
BioMath

1/20

3. Häufigkeitstabellen

Zählen und Auszählen mit janitor::tabyl()
Dr. Paul Schmidt

Um alle in diesem Kapitel verwendeten Pakete zu installieren und zu laden, führt man
folgenden Code aus:

for (pkg in c("janitor", "scales", "tidyverse")) {
 if (!require(pkg, character.only = TRUE)) install.packages(pkg)
}

library(janitor)
library(scales)
library(tidyverse)

Einleitung
Häufigkeitstabellen sind eines der grundlegendsten Werkzeuge der Datenanalyse. Wie oft
kommt jede Kategorie vor? Wie verteilen sich die Werte über verschiedene Gruppen? Solche
Fragen stellen wir uns ständig – sei es bei der Qualitätskontrolle, bei Umfrageauswertungen
oder einfach um einen ersten Überblick über die Daten zu bekommen.

R bietet mehrere Wege, Häufigkeitstabellen zu erstellen. In diesem Kapitel beginnen wir mit
den Grundlagen (table() und count()), um dann zu verstehen, warum janitor::tabyl()
in den meisten Fällen die elegantere und praktischere Lösung ist.

Beispieldaten
Für dieses Kapitel verwenden wir den starwars -Datensatz aus dem {dplyr}-Paket. Er enthält
Informationen über 87 Charaktere aus dem Star-Wars-Universum:

glimpse(starwars)

Rows: 87
Columns: 14
$ name <chr> "Luke Skywalker", "C-3PO", "R2-D2", "Darth Vader", "Leia Or…
$ height <int> 172, 167, 96, 202, 150, 178, 165, 97, 183, 182, 188, 180, 2…
$ mass <dbl> 77.0, 75.0, 32.0, 136.0, 49.0, 120.0, 75.0, 32.0, 84.0, 77.…
$ hair_color <chr> "blond", NA, NA, "none", "brown", "brown, grey", "brown", N…
$ skin_color <chr> "fair", "gold", "white, blue", "white", "light", "light", "…
$ eye_color <chr> "blue", "yellow", "red", "yellow", "brown", "blue", "blue",…
$ birth_year <dbl> 19.0, 112.0, 33.0, 41.9, 19.0, 52.0, 47.0, NA, 24.0, 57.0, …
$ sex <chr> "male", "none", "none", "male", "female", "male", "female",…
$ gender <chr> "masculine", "masculine", "masculine", "masculine", "femini…
$ homeworld <chr> "Tatooine", "Tatooine", "Naboo", "Tatooine", "Alderaan", "T…
$ species <chr> "Human", "Droid", "Droid", "Human", "Human", "Human", "Huma…
$ films <list> <"A New Hope", "The Empire Strikes Back", "Return of the J…
$ vehicles <list> <"Snowspeeder", "Imperial Speeder Bike">, <>, <>, <>, "Imp…
$ starships <list> <"X-wing", "Imperial shuttle">, <>, <>, "TIE Advanced x1",…

Der Datensatz hat sowohl kategoriale Variablen (wie species , sex , homeworld) als auch

numerische Variablen (wie height , mass). Für die meisten Beispiele filtern wir auf

Menschen (species == "Human"), um die Ausgaben übersichtlicher zu halten:

1

BioMath

2/20

humans <- starwars %>%
 filter(species == "Human")

humans

A tibble: 35 × 14
 name height mass hair_color skin_color eye_color birth_year sex gender
 <chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>
 1 Luke Sk… 172 77 blond fair blue 19 male mascu…
 2 Darth V… 202 136 none white yellow 41.9 male mascu…
 3 Leia Or… 150 49 brown light brown 19 fema… femin…
 4 Owen La… 178 120 brown, gr… light blue 52 male mascu…
 5 Beru Wh… 165 75 brown light blue 47 fema… femin…
 6 Biggs D… 183 84 black light brown 24 male mascu…
 7 Obi-Wan… 182 77 auburn, w… fair blue-gray 57 male mascu…
 8 Anakin … 188 84 blond fair blue 41.9 male mascu…
 9 Wilhuff… 180 NA auburn, g… fair blue 64 male mascu…
10 Han Solo 180 80 brown fair brown 29 male mascu…
ℹ 25 more rows
ℹ 5 more variables: homeworld <chr>, species <chr>, films <list>,
vehicles <list>, starships <list>

2

BioMath

3/20

Der klassische Weg: table()
Die Funktion table() ist in base R eingebaut und erstellt einfache Häufigkeitstabellen:

table(humans$eye_color)

 blue blue-gray brown dark hazel unknown yellow
 12 1 16 1 2 1 2

Das funktioniert, hat aber einige Nachteile:

1. Kein data.frame: Das Ergebnis ist ein table -Objekt, kein Tibble/data.frame. Es lässt
sich nicht direkt mit tidyverse-Funktionen weiterverarbeiten.

2. Keine Prozente: Wir erhalten nur absolute Zahlen, keine relativen Häufigkeiten.

3. Umständliche Syntax: Bei mehreren Variablen wird es schnell unübersichtlich.

Man kann das Ergebnis zwar in einen data.frame umwandeln, aber das ist umständlich:

table(humans$eye_color) %>%
 as.data.frame()

 Var1 Freq
1 blue 12
2 blue-gray 1
3 brown 16
4 dark 1
5 hazel 2
6 unknown 1
7 yellow 2

Die Spaltennamen sind nicht intuitiv (Var1 , Freq), und Prozente müssen wir selbst
berechnen.

Der tidyverse-Weg: count() + mutate()
Mit dplyr::count() bekommen wir direkt einen Tibble zurück:

humans %>%
 count(eye_color)

A tibble: 7 × 2
 eye_color n
 <chr> <int>
1 blue 12
2 blue-gray 1
3 brown 16
4 dark 1
5 hazel 2
6 unknown 1
7 yellow 2

Das ist schon besser! Wenn wir Prozente möchten, fügen wir sie mit mutate() hinzu:

humans %>%
 count(eye_color) %>%
 mutate(
 percent = n / sum(n),

3

BioMath

4/20

 percent_formatted = percent(percent, accuracy = 0.1)
)

A tibble: 7 × 4
 eye_color n percent percent_formatted
 <chr> <int> <dbl> <chr>
1 blue 12 0.343 34.3%
2 blue-gray 1 0.0286 2.9%
3 brown 16 0.457 45.7%
4 dark 1 0.0286 2.9%
5 hazel 2 0.0571 5.7%
6 unknown 1 0.0286 2.9%
7 yellow 2 0.0571 5.7%

Und wenn wir eine Summenzeile möchten, müssen wir diese separat berechnen und dann
anhängen:

Schritt 1: Häufigkeiten pro Kategorie berechnen
pro_eye_color <- humans %>%
 count(eye_color) %>%
 mutate(percent = n / sum(n))

pro_eye_color

A tibble: 7 × 3
 eye_color n percent
 <chr> <int> <dbl>
1 blue 12 0.343
2 blue-gray 1 0.0286
3 brown 16 0.457
4 dark 1 0.0286
5 hazel 2 0.0571
6 unknown 1 0.0286
7 yellow 2 0.0571

Schritt 2: Gesamtzeile separat erstellen
gesamt <- tibble(
 eye_color = "Total",
 n = sum(pro_eye_color$n),
 percent = 1
)

gesamt

A tibble: 1 × 3
 eye_color n percent
 <chr> <int> <dbl>
1 Total 35 1

Schritt 3: Zusammenfügen
bind_rows(pro_eye_color, gesamt)

A tibble: 8 × 3
 eye_color n percent
 <chr> <int> <dbl>
1 blue 12 0.343
2 blue-gray 1 0.0286
3 brown 16 0.457
4 dark 1 0.0286
5 hazel 2 0.0571
6 unknown 1 0.0286
7 yellow 2 0.0571
8 Total 35 1

4

BioMath

5/20

Das funktioniert, aber es ist viel Tipparbeit für eine so häufige Aufgabe. Hier kommt tabyl()
ins Spiel.

5

BioMath

6/20

janitor::tabyl() – Die elegante Lösung
Die Funktion tabyl() aus dem {janitor}-Paket wurde genau für diesen Anwendungsfall

entwickelt. Sie kombiniert die besten Eigenschaften von table() und count() und fügt
weitere nützliche Features hinzu.

Einweg-Tabelle (eine Variable)
humans %>%
 tabyl(eye_color)

 eye_color n percent
 blue 12 0.34285714
 blue-gray 1 0.02857143
 brown 16 0.45714286
 dark 1 0.02857143
 hazel 2 0.05714286
 unknown 1 0.02857143
 yellow 2 0.05714286

Mit einem einzigen Funktionsaufruf erhalten wir:

• n: Die absolute Häufigkeit
• percent: Den relativen Anteil (als Dezimalzahl)

Das Ergebnis ist ein Tibble, den wir direkt weiterverarbeiten können.

NA-Werte kontrollieren
Schauen wir uns eine Variable mit fehlenden Werten an – homeworld enthält mehrere NA-
Einträge:

humans %>%
 tabyl(homeworld)

 homeworld n percent valid_percent
 Alderaan 3 0.08571429 0.10344828
 Bespin 1 0.02857143 0.03448276
 Chandrila 1 0.02857143 0.03448276
 Concord Dawn 1 0.02857143 0.03448276
 Corellia 2 0.05714286 0.06896552
 Coruscant 2 0.05714286 0.06896552
 Eriadu 1 0.02857143 0.03448276
 Haruun Kal 1 0.02857143 0.03448276
 Kamino 1 0.02857143 0.03448276
 Naboo 5 0.14285714 0.17241379
 Serenno 1 0.02857143 0.03448276
 Socorro 1 0.02857143 0.03448276
 Stewjon 1 0.02857143 0.03448276
 Tatooine 8 0.22857143 0.27586207
 <NA> 6 0.17142857 NA

Standardmäßig zeigt tabyl() NA-Werte als eigene Kategorie an. Beachte die zwei Prozent-
Spalten:

• percent: Anteil bezogen auf alle Zeilen (inkl. NA)
• valid_percent: Anteil bezogen auf gültige Werte (ohne NA)

Mit show_na = FALSE können wir NA-Werte ausblenden:

6

BioMath

7/20

humans %>%
 tabyl(homeworld, show_na = FALSE)

 homeworld n percent
 Alderaan 3 0.10344828
 Bespin 1 0.03448276
 Chandrila 1 0.03448276
 Concord Dawn 1 0.03448276
 Corellia 2 0.06896552
 Coruscant 2 0.06896552
 Eriadu 1 0.03448276
 Haruun Kal 1 0.03448276
 Kamino 1 0.03448276
 Naboo 5 0.17241379
 Serenno 1 0.03448276
 Socorro 1 0.03448276
 Stewjon 1 0.03448276
 Tatooine 8 0.27586207

Wenn wir show_na = FALSE setzen, gibt es nur noch eine Prozent-Spalte, da beide Werte
identisch wären.

Leere Kategorien anzeigen
Wenn eine Variable als Faktor definiert ist, kann es Levels geben, die im Datensatz nicht
vorkommen. Mit show_missing_levels = TRUE werden diese trotzdem angezeigt:

Beispiel: Faktor mit Level, das nicht vorkommt
humans_factor <- humans %>%
 mutate(eye_color = factor(eye_color,
 levels = c("blue", "brown", "hazel", "dark", "green",
"blue-gray")))

humans_factor %>%
 tabyl(eye_color, show_missing_levels = TRUE)

 eye_color n percent valid_percent
 blue 12 0.34285714 0.37500
 brown 16 0.45714286 0.50000
 hazel 2 0.05714286 0.06250
 dark 1 0.02857143 0.03125
 green 0 0.00000000 0.00000
 blue-gray 1 0.02857143 0.03125
 <NA> 3 0.08571429 NA

Das Level “green” kommt bei Menschen nicht vor, wird aber trotzdem mit n=0 angezeigt. Das
ist besonders nützlich bei Umfragedaten, wo bestimmte Antwortkategorien möglicherweise
von niemandem gewählt wurden, aber trotzdem im Bericht erscheinen sollen.

 Übung: Einweg-Tabellen

Erstelle mit dem humans -Datensatz folgende Tabellen:

a) Eine Häufigkeitstabelle für die Variable gender .

b) Eine Häufigkeitstabelle für homeworld , bei der NA-Werte ausgeblendet sind.

7

BioMath

8/20

 Lösungsvorschlag

a) Geschlechterverteilung
humans %>%
 tabyl(gender)

 gender n percent
 feminine 9 0.2571429
 masculine 26 0.7428571

b) Heimatwelten ohne NA
humans %>%
 tabyl(homeworld, show_na = FALSE)

 homeworld n percent
 Alderaan 3 0.10344828
 Bespin 1 0.03448276
 Chandrila 1 0.03448276
 Concord Dawn 1 0.03448276
 Corellia 2 0.06896552
 Coruscant 2 0.06896552
 Eriadu 1 0.03448276
 Haruun Kal 1 0.03448276
 Kamino 1 0.03448276
 Naboo 5 0.17241379
 Serenno 1 0.03448276
 Socorro 1 0.03448276
 Stewjon 1 0.03448276
 Tatooine 8 0.27586207

8

BioMath

9/20

Zweiweg-Tabellen (Kreuztabellen)
Mit zwei Variablen erstellt tabyl() automatisch eine Kreuztabelle:

humans %>%
 tabyl(eye_color, gender)

 eye_color feminine masculine
 blue 3 9
 blue-gray 0 1
 brown 4 12
 dark 0 1
 hazel 1 1
 unknown 1 0
 yellow 0 2

Die erste Variable (eye_color) definiert die Zeilen, die zweite (gender) die Spalten. Das
Ergebnis zeigt die absoluten Häufigkeiten für jede Kombination.

Dreiweg-Tabellen
Mit drei Variablen erstellt tabyl() eine Liste von Kreuztabellen – eine für jede Ausprägung
der dritten Variable:

humans %>%
 tabyl(eye_color, gender, hair_color)

$auburn
 eye_color feminine masculine
 blue 1 0
 blue-gray 0 0
 brown 0 0
 dark 0 0
 hazel 0 0
 unknown 0 0
 yellow 0 0

$`auburn, grey`
 eye_color feminine masculine
 blue 0 1
 blue-gray 0 0
 brown 0 0
 dark 0 0
 hazel 0 0
 unknown 0 0
 yellow 0 0

$`auburn, white`
 eye_color feminine masculine
 blue 0 0
 blue-gray 0 1
 brown 0 0
 dark 0 0
 hazel 0 0
 unknown 0 0
 yellow 0 0

$black
 eye_color feminine masculine
 blue 0 0
 blue-gray 0 0
 brown 1 6
 dark 0 1

9

BioMath

10/20

 hazel 0 0
 unknown 0 0
 yellow 0 0

$blond
 eye_color feminine masculine
 blue 0 3
 blue-gray 0 0
 brown 0 0
 dark 0 0
 hazel 0 0
 unknown 0 0
 yellow 0 0

$brown
 eye_color feminine masculine
 blue 1 3
 blue-gray 0 0
 brown 3 4
 dark 0 0
 hazel 1 1
 unknown 0 0
 yellow 0 0

$`brown, grey`
 eye_color feminine masculine
 blue 0 1
 blue-gray 0 0
 brown 0 0
 dark 0 0
 hazel 0 0
 unknown 0 0
 yellow 0 0

$grey
 eye_color feminine masculine
 blue 0 0
 blue-gray 0 0
 brown 0 0
 dark 0 0
 hazel 0 0
 unknown 0 0
 yellow 0 1

$none
 eye_color feminine masculine
 blue 0 1
 blue-gray 0 0
 brown 0 1
 dark 0 0
 hazel 0 0
 unknown 1 0
 yellow 0 1

$white
 eye_color feminine masculine
 blue 1 0
 blue-gray 0 0
 brown 0 1
 dark 0 0
 hazel 0 0
 unknown 0 0
 yellow 0 0

Für komplexere Analysen ist dies jedoch oft weniger praktisch als gruppierte Auswertungen
mit group_by() .

10

BioMath

11/20

Die adorn_*() Familie
Die wahre Stärke von tabyl() zeigt sich in Kombination mit den adorn_*() -Funktionen.
Diese “dekorieren” die Tabelle mit zusätzlichen Informationen und Formatierungen.

adorn_totals() – Summenzeilen und -spalten
humans %>%
 tabyl(eye_color) %>%
 adorn_totals("row")

 eye_color n percent
 blue 12 0.34285714
 blue-gray 1 0.02857143
 brown 16 0.45714286
 dark 1 0.02857143
 hazel 2 0.05714286
 unknown 1 0.02857143
 yellow 2 0.05714286
 Total 35 1.00000000

Mit dem name -Argument können wir den Namen der Summenzeile anpassen:

humans %>%
 tabyl(eye_color) %>%
 adorn_totals("row", name = "Gesamt")

 eye_color n percent
 blue 12 0.34285714
 blue-gray 1 0.02857143
 brown 16 0.45714286
 dark 1 0.02857143
 hazel 2 0.05714286
 unknown 1 0.02857143
 yellow 2 0.05714286
 Gesamt 35 1.00000000

Bei Kreuztabellen können wir Zeilen, Spalten oder beides hinzufügen:

humans %>%
 tabyl(eye_color, gender) %>%
 adorn_totals(c("row", "col"))

 eye_color feminine masculine Total
 blue 3 9 12
 blue-gray 0 1 1
 brown 4 12 16
 dark 0 1 1
 hazel 1 1 2
 unknown 1 0 1
 yellow 0 2 2
 Total 9 26 35

adorn_percentages() – Prozente berechnen
Diese Funktion ersetzt die absoluten Zahlen durch Prozentanteile:

humans %>%
 tabyl(eye_color, gender) %>%
 adorn_percentages("row") # Zeilenprozente

11

BioMath

12/20

 eye_color feminine masculine
 blue 0.25 0.75
 blue-gray 0.00 1.00
 brown 0.25 0.75
 dark 0.00 1.00
 hazel 0.50 0.50
 unknown 1.00 0.00
 yellow 0.00 1.00

Das denominator -Argument bestimmt, worauf sich die Prozente beziehen:

• "row" : Zeilenprozente (jede Zeile summiert sich zu 100%)
• "col" : Spaltenprozente (jede Spalte summiert sich zu 100%)
• "all" : Gesamtprozente (die gesamte Tabelle summiert sich zu 100%)

humans %>%
 tabyl(eye_color, gender) %>%
 adorn_percentages("col") # Spaltenprozente

 eye_color feminine masculine
 blue 0.3333333 0.34615385
 blue-gray 0.0000000 0.03846154
 brown 0.4444444 0.46153846
 dark 0.0000000 0.03846154
 hazel 0.1111111 0.03846154
 unknown 0.1111111 0.00000000
 yellow 0.0000000 0.07692308

adorn_pct_formatting() – Prozente formatieren
Nach adorn_percentages() sind die Werte noch Dezimalzahlen. Mit
adorn_pct_formatting() werden sie schön formatiert:

humans %>%
 tabyl(eye_color, gender) %>%
 adorn_percentages("row") %>%
 adorn_pct_formatting(digits = 1)

 eye_color feminine masculine
 blue 25.0% 75.0%
 blue-gray 0.0% 100.0%
 brown 25.0% 75.0%
 dark 0.0% 100.0%
 hazel 50.0% 50.0%
 unknown 100.0% 0.0%
 yellow 0.0% 100.0%

Das affix_sign -Argument steuert, ob das Prozentzeichen angehängt wird:

humans %>%
 tabyl(eye_color, gender) %>%
 adorn_percentages("row") %>%
 adorn_pct_formatting(digits = 1, affix_sign = FALSE)

 eye_color feminine masculine
 blue 25.0 75.0
 blue-gray 0.0 100.0
 brown 25.0 75.0
 dark 0.0 100.0
 hazel 50.0 50.0

12

BioMath

13/20

 unknown 100.0 0.0
 yellow 0.0 100.0

adorn_ns() – Fallzahlen zu Prozenten hinzufügen
Oft möchte man sowohl Prozente als auch absolute Zahlen sehen. adorn_ns() fügt die
Fallzahlen in Klammern hinzu:

humans %>%
 tabyl(eye_color, gender) %>%
 adorn_percentages("row") %>%
 adorn_pct_formatting(digits = 0) %>%
 adorn_ns(position = "front") # n vor Prozent

 eye_color feminine masculine
 blue 3 (25%) 9 (75%)
 blue-gray 0 (0%) 1 (100%)
 brown 4 (25%) 12 (75%)
 dark 0 (0%) 1 (100%)
 hazel 1 (50%) 1 (50%)
 unknown 1 (100%) 0 (0%)
 yellow 0 (0%) 2 (100%)

Mit position = "rear" erscheinen die Fallzahlen nach den Prozenten:

humans %>%
 tabyl(eye_color, gender) %>%
 adorn_percentages("row") %>%
 adorn_pct_formatting(digits = 0) %>%
 adorn_ns(position = "rear") # n nach Prozent

 eye_color feminine masculine
 blue 25% (3) 75% (9)
 blue-gray 0% (0) 100% (1)
 brown 25% (4) 75% (12)
 dark 0% (0) 100% (1)
 hazel 50% (1) 50% (1)
 unknown 100% (1) 0% (0)
 yellow 0% (0) 100% (2)

adorn_title() – Tabellentitel hinzufügen
Für eine vollständige Beschriftung können wir Titel für Zeilen und Spalten hinzufügen:

humans %>%
 tabyl(eye_color, gender) %>%
 adorn_title(
 row_name = "Augenfarbe",
 col_name = "Geschlecht"
)

 Geschlecht
 Augenfarbe feminine masculine
 blue 3 9
 blue-gray 0 1
 brown 4 12
 dark 0 1
 hazel 1 1
 unknown 1 0
 yellow 0 2

13

BioMath

14/20

Kombinierte Pipelines
Die adorn_*() -Funktionen lassen sich beliebig kombinieren. Eine typische Pipeline sieht so
aus:

humans %>%
 tabyl(eye_color, gender) %>%
 adorn_totals(c("row", "col")) %>%
 adorn_percentages("row") %>%
 adorn_pct_formatting(digits = 1) %>%
 adorn_ns() %>%
 adorn_title(row_name = "Augenfarbe", col_name = "Geschlecht")

 Geschlecht
 Augenfarbe feminine masculine Total
 blue 25.0% (3) 75.0% (9) 100.0% (12)
 blue-gray 0.0% (0) 100.0% (1) 100.0% (1)
 brown 25.0% (4) 75.0% (12) 100.0% (16)
 dark 0.0% (0) 100.0% (1) 100.0% (1)
 hazel 50.0% (1) 50.0% (1) 100.0% (2)
 unknown 100.0% (1) 0.0% (0) 100.0% (1)
 yellow 0.0% (0) 100.0% (2) 100.0% (2)
 Total 25.7% (9) 74.3% (26) 100.0% (35)

 Übung: Kreuztabellen und adorn_*()

Arbeite mit dem humans -Datensatz:

a) Erstelle eine Kreuztabelle von gender (Zeilen) und eye_color (Spalten) mit einer
Summenzeile.

b) Erweitere die Tabelle aus a) um Spaltenprozente (jede Spalte = 100%), formatiert mit
einer Dezimalstelle.

c) Füge zusätzlich die absoluten Fallzahlen hinzu (Position: nach den Prozenten).

14

BioMath

15/20

 Lösungsvorschlag

a) Kreuztabelle mit Summenzeile
humans %>%
 tabyl(gender, eye_color) %>%
 adorn_totals("row")

 gender blue blue-gray brown dark hazel unknown yellow
 feminine 3 0 4 0 1 1 0
 masculine 9 1 12 1 1 0 2
 Total 12 1 16 1 2 1 2

b) Mit Spaltenprozenten
humans %>%
 tabyl(gender, eye_color) %>%
 adorn_totals("row") %>%
 adorn_percentages("col") %>%
 adorn_pct_formatting(digits = 1)

 gender blue blue-gray brown dark hazel unknown yellow
 feminine 25.0% 0.0% 25.0% 0.0% 50.0% 100.0% 0.0%
 masculine 75.0% 100.0% 75.0% 100.0% 50.0% 0.0% 100.0%
 Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

c) Mit Fallzahlen
humans %>%
 tabyl(gender, eye_color) %>%
 adorn_totals("row") %>%
 adorn_percentages("col") %>%
 adorn_pct_formatting(digits = 1) %>%
 adorn_ns(position = "rear")

 gender blue blue-gray brown dark hazel unknown
 feminine 25.0% (3) 0.0% (0) 25.0% (4) 0.0% (0) 50.0% (1) 100.0% (1)
 masculine 75.0% (9) 100.0% (1) 75.0% (12) 100.0% (1) 50.0% (1) 0.0% (0)
 Total 100.0% (12) 100.0% (1) 100.0% (16) 100.0% (1) 100.0% (2) 100.0% (1)
 yellow
 0.0% (0)
 100.0% (2)
 100.0% (2)

15

BioMath

16/20

Fortgeschritten: Praxistipps
Named Vectors für Recoding
Wenn Variablen kryptische Codes haben (z.B. var1 , var2 , …), möchten wir sie oft mit

verständlichen Labels versehen. Statt eines langen case_when() empfiehlt sich ein Named
Vector:

Named Vector definieren (wiederverwendbar!)
eye_labels <- c(
 "blue" = "Blau",
 "brown" = "Braun",
 "hazel" = "Haselnuss",
 "dark" = "Dunkel",
 "blue-gray" = "Blau-Grau"
)

Anwendung
humans %>%
 mutate(eye_color_de = eye_labels[eye_color]) %>%
 tabyl(eye_color_de, show_na = FALSE)

 eye_color_de n percent
 Blau 12 0.37500
 Blau-Grau 1 0.03125
 Braun 16 0.50000
 Dunkel 1 0.03125
 Haselnuss 2 0.06250

Dieser Ansatz ist:

• Wiederverwendbar: Der Vektor kann in mehreren Auswertungen genutzt werden
• Zentral pflegbar: Änderungen an einem Ort wirken sich überall aus
• Übersichtlich: Keine langen case_when() -Blöcke im Code

 Tipp: Labels in separater Datei

Bei vielen Variablen lohnt es sich, alle Label-Vektoren in einer separaten R-Datei zu
speichern (z.B. labels.R) und diese am Anfang des Skripts zu laden:

source("labels.R")

Warnung: Mittelwert von Mittelwerten
Wenn man adorn_totals() auf Tabellen anwendet, die bereits aggregierte Werte enthalten,
ist Vorsicht geboten. Das betrifft besonders Mittelwerte:

Beispiel: Durchschnittliche Körpergröße nach Geschlecht
height_by_gender <- humans %>%
 group_by(gender) %>%
 summarise(
 n = n(),
 mean_height = mean(height, na.rm = TRUE)
)

height_by_gender

16

BioMath

17/20

A tibble: 2 × 3
 gender n mean_height
 <chr> <int> <dbl>
1 feminine 9 164.
2 masculine 26 182.

FALSCH: adorn_totals() summiert auch den Mittelwert!
height_by_gender %>%
 adorn_totals("row")

 gender n mean_height
 feminine 9 163.5714
 masculine 26 182.3913
 Total 35 345.9627

Das Problem: adorn_totals() addiert einfach die Zeilen. Bei der Spalte n ist das korrekt,

aber bei mean_height ergibt die Summe keinen Sinn!

! Der Mittelwert von Mittelwerten ist nicht der Gesamtmittelwert!

Wenn die Gruppen unterschiedlich groß sind, führt der einfache Durchschnitt der
Gruppenmittelwerte zu einer Verzerrung. Der korrekte Gesamtmittelwert muss gewichtet
berechnet werden.

Hier ein Beispiel zur Veranschaulichung:

Gruppe A: 100 Personen, Durchschnitt 20
Gruppe B: 10 Personen, Durchschnitt 30

Falscher "Gesamtmittelwert": (20 + 30) / 2 = 25

Korrekter Gesamtmittelwert:
(100 * 20 + 10 * 30) / (100 + 10) = 2300 / 110 ≈ 20.9

tibble(
 Gruppe = c("A", "B"),
 n = c(100, 10),
 Mittelwert = c(20, 30)
) %>%
 adorn_totals("row") # Zeigt 25 statt 20.9!

 Gruppe n Mittelwert
 A 100 20
 B 10 30
 Total 110 50

Lösung: Die Gesamtzeile bei Mittelwerten separat und korrekt berechnen:

Schritt 1: Gruppierte Mittelwerte
height_by_gender <- humans %>%
 group_by(gender) %>%
 summarise(
 n = n(),
 mean_height = mean(height, na.rm = TRUE)
)

Schritt 2: Gesamtzeile separat berechnen
gesamt <- humans %>%
 summarise(
 gender = "Total",
 n = n(),

17

BioMath

18/20

 mean_height = mean(height, na.rm = TRUE)
)

Schritt 3: Zusammenfügen
bind_rows(height_by_gender, gesamt)

A tibble: 3 × 3
 gender n mean_height
 <chr> <int> <dbl>
1 feminine 9 164.
2 masculine 26 182.
3 Total 35 178

 Übung: Praxisanwendung

Verwende den vollständigen starwars -Datensatz (nicht nur Menschen):

a) Erstelle eine Häufigkeitstabelle für species , aber zeige nur die 5 häufigsten Spezies.

Alle anderen sollen unter “Andere” zusammengefasst werden. Tipp: Nutze fct_lump_n()
aus dem {forcats}-Paket.

b) Füge eine Summenzeile mit dem Namen “Gesamt” hinzu und formatiere die Prozente
mit einer Dezimalstelle.

 Lösungsvorschlag

a) + b) Häufigkeitstabelle der Top-5 Spezies
starwars %>%
 mutate(species = fct_lump_n(species, n = 5, other_level = "Andere")) %>%
 tabyl(species, show_na = FALSE) %>%
 adorn_totals("row", name = "Gesamt") %>%
 adorn_pct_formatting(digits = 1)

 species n percent
 Droid 6 7.2%
 Gungan 3 3.6%
 Human 35 42.2%
 Kaminoan 2 2.4%
 Mirialan 2 2.4%
 Twi'lek 2 2.4%
 Wookiee 2 2.4%
 Zabrak 2 2.4%
 Andere 29 34.9%
 Gesamt 83 100.0%

18

BioMath

19/20

Zusammenfassung
In diesem Kapitel haben wir drei Wege kennengelernt, Häufigkeitstabellen in R zu erstellen,
und gesehen, warum janitor::tabyl() in den meisten Fällen die beste Wahl ist.

 Wichtige Erkenntnisse

Vergleich der Methoden:

Aspekt table() count() tabyl()

Rückgabetyp table-Objekt tibble tibble

Prozente Nein Manuell Automatisch

NA-Handling Eingeschränkt Manuell show_na

Summenzeile Manuell Manuell adorn_totals()

Kreuztabellen Ja Umständlich Ja

Weiterverarbeitung Umständlich Gut Sehr gut

Die wichtigsten tabyl() -Features:

• tabyl(df, var) : Einweg-Tabelle mit n, percent, valid_percent
• tabyl(df, var1, var2) : Kreuztabelle
• show_na = FALSE : NA-Werte ausblenden
• show_missing_levels = TRUE : Leere Faktor-Levels anzeigen

Die adorn_*() Familie:

• adorn_totals() : Summenzeile/-spalte hinzufügen
• adorn_percentages() : Prozente berechnen (row/col/all)
• adorn_pct_formatting() : Prozente formatieren
• adorn_ns() : Fallzahlen zu Prozenten hinzufügen
• adorn_title() : Zeilen-/Spaltentitel setzen

Praxistipps:

• Named Vectors für Recoding statt langes case_when()
• Vorsicht bei adorn_totals() und Mittelwerten – der Mittelwert von Mittelwerten ist

nicht der Gesamtmittelwert!
• Die typische Pipeline:

tabyl() %>% adorn_totals() %>% adorn_percentages() %>% adorn_pct_formatting()
%>% adorn_ns()

Weiterführende Ressourcen:

• janitor Package Dokumentation
• tabyl Vignette

19

https://sfirke.github.io/janitor/
https://sfirke.github.io/janitor/articles/tabyls.html

BioMath

20/20

Bibliography

20

	Einleitung
	Beispieldaten
	Der klassische Weg: table()
	Der tidyverse-Weg: count() + mutate()
	janitor::tabyl() – Die elegante Lösung
	Einweg-Tabelle (eine Variable)
	NA-Werte kontrollieren
	Leere Kategorien anzeigen

	Zweiweg-Tabellen (Kreuztabellen)
	Dreiweg-Tabellen

	Die adorn_*() Familie
	adorn_totals() – Summenzeilen und -spalten
	adorn_percentages() – Prozente berechnen
	adorn_pct_formatting() – Prozente formatieren
	adorn_ns() – Fallzahlen zu Prozenten hinzufügen
	adorn_title() – Tabellentitel hinzufügen
	Kombinierte Pipelines

	Fortgeschritten: Praxistipps
	Named Vectors für Recoding
	Warnung: Mittelwert von Mittelwerten

	Zusammenfassung
	Bibliography

