orientierungspunkt in einer Tabelle. In
professionellen Excel-Dateien sind die Spaltennamen daher typischerweise fettgedruckt und
farblich hervorgehoben – meist mit einem dezenten grauen Hintergrund. Diese Formatierung
macht die Tabelle sofort lesbarer und verleiht ihr ein professionelles Erscheinungsbild. Mit
wb_add_font() machen wir den Text fett, mit wb_add_fill() fügen wir die Hintergrundfarbe
hinzu. Beide Funktionen wenden wir gezielt auf die erste Zeile (den Header) an:

wb <- wb_workbook() |>
 wb_add_worksheet("Trial Data") |>
 wb_add_data(x = trial_data) |>
 wb_set_col_widths(cols = 1:ncol(trial_data), widths = "auto") |>
 # Header fett + grauer Hintergrund
 wb_add_font(dims = "A1:E1", bold = TRUE, size = 11) |>
 wb_add_fill(dims = "A1:E1", color = wb_color(hex = "FFD3D3D3"))

wb_save(wb, "output/trial_header.xlsx", overwrite = TRUE)

2.4 Excel Tables (filterbar)
Während wb_add_data() einfach nur Zellwerte schreibt, erstellt wb_add_data_table() eine
richtige Excel-Tabelle mit eingebauter Funktionalität. Excel-Tabellen bieten automatisch
Filter-Buttons in der Header-Zeile, strukturierte Referenzen für Formeln und ein einheitliches

7

BioMath

8/17

Design. Das ist besonders praktisch, wenn wir die Datei später an Kollegen weitergeben, die
darin filtern oder sortieren möchten. Die verschiedenen table_style -Optionen bieten
vorgefertigte Designs, die wir direkt anwenden können:

wb <- wb_workbook() |>
 wb_add_worksheet("Trial Data") |>
 # wb_add_data_table() statt wb_add_data()
 wb_add_data_table(
 x = trial_data,
 table_style = "TableStyleMedium2"
) |>
 wb_set_col_widths(cols = 1:ncol(trial_data), widths = "auto")

wb_save(wb, "output/trial_table.xlsx", overwrite = TRUE)

 Verfügbare Table Styles

Excel bietet viele vorgefertigte Styles: "TableStyleLight1" bis "TableStyleLight21" ,
"TableStyleMedium1" bis "TableStyleMedium28" , etc. Am besten einfach verschiedene
ausprobieren, um den passenden Stil zu finden!

2.5 Gridlines ausschalten
Standardmäßig zeigt Excel Gitterlinien auf dem gesamten Worksheet, selbst in leeren
Bereichen. Das kann bei kleineren, fokussierten Tabellen ablenkend wirken. Wenn wir ein
cleanes Layout bevorzugen, bei dem nur die Zellen mit Daten durch Rahmen hervorgehoben
sind, können wir die Gitterlinien mit grid_lines = FALSE beim Erstellen des Worksheets
deaktivieren. In Kombination mit einer Excel-Tabelle (die eigene Rahmen mitbringt) erhalten
wir so ein sehr aufgeräumtes, professionelles Erscheinungsbild:

wb <- wb_workbook() |>
 wb_add_worksheet("Trial Data", grid_lines = FALSE) |>
 wb_add_data_table(x = trial_data) |>
 wb_set_col_widths(cols = 1:ncol(trial_data), widths = "auto")

wb_save(wb, "output/trial_nogrid.xlsx", overwrite = TRUE)

2.6 Conditional Formatting
Bedingte Formatierung ist eines der mächtigsten Features in Excel und besonders nützlich,
um Muster in Daten hervorzuheben. Statt manuell durch Spalten zu scrollen und Werte zu
vergleichen, können wir Zellen automatisch basierend auf ihrem Wert einfärben, mit Balken
versehen oder durch Icons markieren lassen. Die folgenden Beispiele zeigen drei häufige
Anwendungsfälle.

Color Scales (Farbverläufe)
Mit Color Scales wird jede Zelle basierend auf ihrem Wert eingefärbt – niedrige Werte
beispielsweise rot, mittlere gelb, hohe grün. Das ermöglicht einen sofortigen visuellen
Überblick über die Verteilung der Werte. Besonders nützlich für Outcome-Variablen, Scores
oder jegliche Messwerte, bei denen die Größenordnung relevant ist:

wb <- wb_workbook() |>
 wb_add_worksheet("Trial Data") |>

8

BioMath

9/17

 wb_add_data_table(x = trial_data) |>
 wb_set_col_widths(cols = 1:ncol(trial_data), widths = "auto") |>
 # Color Scale für outcome-Spalte (Spalte D = 4)
 wb_add_conditional_formatting(
 dims = "D2:D13", # ohne Header
 type = "colorScale",
 style = c("red", "yellow", "green"),
 rule = c(0, 50, 100)
)

wb_save(wb, "output/trial_colorscale.xlsx", overwrite = TRUE)

Data Bars (Balken in Zellen)
Data Bars zeigen einen horizontalen Balken in jeder Zelle, dessen Länge dem Wert
entspricht. Das funktioniert wie ein Mini-Balkendiagramm direkt in der Tabelle und macht
Größenunterschiede auf einen Blick erkennbar. Die Zahlen bleiben dabei weiterhin sichtbar,
sodass wir sowohl den exakten Wert als auch die visuelle Proportion sehen:

wb <- wb_workbook() |>
 wb_add_worksheet("Trial Data") |>
 wb_add_data_table(x = trial_data) |>
 wb_set_col_widths(cols = 1:ncol(trial_data), widths = "auto") |>
 # Data Bars für outcome-Spalte
 wb_add_conditional_formatting(
 dims = "D2:D13",
 type = "dataBar",
 style = c("#4472C4"), # Blau
 params = list(showValue = TRUE, gradient = TRUE)
)

wb_save(wb, "output/trial_databars.xlsx", overwrite = TRUE)

Rule-based Formatting
Manchmal wollen wir nicht alle Werte einfärben, sondern nur die, die ein bestimmtes
Kriterium erfüllen – beispielsweise alle Outcome-Werte über einem Schwellenwert. Mit rule-
based Formatting definieren wir eine Bedingung (z.B. ">55") und einen Style (Schriftfarbe,
Hintergrundfarbe), der auf die entsprechenden Zellen angewandt wird. Das ist ideal, um
kritische Werte hervorzuheben:

Custom Style für Werte > 55
high_style <- create_dxfs_style(
 font_color = wb_color(hex = "FF006100"),
 bg_fill = wb_color(hex = "FFC6EFCE")
)

wb <- wb_workbook() |>
 wb_add_worksheet("Trial Data") |>
 wb_add_data_table(x = trial_data) |>
 wb_set_col_widths(cols = 1:ncol(trial_data), widths = "auto")

Style zum Workbook hinzufügen
wb$styles_mgr$add(high_style, "high_values")

Conditional Formatting anwenden
wb <- wb |>
 wb_add_conditional_formatting(
 dims = "D2:D13",
 type = "expression",
 rule = ">55",
 style = "high_values"

9

BioMath

10/17

)

wb_save(wb, "output/trial_rules.xlsx", overwrite = TRUE)

! Weitere Conditional Formatting Optionen

Es gibt viele weitere Typen wie "topN" (die Top-N höchsten Werte), "bottomN" ,
"duplicatedValues" (Duplikate markieren), "iconSet" (Ampel-Icons) etc. Für Details
siehe das Conditional Formatting Vignette.

2.7 Freeze Panes
Bei längeren Tabellen verlieren wir beim Scrollen nach unten schnell den Überblick, welche
Spalte welche Daten enthält – denn die Header-Zeile verschwindet aus dem Sichtfeld. Mit
Freeze Panes können wir die erste Zeile (oder auch die erste Spalte) fixieren, sodass sie
beim Scrollen immer sichtbar bleibt. Das ist eine der meistgenutzten Features in Excel und
macht das Arbeiten mit größeren Datensätzen erheblich komfortabler:

wb <- wb_workbook() |>
 wb_add_worksheet("Trial Data") |>
 wb_add_data_table(x = trial_data) |>
 wb_set_col_widths(cols = 1:ncol(trial_data), widths = "auto") |>
 # Erste Zeile fixieren
 wb_freeze_pane(first_row = TRUE)

wb_save(wb, "output/trial_freeze.xlsx", overwrite = TRUE)

 Tipp

Wir können auch die erste Spalte fixieren (nützlich bei breiten Tabellen mit vielen
Spalten):
wb_freeze_pane(first_col = TRUE)

Oder sogar beides gleichzeitig:
wb_freeze_pane(first_row = TRUE, first_col = TRUE)

2.8 Hyperlinks
Hyperlinks machen Excel-Dateien interaktiv und verknüpfen verschiedene Informationen
miteinander. Wir können externe URLs einbinden (z.B. zu Protokollen oder
Dokumentationen) oder interne Links zu anderen Sheets erstellen. Das ist besonders
praktisch für Inhaltsverzeichnisse oder wenn wir zwischen verschiedenen Tabellenblättern
navigieren wollen. In openxlsx2 gibt es zwei verschiedene Ansätze: externe Links

verwenden wb_add_hyperlink() , während interne Sheet-Links über create_hyperlink()

und wb_add_formula() erstellt werden:

wb <- wb_workbook() |>
 wb_add_worksheet("Overview") |>
 wb_add_data(x = tibble(
 Description = c("Study Protocol", "Raw Data", "Analysis")
))

10

https://janmarvin.github.io/openxlsx2/articles/conditional-formatting.html

BioMath

11/17

Trial Data Sheet hinzufügen
wb <- wb |>
 wb_add_worksheet("Trial Data") |>
 wb_add_data_table(x = trial_data) |>
 wb_set_col_widths(cols = 1:ncol(trial_data), widths = "auto")

Externe URL als Hyperlink
wb <- wb |>
 wb_add_data(
 sheet = "Overview",
 dims = "B2",
 x = "Protocol Document"
) |>
 wb_add_hyperlink(
 sheet = "Overview",
 dims = "B2",
 target = "https://example.com/protocol",
 tooltip = "Link to study protocol"
)

Interner Link zu anderem Sheet (mit create_hyperlink + wb_add_formula)
internal_link <- create_hyperlink(
 sheet = "Trial Data",
 row = 1,
 col = 1,
 text = "Go to Trial Data"
)

wb <- wb |>
 wb_add_formula(
 sheet = "Overview",
 dims = "B3",
 x = internal_link
)

wb_save(wb, "output/trial_hyperlinks.xlsx", overwrite = TRUE)

 Externe vs. Interne Links

• Externe URLs: wb_add_hyperlink() mit target =
• Interne Sheet-Links: create_hyperlink() + wb_add_formula()

2.9 Date/Number Formats
Excel interpretiert Zahlen und Datumsangaben oft anders als wir es erwarten –
Datumsangaben werden als Zahlen dargestellt, Dezimalstellen fehlen, oder Währungen
erscheinen ohne Symbol. Mit Number Formats können wir exakt festlegen, wie Werte
angezeigt werden sollen. Dabei ändern wir nur die Darstellung, nicht den zugrundeliegenden
Wert. Das ist besonders wichtig für Berichte, die wir an andere weitergeben, damit die Daten
sofort in der gewünschten Form erscheinen:

wb <- wb_workbook() |>
 wb_add_worksheet("Trial Data") |>
 wb_add_data_table(x = trial_data) |>
 wb_set_col_widths(cols = 1:ncol(trial_data), widths = "auto") |>
 # Outcome als Zahl mit 1 Dezimalstelle
 wb_add_numfmt(dims = "D2:D13", numfmt = "0.0") |>
 # Datum als dd.mm.yyyy
 wb_add_numfmt(dims = "E2:E13", numfmt = "dd.mm.yyyy")

11

BioMath

12/17

wb_save(wb, "output/trial_formats.xlsx", overwrite = TRUE)

 Häufige Number Formats

• "0.00" - zwei Dezimalstellen
• "0.00%" - Prozent
• "#,##0.00" - Tausender-Trennzeichen
• "#,##0.00 €" - Währung
• "dd.mm.yyyy" - Datum deutsch
• "yyyy-mm-dd" - Datum ISO
• "[h]:mm:ss" - Zeit über 24h

Für Custom-Formate mit Text: siehe openxlsx2 Styling Manual

2.10 Advanced Beispiele aus ox2-book
Das ox2-book ist das umfassende Handbuch zu openxlsx2 und enthält zahlreiche
fortgeschrittene Beispiele und Techniken. Im Folgenden zeigen wir einige Highlights aus den
Kapiteln zu Styling, Conditional Formatting und Formeln. Diese Beispiele kratzen nur an der
Oberfläche dessen, was möglich ist – für tiefergehende Anwendungen lohnt sich ein Blick in
die jeweiligen Kapitel.

Text Rotation (Kap. 5: Styling)
Text um 45° zu drehen ist besonders nützlich bei Tabellen mit vielen Spalten und langen
Header-Texten. Der gedrehte Text spart horizontal Platz und macht die Tabelle kompakter,
ohne die Lesbarkeit zu beeinträchtigen. In Kombination mit Fettdruck und einer
Hintergrundfarbe entsteht ein sehr professioneller Look:

wb <- wb_workbook() |>
 wb_add_worksheet("Trial Data") |>
 wb_add_data(x = trial_data) |>
 wb_set_col_widths(cols = 1:ncol(trial_data), widths = 12) |>
 # Text rotation + Styling
 wb_add_cell_style(
 dims = "A1:E1",
 horizontal = "center",
 text_rotation = 45
) |>
 wb_add_font(dims = "A1:E1", bold = TRUE, size = 10) |>
 wb_add_fill(dims = "A1:E1", color = wb_color(hex = "FF4472C4"))

wb_save(wb, "output/trial_rotation.xlsx", overwrite = TRUE)

Weitere Styling-Optionen: Kapitel 5 - Styling of worksheets

Icon Sets (Kap. 7: Conditional Formatting)
Icon Sets sind eine elegante Variante der bedingten Formatierung: Statt Zellen einzufärben,
fügen wir kleine Icons hinzu (z.B. Ampel-Symbole), die auf einen Blick zeigen, ob Werte gut,
mittel oder schlecht sind. Das ist besonders nützlich für Dashboards und Reports, da die
Icons auch beim Ausdrucken gut erkennbar bleiben:

12

https://janmarvin.github.io/openxlsx2/articles/openxlsx2_style_manual.html
https://janmarvin.github.io/ox2-book/
https://janmarvin.github.io/ox2-book/chapters/openxlsx2_style_manual.html

BioMath

13/17

wb <- wb_workbook() |>
 wb_add_worksheet("Trial Data") |>
 wb_add_data_table(x = trial_data) |>
 wb_set_col_widths(cols = 1:ncol(trial_data), widths = "auto") |>
 # Icon Set: 3 Ampelfarben
 wb_add_conditional_formatting(
 dims = "D2:D13",
 type = "iconSet",
 params = list(
 iconSet = "3Symbols", # Ampel: rot/gelb/grün
 showValue = TRUE
)
)

wb_save(wb, "output/trial_icons.xlsx", overwrite = TRUE)

Weitere Icon Sets: "3Arrows" , "4Rating" , "5Quarters" etc. Siehe Conditional Formatting
Vignette.

Excel Formulas (Kap. 8: Formulas)
Excel-Formeln sind das Herzstück von dynamischen Spreadsheets. Mit openxlsx2 können
wir Formeln direkt in Zellen schreiben, die dann beim Öffnen der Datei in Excel automatisch
berechnet werden. Das ist praktisch für Summen, Durchschnitte oder komplexere
Berechnungen. Wichtig: Die Formeln werden erst in Excel ausgewertet, nicht in R:

Beispiel mit SUM-Formel
wb <- wb_workbook() |>
 wb_add_worksheet("Trial Data") |>
 wb_add_data(x = trial_data) |>
 wb_set_col_widths(cols = 1:ncol(trial_data), widths = "auto") |>
 # SUM-Formel für Gesamtsumme
 wb_add_formula(dims = "D14", x = "SUM(D2:D13)") |>
 # AVERAGE-Formel
 wb_add_formula(dims = "D15", x = "AVERAGE(D2:D13)") |>
 # Labels hinzufügen
 wb_add_data(dims = "C14", x = "Total") |>
 wb_add_data(dims = "C15", x = "Average")

wb_save(wb, "output/trial_formulas.xlsx", overwrite = TRUE)

Weitere Formula-Beispiele: Kapitel 8 - Spreadsheet formulas

Pivot Tables (Kap. 9: Kurze Erwähnung)
openxlsx2 kann auch Pivot Tables erstellen, allerdings ist dies ein fortgeschrittenes und
komplexes Thema. Pivot Tables sind mächtige Werkzeuge zur Datenanalyse und -
zusammenfassung direkt in Excel. Die Erstellung ist jedoch deutlich aufwändiger als die
anderen hier gezeigten Features. Für Details und vollständige Beispiele siehe Kapitel 9 -
Pivot tables.

3. Template-Workflow: Bestehende Excel-
Dateien befüllen
Bisher haben wir Excel-Dateien immer von Grund auf neu erstellt. In der Praxis gibt es
jedoch häufig einen anderen Anwendungsfall: Wir haben eine vorformatierte Excel-Vorlage
(Template) mit komplexem Layout, Corporate Design, Formeln oder Pivot-Tabellen, und

13

https://janmarvin.github.io/openxlsx2/articles/conditional-formatting.html
https://janmarvin.github.io/openxlsx2/articles/conditional-formatting.html
https://janmarvin.github.io/ox2-book/chapters/openxlsx2_formulas_manual.html
https://janmarvin.github.io/ox2-book/chapters/openxlsx2_pivot_tables.html
https://janmarvin.github.io/ox2-book/chapters/openxlsx2_pivot_tables.html

BioMath

14/17

möchten diese nur noch mit aktuellen Daten befüllen. Das manuelle Nachbauen solcher
Templates in R wäre extrem aufwändig – stattdessen laden wir einfach die bestehende Datei
und schreiben nur die Daten hinein.

Wann ist der Template-Workflow sinnvoll?
Der Template-Workflow ist besonders nützlich, wenn:

• Die Excel-Datei ein komplexes, festes Layout hat (z.B. Berichtsvorlagen mit Logos,
Rahmen, mehreren Bereichen)

• Das Corporate Design bereits in der Vorlage implementiert ist
• Die Datei Excel-Formeln enthält, die auf die eingefügten Daten verweisen sollen
• Regelmäßig wiederkehrende Reports erstellt werden (z.B. monatliche Auswertungen)
• Mehrere Personen dieselbe Vorlage nutzen und nur die Daten variieren

Grundprinzip
Der Workflow besteht aus drei Schritten:

1. Vorlage kopieren – Die Original-Vorlage bleibt unverändert
2. Kopie laden – Mit wb_load() öffnen wir die Kopie
3. Daten einfügen – Mit wb_add_data() schreiben wir an die richtigen Positionen

1. Vorlage kopieren (Original bleibt erhalten)
file.copy(
 from = "vorlagen/Monatsbericht_Vorlage.xlsx",
 to = "output/Monatsbericht_Januar.xlsx",
 overwrite = TRUE
)

2. Kopie laden
wb <- wb_load("output/Monatsbericht_Januar.xlsx")

3. Daten an die richtigen Stellen schreiben
wb <- wb |>
 wb_add_data(sheet = "Daten", x = meine_daten, start_row = 5, start_col = 2)

4. Speichern
wb_save(wb, "output/Monatsbericht_Januar.xlsx", overwrite = TRUE)

Praxisbeispiel: Auswertungstabelle befüllen
Stellen wir uns vor, wir haben eine Excel-Vorlage mit drei Tabellenblättern für verschiedene
Auswertungen. Die Vorlage enthält bereits Header, Formatierungen und Summenformeln –
wir müssen nur noch die Daten einfügen.

Beispieldaten vorbereiten
set.seed(123)
ergebnis_1 <- tibble(
 Kategorie = c("A", "B", "C"),
 Anzahl = c(45, 32, 28),
 Anteil = c(0.43, 0.30, 0.27)
)

ergebnis_2 <- tibble(
 Region = c("Nord", "Süd", "Ost", "West"),
 Umsatz = c(12500, 18300, 9800, 15200)
)

14

BioMath

15/17

Für dieses Beispiel erstellen wir eine "Vorlage"
(in der Praxis wäre das eine bereits existierende Datei)
template_wb <- wb_workbook() |>
 wb_add_worksheet("Übersicht") |>
 wb_add_data(x = "Monatsbericht", dims = "A1") |>
 wb_add_font(dims = "A1", bold = TRUE, size = 16) |>
 wb_add_worksheet("Kategorien") |>
 wb_add_data(x = tibble(Kategorie = character(), Anzahl = numeric(), Anteil =
numeric())) |>
 wb_add_font(dims = "A1:C1", bold = TRUE) |>
 wb_add_fill(dims = "A1:C1", color = wb_color(hex = "FFD3D3D3")) |>
 wb_add_worksheet("Regionen") |>
 wb_add_data(x = tibble(Region = character(), Umsatz = numeric())) |>
 wb_add_font(dims = "A1:B1", bold = TRUE) |>
 wb_add_fill(dims = "A1:B1", color = wb_color(hex = "FFD3D3D3"))

wb_save(template_wb, "output/vorlage.xlsx", overwrite = TRUE)

--- TEMPLATE-WORKFLOW ---

1. Vorlage kopieren
file.copy(
 from = "output/vorlage.xlsx",
 to = "output/bericht_aktuell.xlsx",
 overwrite = TRUE
)

[1] TRUE

2. Kopie laden
wb <- wb_load("output/bericht_aktuell.xlsx")

3. Daten einfügen (OHNE Header, da bereits in Vorlage)
wb <- wb |>
 wb_add_data(
 sheet = "Kategorien",
 x = ergebnis_1,
 start_row = 2, # Zeile 1 ist Header
 col_names = FALSE # Keine Spaltennamen schreiben
) |>
 wb_add_data(
 sheet = "Regionen",
 x = ergebnis_2,
 start_row = 2,
 col_names = FALSE
)

4. Speichern
wb_save(wb, "output/bericht_aktuell.xlsx", overwrite = TRUE)

Wichtige Argumente bei wb_add_data()
Beim Befüllen von Templates sind folgende Argumente besonders relevant:

Argument Beschreibung Typischer Wert

sheet Name oder Index des
Tabellenblatts

"Daten" oder 1

x Die einzufügenden Daten
(data.frame/tibble)

meine_daten

start_row Startzeile für die Daten 2 (wenn Zeile 1 = Header)

15

BioMath

16/17

Argument Beschreibung Typischer Wert

start_col Startspalte für die Daten 1 oder "B"

col_names Spaltennamen schreiben? FALSE (Header in Vorlage)

na.strings Wie sollen NA-Werte
dargestellt werden?

"" (leere Zelle)

 Tipp: Positionen in der Vorlage dokumentieren

Wenn die Vorlage komplex ist, empfiehlt es sich, die Einfügepositionen zu
dokumentieren:
Positionen in der Vorlage "Tabellenband.xlsx":
- Sheet "Häufigkeiten": Daten ab Zeile 2, Spalte A
- Sheet "Kreuztabelle": Daten ab Zeile 5, Spalte B
- Sheet "Zusammenfassung": Daten ab Zeile 3, Spalte A

 Achtung: Bestehende Daten werden überschrieben

wb_add_data() überschreibt den Zielbereich ohne Warnung. Wenn die Vorlage bereits
Daten enthält (z.B. Beispielwerte), werden diese ersetzt. Formeln, die auf diese Zellen
verweisen, werden automatisch mit den neuen Werten berechnet.

Zusammenfassung
In diesem Kapitel haben wir gelernt, wie wir mit R professionelle, präsentationsreife Excel-
Dateien erstellen können. Wir haben gesehen, wie wir beim Import präzise mit mehreren
Sheets und unordentlichen Daten umgehen, und beim Export haben wir eine Vielzahl von
Formatierungsmöglichkeiten kennengelernt, die unsere Excel-Dateien von einfachen Daten-
Dumps zu ansprechenden, nutzerfreundlichen Reports machen.

Import: - Multiple Sheets systematisch einlesen mit excel_sheets() und map() - Präzise
Ranges und Custom NA-Werte für chaotische Dateien

Export: - Automatische Spaltenbreite für optimale Darstellung - Professionelles Header-
Styling mit Fettdruck und Hintergrundfarbe - Filterbare Excel-Tabellen statt einfacher
Zellbereiche - Conditional Formatting (Color Scales, Data Bars, Rules) für visuelle
Hervorhebung - Freeze Panes für bessere Navigation in großen Tabellen - Hyperlinks für
Verknüpfungen zu URLs und anderen Sheets - Custom Date/Number Formats für korrekte
Darstellung - Advanced Features aus dem ox2-book für spezielle Anforderungen

Template-Workflow: - Bestehende Excel-Vorlagen mit wb_load() laden statt neu erstellen -

Daten gezielt an bestimmte Positionen schreiben mit start_row , start_col ,
col_names = FALSE - Ideal für wiederkehrende Reports mit festem Layout und Corporate
Design

Weiterführende Ressourcen:

• openxlsx2 Dokumentation

16

https://janmarvin.github.io/openxlsx2/

BioMath

17/17

• ox2-book - The openxlsx2 book
• readxl Dokumentation

Datum: 2026-02-08

Bibliography

17

https://janmarvin.github.io/ox2-book/
https://readxl.tidyverse.org/

	Packages laden
	Beispiel-Excel-Datei vorbereiten

	1. Import: Beyond the Basics
	1.1 Multiple Sheets importieren
	1.2 Präzises Lesen: Ranges & Skip

	2. Export: Professional Formatting
	Beispieldaten erstellen
	2.1 Basics Review (sehr kurz)
	2.2 Column Widths
	2.3 Header Styling
	2.4 Excel Tables (filterbar)
	2.5 Gridlines ausschalten
	2.6 Conditional Formatting
	Color Scales (Farbverläufe)
	Data Bars (Balken in Zellen)
	Rule-based Formatting

	2.7 Freeze Panes
	2.8 Hyperlinks
	2.9 Date/Number Formats
	2.10 Advanced Beispiele aus ox2-book
	Text Rotation (Kap. 5: Styling)
	Icon Sets (Kap. 7: Conditional Formatting)
	Excel Formulas (Kap. 8: Formulas)
	Pivot Tables (Kap. 9: Kurze Erwähnung)

	3. Template-Workflow: Bestehende Excel-Dateien befüllen
	Wann ist der Template-Workflow sinnvoll?
	Grundprinzip
	Praxisbeispiel: Auswertungstabelle befüllen
	Wichtige Argumente bei wb_add_data()

	Zusammenfassung
	Bibliography

