BioMath

2. Fortgeschrittenes Arbeiten mit Excel

Professioneller Import und Export mit readxl und openxlsx2
Dr. Paul Schmidt

Packages laden

for (pkg in c("glue", "openxlsx2", "readxl", "tidyverse")) {
if (!require (pkg, character.only = TRUE)) {
install.packages (pkg, dependencies = TRUE)
}
library (pkg, character.only = TRUE)
}

ILade notiges Paket: glue
ILade notiges Paket: openxlsx2

ILade notiges Paket: readxl

Attache Paket: 'readxl'

Das folgende Objekt ist maskiert 'package:openxlsx2':

read xlsx

Lade notiges Paket: tidyverse

— Attaching core tidyverse packages tidyverse 2.0.0 —
/ dplyr 1.1.4 / readr 2.1:5

v/ forcats 1.0.0 / stringr 1.5.2

v/ ggplot2 4.0.2 / tibble 3.3.0

/ lubridate 1.9.4 / tidyr 1.3.1

/ purrr 1.1.0

— Conflicts tidyverse conflicts() —
)(dplyr::filter () masks stats::filter ()

)(dplyr::lag() masks stats::lag()

)(readxl::read xlsx() masks openxlsx2::read xlsx()
i Use the conflicted package (<http://conflicted.r-1lib.org/>) to force all conflicts
to become errors

Output-Verzeichnis erstellen falls nicht vorhanden
if (!dir.exists ("output")) {
dir.create ("output")

Beispiel-Excel-Datei vorbereiten

Fur die Import-Beispiele verwenden wir eine Excel-Datei, die mit dem openxlsx2 -Paket

mitgeliefert wird. Diese enthalt zwei Sheets und verschiedene Datentypen, was sie ideal fur
unsere Demonstrationen macht. Wir kopieren sie in unser Output-Verzeichnis, damit wir im
gesamten Kapitel damit arbeiten kénnen:

117

Beispiel-Dateil aus openxlsx2-Paket lokalisieren
example file <- system.file("extdata", "openxlsx2 example.xlsx", package =
"openxlsx2")

In output-Ordner kopieren
file.copy(

from = example file,

to = "output/example.xlsx",

overwrite = TRUE

)

I [1] TRUE

1. Import: Beyond the Basics

In frlheren Kapiteln haben wir readxl::read excel() kennengelernt, um einzelne Excel-
Dateien einzulesen. In der Praxis begegnen uns jedoch oft komplexere Situationen: Dateien
mit mehreren Tabellenblattern, unordentliche Strukturen mit Kopfzeilen und Ful3noten, oder
spezielle Zellbereiche, die wir gezielt auslesen mochten. Hier erweitern wir unsere
Kenntnisse um diese haufigen Spezialfalle.

1.1 Multiple Sheets importieren

Excel-Dateien enthalten haufig mehrere Tabellenblatter, die thematisch zusammengehoéren —
beispielsweise verschiedene Messzeitpunkte eines Experiments oder unterschiedliche
Datensatze einer Studie. Anstatt jedes Sheet einzeln und manuell zu laden, kénnen wir mit
excel_sheets () alle vorhandenen Sheet-Namen auslesen und diese dann systematisch in

einer Schleife importieren. Das Ergebnis speichern wir in einer named list, sodass wir tiber
die Sheet-Namen direkt auf die jeweiligen Datensatze zugreifen kénnen.

Unsere Beispiel-Datei
file path <- "output/example.xlsx"

Alle Sheet-Namen auflisten
sheet names <- excel sheets(file path)
sheet names

[1] "Sheetl" "Sheet2"

i e Sheets in eine named list importieren

all data <- map (sheet names, \ (sheet) read_excel(file_path, sheet = sheet))

New names:
New names:
o« T > .3

names (all data) <- sheet names

Zugriff auf einzelnes Sheet

all dataSsheetl

A tibble: 10 x 9

Varl var2 ...3 Var3 Var4 Var5 Var6 Var7
<lgl> <dbl> <1gl> <dbl> <chr> <dttm> <chr> <dbl>
1 TRUE 1 NA 1 a 2023-05-29 00:00:00 3209324 This NA
2 TRUE NA NA NA b 2023-05-23 00:00:00 <NA> 0
3 TRUE 2 NA 1.34 ¢ 2023-02-01 00:00:00 <NA> NA
4 FALSE 2 NA NA <NA> NA <NA> 2
5 FALSE 3 NA 1.56 e NA <NA> NA
2

BioMath

2117

BioMath

6 FALSE 1 NA 1.7 £ 2023-03-02 00:00:00 <NA> 2.7
7 NA NA NA NA <NA> NA <NA> NA

8 FALSE 2 NA 23 h 2023-12-24 00:00:00 <NA> 25

9 FALSE 3 NA 67.3 1 2023-12-25 00:00:00 <NA> 3
10 NA 1 NA 123 <NA> 2023-07-31 00:00:00 <NA> 122

i 1 more variable: Var8 <dttm>

Alternativ konnen wir auch mit einer klassischen for-Schleife arbeiten, falls wir purrr nicht
verwenden mdchten oder die Logik expliziter gestalten wollen:

all data <- list()
for (sheet in sheet names) {

all data[[sheet]] <- readiexcel(file_path, sheet = sheet)
}

New names:
New names:
e T => . ..3°

1.2 Prazises Lesen: Ranges & Skip

In der realen Arbeitswelt sind Excel-Dateien selten so aufgerdumt wie in Lehrblchern. Oft
finden wir Beschreibungstexte oberhalb der eigentlichen Daten, FulRnoten unterhalb, leere
Zeilen als Trenner, oder die eigentlichen Daten beginnen erst in Zeile 10 und Spalte C. Fir

solche Situationen bietet readxl mehrere nitzliche Optionen, mit denen wir prazise steuern
kdénnen, welche Teile der Datei wir einlesen mochten.

Mit der range -Option kdnnen wir einen exakten Zellbereich in Excel-Notation angeben (z.B.

"B5:G20"), um nur diesen Bereich einzulesen. Die skip -Option Uberspringt eine bestimmte

Anzahl von Zeilen am Anfang der Datei — praktisch, wenn die Daten erst nach mehreren
Kopfzeilen beginnen. Falls die Spaltennamen selbst chaotisch oder unbrauchbar sind,

kdnnen wir mit col names = FALSE das automatische Einlesen der Header deaktivieren. Und

schlief3lich kdnnen wir mit na festlegen, welche Zeichenketten als fehlende Werte
interpretiert werden sollen — denn nicht jeder verwendet “NA” fir Missing Values.

df <- readiexcel("output/example.xlsx", range = "B3:G10")

New names:
e "1 -> "1...2°

Idf

A tibble: 7 x 6

"TRUE" "1...2° ...3 °'1...4° a "45075°

<lgl> <dbl> <lgl> <dbl> <chr> <dttm>
1 TRUE NA NA NA b 2023-05-23 00:00:00
2 TRUE 2 NA 1.34 ¢ 2023-02-01 00:00:00
3 FALSE 2 NA NA <NA> NA
4 FALSE 3 NA 1.56 @ NA
5 FALSE 1 NA 1.7 £ 2023-03-02 00:00:00
6 NA NA NA NA <NA> NA
7 FALSE 2 NA 23 h 2023-12-24 00:00:00

df <- read excel ("output/example.xlsx", skip = 2)

3/17

Keine automatischen Spaltennamen (wenn Header chaotisch ist)
daf <- read_excel("output/example.xlsx", col names = FALSE)

Custom NA-Werte definieren

df <- read excel (
"output/example.xlsx",
na = c("", "NA", "#NUM!", "#DIV/0!")

A tibble: 10 x 9

i 1 more variable: Var8 <dttm>

Kombination mehrerer Optionen
df <- read excel(
"output/example.xlsx",

sheet = "Sheetl",
range = "B2:F8",
col names = TRUE

)

New names:
o T =» T,,.3"

Idf

A tibble: 6 x 5

Varl Var2 ...3 Var3 Var4
<lgl> <dbl> <1lgl> <dbl> <chr>
1 TRUE 1 NA 1 a
2 TRUE NA NA NA b
3 TRUE 2 NA 1.34 ¢
4 FALSE 2 NA NA <NA>
5 FALSE 3 NA 1.56 e
6 FALSE 1 NA 1.7 f

Varl Var2 ...3 Var3 Varé
<lgl> <dbl> <lgl> <dbl> <chr>
1 TRUE 1 NA 1 a
2 TRUE NA NA NA b
3 TRUE 2 NA 1.34 ¢
4 FALSE 2 NA NA <NA>
5 FALSE 3 NA 1.56 e
6 FALSE 1 NA 1.7 f
7 NA NA NA NA <NA>
8 FALSE 2 NA 23 h
9 FALSE 3 NA 67.3 i
10 NA 1 NA 123 <NA>

Var5
<dttm>
2023-05-29
2023-05-23
2023-02-01
NA

NA
2023-03-02
NA
2023-12-24
2023-12-25
2023-07-31

00:
00:
00:

00:

00:

00:
00:

00:
00:
00:

00:

00:

00:
00:

00
00
00

00

00

00
00

Var6
<chr>
3209324 This
<NA>
<NA>
<NA>
<NA>
<NA>
<NA>
<NA>
<NA>
<NA>

Var7
<dbl>

NA
0
NA
2
NA

26

NA
25
3
122

1 Range-Syntax

Die range -Option akzeptiert Excel-Notation (z.B. "B3:F20") oder auch nur Startpunkte
(z.B. "B3" liest ab B3 bis zum Ende).

2. Export: Professional Formatting

Der Export mit openxlsx2 geht weit Uber das einfache Schreiben von Daten hinaus.
Wahrend base R und viele andere Packages lediglich die nackten Zahlen und Texte in eine
Excel-Datei schreiben, ermdglicht uns openxlsx2 die Erstellung von professionell

formatierten Excel-Dateien, die direkt prasentationsreif sind. Wir kbnnen Spaltenbreiten
anpassen, Header hervorheben, bedingte Formatierungen anwenden und vieles mehr — alles
programmatisch und reproduzierbar.

BioMath

5/17

© Excel-Dateien direkt aus R 6ffnen

Nach dem Erstellen einer Excel-Datei konnen wir diese direkt aus R heraus 6ffnen, um
das Ergebnis zu Uberprufen:

Windows

shell.exec("output/trial_table.xlsx")

macOS/Linux

system2 ("open", "output/trial table.xlsx") # macOS
system2 ("xdg-open", "output/trial table.xlsx") # Linux

Beispieldaten erstellen

Fir alle folgenden Beispiele verwenden wir einen kleinen, konsistenten Datensatz aus einer
klinischen Studie. Dieser enthalt Patienten-IDs, Behandlungsgruppen, Messzeitpunkte,
Outcome-Werte und Besuchsdaten. So kdnnen wir die verschiedenen
Formatierungsmaglichkeiten an einem durchgangigen Beispiel demonstrieren:

set.seed (42)
trial data <- tibble(

patient id = glue("P{str pad(l:12, width = 3, pad = '0")}"),

treatment = rep(c("Drug A", "Drug B", "Control"), each = 4),

timepoint = rep(c("Baseline", "Week 4", "Week 8"), times = 4),

outcome = round(rnorm(l2, mean = 50, sd = 10), 1),

visit date = seqg.Date(from = as.Date("2024-01-15"), by = "week", length.out = 12)

)

trial data

A tibble: 12 x 5
patient id treatment timepoint outcome visit date

<glue> <chr> <chr> <dbl> <date>
1 P0OO1 Drug A Baseline 63.7 2024-01-15
2 P002 Drug A Week 4 44 .4 2024-01-22
3 P003 Drug A Week 8 53.6 2024-01-29
4 P004 Drug A Baseline 56.3 2024-02-05
5 P005 Drug B Week 4 54 2024-02-12
6 P006 Drug B Week 8 48.9 2024-02-19
7 PO07 Drug B Baseline 65.1 2024-02-26
8 P008 Drug B Week 4 49.1 2024-03-04
9 P009 Control Week 8 70.2 2024-03-11
10 PO10O Control Baseline 49.4 2024-03-18
11 PO11 Control Week 4 63 2024-03-25
12 PO12 Control Week 8 72.9 2024-04-01

2.1 Basics Review (sehr kurz)

Zur Erinnerung: Das grundlegende Erstellen einer Excel-Datei folgt immer demselben
Muster. Wir erstellen ein Workbook-Objekt, fligen ein oder mehrere Worksheets hinzu,

schreiben Daten hinein und speichern das Workbook als .x1sx -Datei. Dieser Workflow
bildet die Basis fur alle weiteren Formatierungen:

Workbook erstellen
wb <- wb workbook ()

Worksheet hinzufiigen
wb <- wb [> wb add worksheet ("Trial Data")

Daten schreiben

BioMath

6/17

wb <- wb |> wb add data(x = trial data)

Speichern

wb save (wb, "output/trial basic.xlsx", overwrite = TRUE)

2.2 Column Widths

Eine der ersten Dinge, die uns beim Offnen einer frisch exportierten Excel-Datei auffallt, sind
oft zu schmale oder zu breite Spalten. Lange Texte werden abgeschnitten, Zahlen als ###
angezeigt, wahrend andere Spalten unnétig viel Platz verschwenden. Mit
wb_set_col_widths () konnen wir dieses Problem elegant I6sen: Die Option

widths = "auto" berechnet automatisch die optimale Breite basierend auf dem Inhalt jeder

Spalte. So werden alle Daten vollstandig und Ubersichtlich dargestellt, ohne dass wir manuell
in Excel nacharbeiten missen.

wb <- wb workbook () |[>
wb add worksheet ("Trial Data") |[>
wb add data(x = trial data) [>
Automatische Breite fiir alle Spalten

wb set col widths (cols l:ncol (trial data), widths = "auto")

wb save (wb, "output/trial colwidths.xlsx", overwrite = TRUE)

Q Tipp

Alternativ kbnnen wir auch spezifische Breiten in Excel-Einheiten setzen, beispielsweise
wenn wir genau wissen, wie breit bestimmte Spalten sein sollen:

Iwbiseticoliwidths(cols = 1:3, widths = c (15, 20, 12))

2.3 Header Styling

Die Header-Zeile ist der wichtigste visuelle Orientierungspunkt in einer Tabelle. In
professionellen Excel-Dateien sind die Spaltennamen daher typischerweise fettgedruckt und
farblich hervorgehoben — meist mit einem dezenten grauen Hintergrund. Diese Formatierung
macht die Tabelle sofort lesbarer und verleiht ihr ein professionelles Erscheinungsbild. Mit

wb_add_font () machen wir den Text fett, mit wb_add_fil1l () fligen wir die Hintergrundfarbe
hinzu. Beide Funktionen wenden wir gezielt auf die erste Zeile (den Header) an:

wb <- wb workbook () |[>
wb add worksheet ("Trial Data") |[>
wb_add data(x = trial data) [>
wb set col widths(cols l:ncol (trial data), widths = "auto") [>
Header fett grauer Hintergrund
wb add font(dims = "Al:E1", bold = TRUE, size = 11) |[>
wb add fill(dims = "Al:E1", color = wb color (hex = "FFD3D3D3"))

wb_ save (wb, "output/trialiheader.Xlsx", overwrite = TRUE)

2.4 Excel Tables (filterbar)

Wahrend wb_add data() einfach nur Zellwerte schreibt, erstellt wb _add data table() eine

richtige Excel-Tabelle mit eingebauter Funktionalitat. Excel-Tabellen bieten automatisch
Filter-Buttons in der Header-Zeile, strukturierte Referenzen flur Formeln und ein einheitliches

BioMath

717

Design. Das ist besonders praktisch, wenn wir die Datei spater an Kollegen weitergeben, die
darin filtern oder sortieren mdchten. Die verschiedenen table_style -Optionen bieten
vorgefertigte Designs, die wir direkt anwenden kdnnen:

wb <- wb workbook() |[>
wb add worksheet ("Trial Data") [>
wb_add data table() statt wb_add data()

wb add data table(
x = trial data,
table style = "TableStyleMedium2"
) 1>
wb set col widths(cols = l:ncol(trial data), widths = "auto")

wb_save (wb, "output/trial table.xlsx", overwrite = TRUE)

1 Verfligbare Table Styles

Excel bietet viele vorgefertigte Styles: "TablestyleLightl" bis "TableStyleLight2l"

"TableStyleMediuml" bis "TableStyleMedium28" , etc. Am besten einfach verschiedene

ausprobieren, um den passenden Stil zu finden!

2.5 Gridlines ausschalten

Standardmalig zeigt Excel Gitterlinien auf dem gesamten Worksheet, selbst in leeren
Bereichen. Das kann bei kleineren, fokussierten Tabellen ablenkend wirken. Wenn wir ein
cleanes Layout bevorzugen, bei dem nur die Zellen mit Daten durch Rahmen hervorgehoben

sind, kdnnen wir die Gitterlinien mit grid lines = FALSE beim Erstellen des Worksheets

deaktivieren. In Kombination mit einer Excel-Tabelle (die eigene Rahmen mitbringt) erhalten
wir so ein sehr aufgeraumtes, professionelles Erscheinungsbild:

wb <- wb workbook () |[>
wb add worksheet ("Trial Data", grid lines = FALSE) [>
wb add data table(x = trial data) [>
wb set col widths(cols = l:ncol(trial data), widths = "auto")

wb save (wb, "output/trial nogrid.xlsx", overwrite = TRUE)

2.6 Conditional Formatting

Bedingte Formatierung ist eines der machtigsten Features in Excel und besonders nutzlich,
um Muster in Daten hervorzuheben. Statt manuell durch Spalten zu scrollen und Werte zu
vergleichen, kdnnen wir Zellen automatisch basierend auf ihnrem Wert einfarben, mit Balken
versehen oder durch Icons markieren lassen. Die folgenden Beispiele zeigen drei haufige
Anwendungsfalle.

Color Scales (Farbverlaufe)

Mit Color Scales wird jede Zelle basierend auf ihrem Wert eingefarbt — niedrige Werte
beispielsweise rot, mittlere gelb, hohe griin. Das ermdglicht einen sofortigen visuellen
Uberblick tiber die Verteilung der Werte. Besonders niitzlich fiir Outcome-Variablen, Scores
oder jegliche Messwerte, bei denen die GroRenordnung relevant ist:

wb <- wb workbook () |[>
wb add worksheet ("Trial Data") |[>

BioMath

817

wb add data table(x = trial data) |[>

wb set col widths(cols = 1l:ncol(trial data), widths = "auto") [>
Color Scale fiir outcome-Spalte (Spalte D = 4)
wb add conditional formatting(

dims = "D2:D13", # ohne Header

type = "colorScale",

style = c("red", "yellow", "green"),

rule = c(0, 50, 100)
)

wb save (wb, "output/trialicolorscale.xlsx", overwrite = TRUE)

Data Bars (Balken in Zellen)

Data Bars zeigen einen horizontalen Balken in jeder Zelle, dessen Lange dem Wert
entspricht. Das funktioniert wie ein Mini-Balkendiagramm direkt in der Tabelle und macht
GroRenunterschiede auf einen Blick erkennbar. Die Zahlen bleiben dabei weiterhin sichtbar,
sodass wir sowohl den exakten Wert als auch die visuelle Proportion sehen:

wb <- wb workbook () |[>

wb add worksheet ("Trial Data") [>
wb add data table(x = trial data) [|>
wb set col widths(cols = 1l:ncol(trial data), widths = "auto") [>
Data Bars fiir outcome-Spalte
wb add conditional formatting(
dims = "D2:D13",
type = "dataBar",

style = c("#4472C4"), # Blau
params = list (showValue = TRUE, gradient = TRUE)

wb save (wb, "output/trial databars.xlsx", overwrite = TRUE)

Rule-based Formatting

Manchmal wollen wir nicht alle Werte einfarben, sondern nur die, die ein bestimmtes
Kriterium erflillen — beispielsweise alle Outcome-Werte Uber einem Schwellenwert. Mit rule-
based Formatting definieren wir eine Bedingung (z.B. ">55") und einen Style (Schriftfarbe,

Hintergrundfarbe), der auf die entsprechenden Zellen angewandt wird. Das ist ideal, um
kritische Werte hervorzuheben:

Custom Style fiur Werte > 55

high style <- create dxfs style(
font color = wb color (hex = "FF006100"),
bg fill = wb color (hex = "FFC6EFCE")

)

wb <- wb workbook() |[>

wb add worksheet ("Trial Data") [>

wb add data table(x = trial data) |[>

wb set col widths(cols = l:ncol(trial data), widths = "auto")
Style zum Workbook hinzufiigen

wbSstyles mgr$add(high style, "high values")

Conditional Formatting anwenden
wb <- wb |[>
wb_add conditional formatting(

dims = "D2:D13",

type = "expression",
rule = ">55",

style = "high values"

BioMath

917

BioMath

)

wb_ save (wb, "output/trialirules.Xlsx", overwrite = TRUE)

| Weitere Conditional Formatting Optionen

Es gibt viele weitere Typen wie "topn" (die Top-N héchsten Werte), "bottomn" |

"duplicatedvalues" (Duplikate markieren), "iconset" (Ampel-lcons) etc. Fir Details

siehe das Conditional Formatting Vignette.

2.7 Freeze Panes

Bei langeren Tabellen verlieren wir beim Scrollen nach unten schnell den Uberblick, welche
Spalte welche Daten enthalt — denn die Header-Zeile verschwindet aus dem Sichtfeld. Mit
Freeze Panes kénnen wir die erste Zeile (oder auch die erste Spalte) fixieren, sodass sie
beim Scrollen immer sichtbar bleibt. Das ist eine der meistgenutzten Features in Excel und
macht das Arbeiten mit groReren Datensatzen erheblich komfortabler:

wb <- wb workbook () [>
wb add worksheet ("Trial Data") |[>
wb add data table(x = trial data) |[|>
wb set col widths(cols = l:ncol(trial data), widths = "auto") |[>
Erste Zeile fixieren

wb freeze pane(first row = TRUE)

wb_save (wb, "output/trial freeze.xlsx", overwrite = TRUE)

© Tipp

Wir kénnen auch die erste Spalte fixieren (nutzlich bei breiten Tabellen mit vielen
Spalten):

Iwbifreezeipane(first_col = TRUE)

Oder sogar beides gleichzeitig:

Iwb_freeze_pane(first_row = TRUE, first col = TRUE)

2.8 Hyperlinks

Hyperlinks machen Excel-Dateien interaktiv und verknlpfen verschiedene Informationen
miteinander. Wir kdnnen externe URLs einbinden (z.B. zu Protokollen oder
Dokumentationen) oder interne Links zu anderen Sheets erstellen. Das ist besonders
praktisch fir Inhaltsverzeichnisse oder wenn wir zwischen verschiedenen Tabellenblattern

navigieren wollen. In openxlsx2 gibt es zwei verschiedene Ansatze: externe Links
verwenden wb_add hyperlink() , wdhrend interne Sheet-Links liber create hyperlink()

und wb_add_formula () erstellt werden:

wb <- wb workbook () |[>
wb add worksheet ("Overview") [>
wb add data(x = tibble(
Description = c("Study Protocol", "Raw Data", "Analysis")

))

10
10117

https://janmarvin.github.io/openxlsx2/articles/conditional-formatting.html

BioMath

m

Trial Data Sheet hinzufigen
wb <- wb |>

wb add worksheet ("Trial Data") [>

wb add data table(x = trial data) |[|>

wb set col widths(cols = l:ncol(trial data), widths = "auto")
Externe URL als Hyperlink

wb <- wb |>
wb add data(

sheet = "Overview",
dims = "B2",
x = "Protocol Document"

) 1>

wb_ add hyperlink (
sheet = "Overview",
dims = "B2",
target = "https://example.com/protocol",
tooltip = "Link to study protocol"

)

Interner Link zu anderem Sheet (mit create hyperlink + dd formula)

internal link <- create hyperlink(

sheet = "Trial Data",

row = 1,

col =1,

text = "Go to Trial Data"

)

wb <- wb |>
wb add formula (

sheet = "Overview",
dims = "B3",
x = internal link

wb_save (wb, "output/trial hyperlinks.xlsx", overwrite = TRUE)

1 Externe vs. Interne Links

* Externe URLSs: wb_add hyperlink() mit target =

* Interne Sheet-Links: create hyperlink() + wb_add formula ()

2.9 Date/Number Formats

Excel interpretiert Zahlen und Datumsangaben oft anders als wir es erwarten —
Datumsangaben werden als Zahlen dargestellt, Dezimalstellen fehlen, oder Wahrungen
erscheinen ohne Symbol. Mit Number Formats kénnen wir exakt festlegen, wie Werte
angezeigt werden sollen. Dabei andern wir nur die Darstellung, nicht den zugrundeliegenden
Wert. Das ist besonders wichtig fur Berichte, die wir an andere weitergeben, damit die Daten
sofort in der gewiinschten Form erscheinen:

wb <- wb workbook () |[>

wb add worksheet ("Trial Data") [>

wb add data table(x = trial data) |[>

wb set col widths(cols = l:ncol(trial data), widths = "auto") [>
Outcome als Zahl mit 1 Dezimalstelle

wb add numfmt (dims = "D2:D13", numfmt = "0.0") |[>

Datum als dd.mm.yyyy

wb add numfmt (dims = "E2:E13", numfmt = "dd.mm.yyyy")

11
1117

BioMath

wb save (wb, "output/trialiformats.xlsx", overwrite = TRUE)

1 Haufige Number Formats

"0.00" - zwei Dezimalstellen

® "0.00%" - Prozent

* "#,##0.00" - Tausender-Trennzeichen
* "#,##0.00 €" - Wahrung
"dd.mm.yyyy" - Datum deutsch
"yyyy-mm-dd" - Datum ISO

* "[h]:mm:ss" - Zeit Uber 24h

Fur Custom-Formate mit Text: siehe openxlsx2 Styling Manual

2.10 Advanced Beispiele aus ox2-book

Das ox2-book ist das umfassende Handbuch zu openxlsx2 und enthalt zahlreiche

fortgeschrittene Beispiele und Techniken. Im Folgenden zeigen wir einige Highlights aus den
Kapiteln zu Styling, Conditional Formatting und Formeln. Diese Beispiele kratzen nur an der
Oberflache dessen, was maoglich ist — fur tiefergehende Anwendungen lohnt sich ein Blick in
die jeweiligen Kapitel.

Text Rotation (Kap. 5: Styling)

Text um 45° zu drehen ist besonders nitzlich bei Tabellen mit vielen Spalten und langen
Header-Texten. Der gedrehte Text spart horizontal Platz und macht die Tabelle kompakter,
ohne die Lesbarkeit zu beeintrachtigen. In Kombination mit Fettdruck und einer
Hintergrundfarbe entsteht ein sehr professioneller Look:

wb <- wb workbook () |[>
wb add worksheet ("Trial Data") |[>
wb add data(x = trial data) |[>
wb set col widths(cols = 1l:ncol (trial data), widths = 12) |[|>
Text rotation Styling B
wb add cell style(
dims = "Al:E1",
horizontal = "center",
text rotation = 45
) 1>
wb add font(dims = "Al:E1", bold = TRUE, size = 10) |[|>
wb add fill(dims = "Al:E1", color = wb color (hex = "FF4472C4"))

wb save (wb, "output/trial rotation.xlsx", overwrite = TRUE)

Weitere Styling-Optionen: Kapitel 5 - Styling of worksheets

Icon Sets (Kap. 7: Conditional Formatting)

Icon Sets sind eine elegante Variante der bedingten Formatierung: Statt Zellen einzufarben,
fligen wir kleine Icons hinzu (z.B. Ampel-Symbole), die auf einen Blick zeigen, ob Werte gut,
mittel oder schlecht sind. Das ist besonders nutzlich fiir Dashboards und Reports, da die
Icons auch beim Ausdrucken gut erkennbar bleiben:

12
12117

https://janmarvin.github.io/openxlsx2/articles/openxlsx2_style_manual.html
https://janmarvin.github.io/ox2-book/
https://janmarvin.github.io/ox2-book/chapters/openxlsx2_style_manual.html

BioMath

wb <- wb workbook() |[>
wb add worksheet ("Trial Data") [>
wb add data table(x trial data) |[>
wb set col widths(cols = l:ncol(trial data), widths = "auto") [>
Icon Set: 3 Ampelfarben
wb_ add conditional formatting(
dims = "D2:D13",
type = "iconSet",
params = list(
iconSet = "3Symbols", # Ampel: rot/gelb/grin
showValue = TRUE

)

wb_save (wb, "output/trial icons.xlsx", overwrite = TRUE)
Weitere Icon Sets: "3Arrows" , "4Rating", "5Quarters" etc. Siehe Conditional Formatting
Vignette.

Excel Formulas (Kap. 8: Formulas)

Excel-Formeln sind das Herzstuck von dynamischen Spreadsheets. Mit openxlsx2 kdnnen

wir Formeln direkt in Zellen schreiben, die dann beim Offnen der Datei in Excel automatisch
berechnet werden. Das ist praktisch fir Summen, Durchschnitte oder komplexere
Berechnungen. Wichtig: Die Formeln werden erst in Excel ausgewertet, nicht in R:

Beispiel mit SUM-Formel
wb <- wb workbook() [>
wb add worksheet ("Trial Data") [>
wb add data(x = trial data) |[>
wb set col widths(cols = l:ncol(trial data), widths = "auto") [>
SUM-Formel fir Gesamtsumme
wb add formula(dims = "D14", x = "SUM(D2:D13)") [>

AVERAGE-Forme

wb add formula(dims = "D15", x = "AVERAGE (D2:D13)") |>
Labels hinzufiigen

wb add data(dims = "Cl14", x = "Total") |[>
wb_add_data(dims = "Cl5", x = "Average")

wb save (wb, "output/trial formulas.xlsx", overwrite = TRUE)
Weitere Formula-Beispiele: Kapitel 8 - Spreadsheet formulas

Pivot Tables (Kap. 9: Kurze Erwahnung)

openxlsx2 kann auch Pivot Tables erstellen, allerdings ist dies ein fortgeschrittenes und
komplexes Thema. Pivot Tables sind machtige Werkzeuge zur Datenanalyse und -
zusammenfassung direkt in Excel. Die Erstellung ist jedoch deutlich aufwandiger als die
anderen hier gezeigten Features. Fir Details und vollstdndige Beispiele siehe Kapitel 9 -
Pivot tables.

3. Template-Workflow: Bestehende Excel-
Dateien befullen

Bisher haben wir Excel-Dateien immer von Grund auf neu erstellt. In der Praxis gibt es
jedoch haufig einen anderen Anwendungsfall: Wir haben eine vorformatierte Excel-Vorlage
(Template) mit komplexem Layout, Corporate Design, Formeln oder Pivot-Tabellen, und

13
13117

https://janmarvin.github.io/openxlsx2/articles/conditional-formatting.html
https://janmarvin.github.io/openxlsx2/articles/conditional-formatting.html
https://janmarvin.github.io/ox2-book/chapters/openxlsx2_formulas_manual.html
https://janmarvin.github.io/ox2-book/chapters/openxlsx2_pivot_tables.html
https://janmarvin.github.io/ox2-book/chapters/openxlsx2_pivot_tables.html

BioMath

mdchten diese nur noch mit aktuellen Daten beflllen. Das manuelle Nachbauen solcher
Templates in R ware extrem aufwandig — stattdessen laden wir einfach die bestehende Datei
und schreiben nur die Daten hinein.

Wann ist der Template-Workflow sinnvoll?

Der Template-Workflow ist besonders nitzlich, wenn:

» Die Excel-Datei ein komplexes, festes Layout hat (z.B. Berichtsvorlagen mit Logos,
Rahmen, mehreren Bereichen)

» Das Corporate Design bereits in der Vorlage implementiert ist

Die Datei Excel-Formeln enthalt, die auf die eingefiigten Daten verweisen sollen

Regelmafig wiederkehrende Reports erstellt werden (z.B. monatliche Auswertungen)

Mehrere Personen dieselbe Vorlage nutzen und nur die Daten variieren

Grundprinzip
Der Workflow besteht aus drei Schritten:

1. Vorlage kopieren — Die Original-Vorlage bleibt unverandert
2. Kopie laden — Mit wb_load () &ffnen wir die Kopie

3. Daten einfigen — Mit wb_add data() schreiben wir an die richtigen Positionen

1. Vorlage kopieren (Original bleibt erhalten)
file.copy(
from = "vorlagen/Monatsbericht Vorlage.xlsx",
to = "output/Monatsbericht Januar.xlsx",
overwrite = TRUE

2. Kopie laden
wb <- wb_load("output/Monatsbericht Januar.xlsx")

3. Daten an die richtigen Stellen schreiben
wb <- wb |>
wb add data(sheet = "Daten", x = meine daten, start row = 5, start col = 2)

4. Speichern

wb save (wb, "output/Monatsbericht Januar.xlsx", overwrite = TRUE)

Praxisbeispiel: Auswertungstabelle befullen

Stellen wir uns vor, wir haben eine Excel-Vorlage mit drei Tabellenblattern fiir verschiedene
Auswertungen. Die Vorlage enthalt bereits Header, Formatierungen und Summenformeln —
wir missen nur noch die Daten einfligen.

Beispieldaten vorbereiten

set.seed (123)
ergebnis 1 <- tibble (

Kategorie — C(HAH, llBll, "C"),
Anzahl = c (45, 32, 28),
Anteil = c(0.43, 0.30, 0.27)

)

ergebnis 2 <- tibble(
Region = c("Nord", "suad", "Ost", "West"),
Umsatz = ¢ (12500, 18300, 9800, 15200)

14
14/17

FUr dieses Beispiel erstellen wir eine "Vorlage"
(in der Praxis ware das eine bereits existierende Datei)
template wb <- wb workbook() |[>
wb_add worksheet ("Ubersicht") |>
wb add data(x = "Monatsbericht", dims = "Al") [|>
wb add font (dims = "Al", bold = TRUE, size = 16) |[>
wb add worksheet ("Kategorien") [>
wb add data(x = tibble(Kategorie = character(), Anzahl = numeric(), Anteil
numeric())) |>

wb add font(dims = "Al:Cl", bold = TRUE) |[>

wb add fill(dims = "Al:Cl", color = wb color (hex = "FFD3D3D3")) |[>
wb_add_worksheet("Regionen") | >

wb add data(x = tibble(Region = character (), Umsatz = numeric())) |[>
wb add font(dims = "Al:B1", bold = TRUE) |>

wb add fill(dims = "Al:B1", color = wb color (hex = "FFD3D3D3"))

wb save (template wb, "output/vorlage.xlsx", overwrite = TRUE)
—-—— TEMPLATE-WORKFLOW —---

1. Vorlage kopieren

file.copy(
from = "output/vorlage.xlsx",
to = "output/bericht aktuell.xlsx",
overwrite = TRUE

[1] TRUE

2. Kopie laden
wb <- wbiload("output/berichtiaktuell.xlsx")

3. Daten einfligen (OHNE Header, da bereits in Vorlage)
wb <- wb |>
wb add data(
sheet = "Kategorien",
x = ergebnis 1,
start row = 2, # Zeile 1 ist Header
col names = FALSE # Keine Spaltennamen schreiben
) 1>
wb add data(
sheet = "Regionen",
x = ergebnis 2,
start row = 2,
col names = FALSE

4. Speichern
wb save (wb, "output/bericht aktuell.xlsx", overwrite = TRUE)

Wichtige Argumente bei wb_add_data()

Beim Befiillen von Templates sind folgende Argumente besonders relevant:

Argument Beschreibung Typischer Wert

BioMath

sheet Name oder Index des "Daten" oder 1
Tabellenblatts

% Die einzufiigenden Daten meine daten
(data.frame/tibble)
start row Startzeile fir die Daten 2 (Wenn Zeile 1 = Header)
15

15117

Argument Beschreibung Typischer Wert

start_col Startspalte fiir die Daten 1 oder "B"

col names Spaltennamen schreiben? rarsE (Header in Vorlage)
na.strings Wie sollen NA-Werte " (leere Zelle)

dargestellt werden?

© Tipp: Positionen in der Vorlage dokumentieren

Wenn die Vorlage komplex ist, empfiehlt es sich, die Einfligepositionen zu
dokumentieren:

Achtung: Bestehende Daten werden Uberschrieben

wb_add data() Uberschreibt den Zielbereich ohne Warnung. Wenn die Vorlage bereits

Daten enthalt (z.B. Beispielwerte), werden diese ersetzt. Formeln, die auf diese Zellen
verweisen, werden automatisch mit den neuen Werten berechnet.

Zusammenfassung

In diesem Kapitel haben wir gelernt, wie wir mit R professionelle, prasentationsreife Excel-
Dateien erstellen kdnnen. Wir haben gesehen, wie wir beim Import prazise mit mehreren
Sheets und unordentlichen Daten umgehen, und beim Export haben wir eine Vielzahl von
Formatierungsmadglichkeiten kennengelernt, die unsere Excel-Dateien von einfachen Daten-
Dumps zu ansprechenden, nutzerfreundlichen Reports machen.

Import: - Multiple Sheets systematisch einlesen mit excel_sheets() und map() - Prazise
Ranges und Custom NA-Werte flr chaotische Dateien

Export: - Automatische Spaltenbreite flr optimale Darstellung - Professionelles Header-
Styling mit Fettdruck und Hintergrundfarbe - Filterbare Excel-Tabellen statt einfacher
Zellbereiche - Conditional Formatting (Color Scales, Data Bars, Rules) fir visuelle
Hervorhebung - Freeze Panes fir bessere Navigation in gro3en Tabellen - Hyperlinks flr
Verknlpfungen zu URLs und anderen Sheets - Custom Date/Number Formats fir korrekte
Darstellung - Advanced Features aus dem ox2-book fur spezielle Anforderungen
Template-Workflow: - Bestehende Excel-Vorlagen mit wb_load() laden statt neu erstellen -
Daten gezielt an bestimmte Positionen schreiben mit start_row, start col ,

col names = FALSE - |deal fir wiederkehrende Reports mit festem Layout und Corporate
Design

Weiterfiihrende Ressourcen:

» openxIsx2 Dokumentation

16

BioMath

16/17

https://janmarvin.github.io/openxlsx2/

* 0x2-book - The openxlsx2 book
« readxl Dokumentation

Datum: 2026-02-08

Bibliography

17

https://janmarvin.github.io/ox2-book/
https://readxl.tidyverse.org/

	Packages laden
	Beispiel-Excel-Datei vorbereiten

	1. Import: Beyond the Basics
	1.1 Multiple Sheets importieren
	1.2 Präzises Lesen: Ranges & Skip

	2. Export: Professional Formatting
	Beispieldaten erstellen
	2.1 Basics Review (sehr kurz)
	2.2 Column Widths
	2.3 Header Styling
	2.4 Excel Tables (filterbar)
	2.5 Gridlines ausschalten
	2.6 Conditional Formatting
	Color Scales (Farbverläufe)
	Data Bars (Balken in Zellen)
	Rule-based Formatting

	2.7 Freeze Panes
	2.8 Hyperlinks
	2.9 Date/Number Formats
	2.10 Advanced Beispiele aus ox2-book
	Text Rotation (Kap. 5: Styling)
	Icon Sets (Kap. 7: Conditional Formatting)
	Excel Formulas (Kap. 8: Formulas)
	Pivot Tables (Kap. 9: Kurze Erwähnung)

	3. Template-Workflow: Bestehende Excel-Dateien befüllen
	Wann ist der Template-Workflow sinnvoll?
	Grundprinzip
	Praxisbeispiel: Auswertungstabelle befüllen
	Wichtige Argumente bei wb_add_data()

	Zusammenfassung
	Bibliography

