BioMath

3. Haufigkeitstabellen

Zahlen und Auszahlen mit janitor::tabyl()
Dr. Paul Schmidt

Um alle in diesem Kapitel verwendeten Pakete zu installieren und zu laden, fihrt man
folgenden Code aus:

for (pkg in c("janitor", "scales", "tidyverse")) {
if (!require (pkg, character.only = TRUE)) install.packages (pkqg)
}

library(janitor)
library(scales)
library (tidyverse)

Einleitung

Haufigkeitstabellen sind eines der grundlegendsten Werkzeuge der Datenanalyse. Wie oft
kommt jede Kategorie vor? Wie verteilen sich die Werte Uber verschiedene Gruppen? Solche
Fragen stellen wir uns standig — sei es bei der Qualitatskontrolle, bei Umfrageauswertungen
oder einfach um einen ersten Uberblick (iber die Daten zu bekommen.

R bietet mehrere Wege, Haufigkeitstabellen zu erstellen. In diesem Kapitel beginnen wir mit
den Grundlagen (table() und count()), um dann zu verstehen, warum janitor::tabyl ()
in den meisten Fallen die elegantere und praktischere Losung ist.

Beispieldaten

Fir dieses Kapitel verwenden wir den starwars -Datensatz aus dem {dplyr}-Paket. Er enthalt

Informationen Uber 87 Charaktere aus dem Star-Wars-Universum:

Iglimpse(starwars)

Rows: 87

Columns: 14

$ name <chr> "Luke Skywalker", "C-3PO", "R2-D2", "Darth Vader", "Leia Or..
$ height <int> 172, 167, 96, 202, 150, 178, 165, 97, 183, 182, 188, 180, 2..
$ mass <dbl> 77.0, 75.0, 32.0, 136.0, 49.0, 120.0, 75.0, 32.0, 84.0, 77...
$ hair color <chr> "blond", NA, NA, "none", "brown", "brown, grey", "brown", N..
$ skin color <chr> "fair", "gold", "white, blue", "white", "light", "light", "..
$ eye color <chr> "blue", "yellow", "red", "yellow", "brown", "blue", "blue",..
$ birth year <dbl> 19.0, 112.0, 33.0, 41.9, 19.0, 52.0, 47.0, NA, 24.0, 57.0,

S sex <chr> "male", "none", "none", "male", "female", "male", "female",..
$ gender <chr> "masculine", "masculine", "masculine", "masculine", "femini..
$ homeworld <chr> "Tatooine", "Tatooine", "Naboo", "Tatooine", "Alderaan", "T..
S species <chr> "Human", "Droid", "Droid", "Human", "Human", "Human", "Huma..
$ films <list> <"A New Hope", "The Empire Strikes Back", "Return of the J..
$ vehicles <list> <"Snowspeeder", "Imperial Speeder Bike">, <>, <>, <>, "Imp..
$ starships <list> <"X-wing", "Imperial shuttle">, <>, <>, "TIE Advanced x1",..

Der Datensatz hat sowohl kategoriale Variablen (wie species, sex, homeworld) als auch
numerische Variablen (wie height , mass). FUr die meisten Beispiele filtern wir auf

Menschen (species == "Human"), um die Ausgaben Ubersichtlicher zu halten:

1/20

humans <- starwars %>%
filter (species == "Human")

humans

Der klassische Weg: table()

Die Funktion table() istin base R eingebaut und erstellt einfache Haufigkeitstabellen:

Itable(humans$eye7color)

blue blue-gray brown dark hazel unknown yellow
12 1 16 1 2 1 2

Das funktioniert, hat aber einige Nachteile:

1. Kein data.frame: Das Ergebnis ist ein table -Objekt, kein Tibble/data.frame. Es lasst
sich nicht direkt mit tidyverse-Funktionen weiterverarbeiten.

2. Keine Prozente: Wir erhalten nur absolute Zahlen, keine relativen Haufigkeiten.
3. Umstandliche Syntax: Bei mehreren Variablen wird es schnell unibersichtlich.

Man kann das Ergebnis zwar in einen data.frame umwandeln, aber das ist umstandlich:

table (humansSeye color) $>%
as.data.frame ()
Varl Freq
1 blue 12
2 blue-gray 1
3 brown 16
4 dark 1
5 hazel 2
6 unknown 1
7 yellow 2

Die Spaltennamen sind nicht intuitiv (varl, Freq), und Prozente missen wir selbst
berechnen.

Der tidyverse-Weg: count() + mutate()

Mit dplyr::count () bekommen wir direkt einen Tibble zurick:

humans $>%
count (eye color)
A tibble: 7 x 2
eye color n
<chr> <int>
1 blue 12
2 blue-gray 1
3 brown 16
4 dark 1
5 hazel 2
6 unknown 1
7 yellow 2

Das ist schon besser! Wenn wir Prozente mdchten, fligen wir sie mit mutate () hinzu:

humans $>%

count (eye color) $>%
mutate (
percent = n / sum(n),

BioMath

3/20

percent formatted = percent (percent, accuracy = 0.1)

)

Und wenn wir eine Summenzeile méchten, missen wir diese separat berechnen und dann
anhangen:

Schritt 1: Haufigkeiten pro Kategorie berechnen

pro _eye color <- humans %>%

count (eye color) %>%
mutate (percent = n / sum(n))

pro _eye color

Schritt 2: Gesamtzeile separat erstellen
gesamt <- tibble(

eye color = "Total",

n = sum(pro_eye colors$n),

percent = 1

)

gesamt

Schritt 3: Zusammenfiigen
bind rows (pro_eye color, gesamt)

Das funktioniert, aber es ist viel Tipparbeit flr eine so haufige Aufgabe. Hier kommt tabyl ()
ins Spiel.

BioMath

janitor::tabyl() — Die elegante Losung

Die Funktion tabyl () aus dem {janitor}-Paket wurde genau fur diesen Anwendungsfall

entwickelt. Sie kombiniert die besten Eigenschaften von table() und count() und fugt
weitere nitzliche Features hinzu.

Einweg-Tabelle (eine Variable)

humans %$>%
tabyl (eye color)

eye color n percent
blue 12 0.34285714
blue-gray 1 0.02857143
brown 16 0.45714286
dark 1 0.02857143
hazel 2 0.05714286
unknown 1 0.02857143
yellow 2 0.05714286

Mit einem einzigen Funktionsaufruf erhalten wir:

* n: Die absolute Haufigkeit
 percent: Den relativen Anteil (als Dezimalzahl)

Das Ergebnis ist ein Tibble, den wir direkt weiterverarbeiten kénnen.

NA-Werte kontrollieren

Schauen wir uns eine Variable mit fehlenden Werten an — homeworld enthalt mehrere NA-

Eintrage:
humans %$>%
tabyl (homeworld)
homeworld n percent valid percent
Alderaan 3 0.08571429 0.10344828
Bespin 1 0.02857143 0.03448276
Chandrila 1 0.02857143 0.03448276
Concord Dawn 1 0.02857143 0.03448276
Corellia 2 0.05714286 0.06896552
Coruscant 2 0.05714286 0.06896552
Eriadu 1 0.02857143 0.03448276
Haruun Kal 1 0.02857143 0.03448276
Kamino 1 0.02857143 0.03448276
Naboo 5 0.14285714 0.17241379
Serenno 1 0.02857143 0.03448276
Socorro 1 0.02857143 0.03448276
Stewjon 1 0.02857143 0.03448276
Tatooine 8 0.22857143 0.27586207
<NA> 6 0.17142857 NA

Standardmalig zeigt tabyl () NA-Werte als eigene Kategorie an. Beachte die zwei Prozent-
Spalten:

+ percent: Anteil bezogen auf alle Zeilen (inkl. NA)
+ valid_percent: Anteil bezogen auf gliltige Werte (ohne NA)

Mit show_na = FALSE kdnnen wir NA-Werte ausblenden:

6/20

humans %>%
tabyl (homeworld, show na = FALSE)

homeworld n percent
Alderaan 3 0.10344828
Bespin 1 0.03448276
Chandrila 1 0.03448276
Concord Dawn 1 0.03448276
Corellia 2 0.06896552
Coruscant 2 0.06896552
Eriadu 1 0.03448276
Haruun Kal 1 0.03448276
Kamino 1 0.03448276
Naboo 5 0.17241379
Serenno 1 0.03448276
Socorro 1 0.03448276
Stewjon 1 0.03448276
Tatooine 8 0.27586207

Wenn wir show_na = FALSE setzen, gibt es nur noch eine Prozent-Spalte, da beide Werte
identisch waren.

Leere Kategorien anzeigen

Wenn eine Variable als Faktor definiert ist, kann es Levels geben, die im Datensatz nicht
vorkommen. Mit show missing_levels = TRUE werden diese trotzdem angezeigt:

Beispiel: Faktor mit Level, das nicht vorkommt
humans factor <- humans %>%
mutate (eye color = factor(eye color,
levels = c("blue", "brown", "hazel", "dark", "green",
"blue-gray")))

humans factor %>%
tabyl (eye color, show missing levels = TRUE)

eye color n percent valid percent
blue 12 0.34285714 0.37500
brown 16 0.45714286 0.50000
hazel 2 0.05714286 0.06250
dark 1 0.02857143 0.03125
green 0 0.00000000 0.00000
blue-gray 1 0.02857143 0.03125
<NA> 3 0.08571429 NA

Das Level “green” kommt bei Menschen nicht vor, wird aber trotzdem mit n=0 angezeigt. Das
ist besonders nitzlich bei Umfragedaten, wo bestimmte Antwortkategorien méglicherweise
von niemandem gewahlt wurden, aber trotzdem im Bericht erscheinen sollen.

© Ubung: Einweg-Tabellen

Erstelle mit dem humans -Datensatz folgende Tabellen:
a) Eine Haufigkeitstabelle fiir die Variable gender .

b) Eine Haufigkeitstabelle flir homeworld , bei der NA-Werte ausgeblendet sind.

BioMath

7/20

a) Geschlechterverteilung
humans %>%
tabyl (gender)

b) Heimatwelten ohne NA
humans %>%
tabyl (homeworld, show na = FALSE)

Zweiweg-Tabellen (Kreuztabellen)

Mit zwei Variablen erstellt tabyl () automatisch eine Kreuztabelle:

humans %>%
tabyl (eye color, gender)

eye color feminine masculine
blue 3 9
blue-gray 0 1
brown
dark
hazel
unknown
yellow

O P P O B
N O BN

Die erste Variable (eye_color) definiert die Zeilen, die zweite (gender) die Spalten. Das
Ergebnis zeigt die absoluten Haufigkeiten fir jede Kombination.

Dreiweg-Tabellen

Mit drei Variablen erstellt tabyl () eine Liste von Kreuztabellen — eine fir jede Auspragung
der dritten Variable:

humans %>%
tabyl (eye color, gender, hair color)

Sauburn
eye color feminine masculine
blue 1
blue-gray
brown
dark

hazel
unknown
yellow

O O O O O o
O O O O O O o

$auburn, grey’
eye color feminine masculine
blue 0
blue-gray
brown
dark

hazel
unknown
yellow

O O O O O o
O O O O O O

$ auburn, white®
eye color feminine masculine
blue 0
blue-gray
brown
dark

hazel
unknown
yellow

O O O O O o
O O O O O+ O

Sblack
eye color feminine masculine
blue 0 0
blue-gray 0 0
brown 1 6
dark 0 1

BioMath

9/20

Fir komplexere Analysen ist dies jedoch oft weniger praktisch als gruppierte Auswertungen

mit group_by() .

Die adorn_*() Familie

Die wahre Starke von tabyl () zeigt sich in Kombination mit den adorn_* () -Funktionen.

Diese “dekorieren” die Tabelle mit zusatzlichen Informationen und Formatierungen.

adorn_totals() — Summenzeilen und -spalten

humans $>%
tabyl (eye color) $>%
adorn_ totals ("row"

eye color n percent
blue 12 0.34285714
blue-gray 1 0.02857143
brown 16 0.45714286
dark 1 0.02857143
hazel 2 0.05714286
unknown 1 0.02857143
yellow 2 0.05714286
Total 35 1.00000000

Mit dem name -Argument kdnnen wir den Namen der Summenzeile anpassen:

humans $>%
tabyl (eye color) $>%
adorn totals("row", name = "Gesamt")
eye color n percent
blue 12 0.34285714
blue-gray 1 0.02857143
brown 16 0.45714286
dark 1 0.02857143
hazel 2 0.05714286
unknown 1 0.02857143
yellow 2 0.05714286
Gesamt 35 1.00000000

Bei Kreuztabellen kénnen wir Zeilen, Spalten oder beides hinzufligen:
humans %>%
tabyl (eye color, gender) %>%

adorn_totals(c("row", "col"))

eye color feminine masculine Total

blue 3 9 12
blue-gray 0 1 1
brown 4 12 16
dark 0 1 1
hazel 1 1 2
unknown 1 0 1
yellow 0 2 2
Total 9 26 35

adorn_percentages() — Prozente berechnen

Diese Funktion ersetzt die absoluten Zahlen durch Prozentanteile:

humans %>%
tabyl (eye color, gender) %>%
adorn percentages ("row") # Zeilenprozente

11

BioMath

11/20

eye color feminine masculine

blue 0.25 0.75
blue-gray 0.00 1.00
brown 0.25 0.75
dark 0.00 1.00
hazel 0.50 0.50
unknown 1.00 0.00
yellow 0.00 1.00

Das denominator -Argument bestimmt, worauf sich die Prozente beziehen:

* "row" : Zeilenprozente (jede Zeile summiert sich zu 100%)
* "col" : Spaltenprozente (jede Spalte summiert sich zu 100%)

* "all" : Gesamtprozente (die gesamte Tabelle summiert sich zu 100%)

humans %>%
tabyl (eye color, gender) %>%
adorn percentages("col") # Spaltenprozente

eye color feminine masculine

blue 0.3333333 0.34615385
blue-gray 0.0000000 0.03846154
brown 0.4444444 0.46153846
dark 0.0000000 0.03846154
hazel 0.1111111 0.03846154
unknown 0.1111111 0.00000000
yellow 0.0000000 0.07692308

adorn_pct_formatting() — Prozente formatieren

Nach adorn percentages () sind die Werte noch Dezimalzahlen. Mit

adorn_pct_formatting() werden sie schon formatiert:

humans %>%
tabyl (eye color, gender) %>%
adorn percentages ("row") 3%>%
adorn pct formatting(digits = 1)

eye color feminine masculine

blue 25.0% 75.0%
blue-gray 0.0% 100.0%
brown 25.0% 75.0%
dark 0.0% 100.0%
hazel 50.0% 50.0%
unknown 100.0% 0.0%
yvellow 0.0% 100.0%

Das affix sign -Argument steuert, ob das Prozentzeichen angehangt wird:

humans %>%
tabyl (eye color, gender) %>%
adorn percentages ("row") %>%
adorn pct formatting(digits = 1, affix sign = FALSE)

eye color feminine masculine

blue 25.0 75.0
blue-gray 0.0 100.0
brown 25.0 75.0
dark 0.0 100.0
hazel 50.0 50.0

12

BioMath

12/20

BioMath

unknown 100.0 0.0
yellow 0.0 100.0

adorn_ns() — Fallzahlen zu Prozenten hinzufiugen

Oft méchte man sowohl Prozente als auch absolute Zahlen sehen. adorn ns () fiigt die
Fallzahlen in Klammern hinzu:

humans $>%

tabyl (eye color, gender) 3%>%
adorn percentages ("row") 3%>%
adorn pct formatting(digits = 0) %>%

adorn ns(position = "front") # n vor Prozent
eye color feminine masculine
blue 3 (25%) 9 (75%)
blue-gray 0 (0%) 1 (100%)
brown 4 (25%) 12 (75%)
dark 0 (0%) 1 (100%)
hazel 1 (50%) 1 (50%)
unknown 1 (100%) 0 (0%)
yellow O (0%) 2 (100%)

Mit position = "rear" erscheinen die Fallzahlen nach den Prozenten:

humans %>%
tabyl (eye color, gender) %
adorn percentages ("row") 3%
adorn pct formatting(digits = 0) $>%
adorn ns(position = "rear") # n nach Prozent

>%
>

eye color feminine masculine
blue 25% (3) 75% (9)
blue-gray 0% (0) 100% (1)
brown 25% (4) 75% (12)
dark 0% (0) 100% (1)
hazel 50% (1) 50%

(

(

(1)
unknown 100% (1) 0% (0)
yellow 0% (0) 100% (2)

adorn_title() — Tabellentitel hinzufugen
Fir eine vollstandige Beschriftung kdnnen wir Titel fur Zeilen und Spalten hinzufligen:
humans %>%

tabyl (eye color, gender) %>%
adorn_ title(

row_name = "Augenfarbe",
col name = "Geschlecht"
)
Geschlecht

Augenfarbe feminine masculine
blue 3 9
blue-gray 0 1
brown 4 12
dark 0 1
hazel 1 1
unknown 1 0
yellow 0 2

13
13/20

BioMath

Kombinierte Pipelines

Die adorn_=* () -Funktionen lassen sich beliebig kombinieren. Eine typische Pipeline sieht so
aus:

humans %>%
tabyl (eye color, gender) %>%
adorn_totals(c("row", "col")) %>%
adorn percentages ("row") %>%
adorn pct formatting(digits = 1) $>%
adorn ns() %>%

adorn title(row name = "Augenfarbe", col name = "Geschlecht")
Geschlecht
Augenfarbe feminine masculine Total

blue 25.0% (3) 75.0% (9) 100.
blue-gray 0.0% (0) 100.0% (1) 100.
brown 25.0% (4) 75.0% (12) 100.
dark 0.0% (0) 100.0% (1) 100.
hazel 50.0% (1) 50.0% (1) 100.
(

(

(

o° o0 o° oP
~ o~
oo e N

unknown 100.0% (1) 0.0% (0) 100.
yellow 0.0 0) 100.0% (2) 100.
Total 25.7 9) 74.3% (26) 100.

o
[

o°

O O O O O O O O
oe oe
N N

o°

o\
w
ul

© Ubung: Kreuztabellen und adorn_*()

Arbeite mit dem humans -Datensatz:
a) Erstelle eine Kreuztabelle von gender (Zeilen) und eye_color (Spalten) mit einer
Summenzeile.

b) Erweitere die Tabelle aus a) um Spaltenprozente (jede Spalte = 100%), formatiert mit
einer Dezimalstelle.

c¢) Flige zusatzlich die absoluten Fallzahlen hinzu (Position: nach den Prozenten).

14
14/20

1 Lésungsvorschlag

a) Kreuztabelle mit Summenzeile
humans %>%
tabyl (gender, eye color)
adorn totals ("row")

oe
\A
oe

b) Mit Spaltenprozenten
humans %>%
tabyl (gender, eye color)
adorn_totals("row") $%>%
adorn percentages ("col") 3%>%
adorn_pct formatting(digits = 1)

oo

>%

c) Mit Fallzahlen

humans %>%
tabyl (gender, eye color) %>
adorn totals("row") $%>%
adorn percentages("col") %>%
adorn_pct formatting(digits = 1)
adorn ns(position = "rear")

oe

oe
Vv
oe

Fortgeschritten: Praxistipps

Named Vectors fiir Recoding

Wenn Variablen kryptische Codes haben (z.B. varl, var2, ...), méchten wir sie oft mit

verstandlichen Labels versehen. Statt eines langen case_when () empfiehlt sich ein Named
Vector:

Named Vector definieren (wiederverwendbar!)
eye labels <- c(

"blue" = "Blau",
"brown" = "Braun",
"hazel" = "Haselnuss",
"dark" = "Dunkel",
"blue-gray" = "Blau-Grau"
)
Anwendung
humans $>%
mutate (eye color de = eye labels[eye color]) $>%

tabyl (eye color de, show na = FALSE)

eye color de n percent
Blau 12 0.37500
Blau-Grau 1 0.03125
Braun 16 0.50000

Dunkel 1 0.03125
Haselnuss 2 0.06250

Dieser Ansatz ist:

* Wiederverwendbar: Der Vektor kann in mehreren Auswertungen genutzt werden
« Zentral pflegbar: Anderungen an einem Ort wirken sich (iberall aus

* Ubersichtlich: Keine langen case_when () -Blocke im Code

© Tipp: Labels in separater Datei

Bei vielen Variablen lohnt es sich, alle Label-Vektoren in einer separaten R-Datei zu
speichern (z.B. labels.R) und diese am Anfang des Skripts zu laden:

Isource("labels.R")

Warnung: Mittelwert von Mittelwerten

Wenn man adorn_totals () auf Tabellen anwendet, die bereits aggregierte Werte enthalten,
ist Vorsicht geboten. Das betrifft besonders Mittelwerte:

Beispiel: Durchschnittliche KorpergroBe nach Geschlecht
height by gender <- humans %>%
group by (gender) $>%
summarise (
n = n(),
mean height = mean (height, na.rm = TRUE)
)

height by gender

16

BioMath

16/20

A tibble: 2 x 3

gender n mean_ height
<chr> <int> <dbl>
1 feminine 9 164.
2 masculine 26 182.
FALSCH: adorn totals() summiert auch den Mittelwert!

height by gender %>%
adorn_ totals ("row")

gender n mean height
feminine 9 163.5714
masculine 26 182.3913
Total 35 345.9627

Das Problem: adorn_totals() addiert einfach die Zeilen. Bei der Spalte n ist das korrekt,

aber bei mean_height ergibt die Summe keinen Sinn!

| Der Mittelwert von Mittelwerten ist nicht der Gesamtmittelwert!

Wenn die Gruppen unterschiedlich gro3 sind, fiihrt der einfache Durchschnitt der
Gruppenmittelwerte zu einer Verzerrung. Der korrekte Gesamtmittelwert muss gewichtet
berechnet werden.

Hier ein Beispiel zur Veranschaulichung:

Gruppe A: 100 >n, Durchschnitt 20

Gruppe B: urchschnitt 30

Falscher "Gesamtmittelwert": (20 30) 2 = 25
Korrekter Gesamtmittelwert

20 + 10) (+) =)0
tibble (

Gruppe = c("A", "B"),
n = c(100, 10),
Mittelwert = c (20, 30)
) %>%
adorn_ totals ("row") # Zeigt 25 statt

N

Gruppe n Mittelwert

A 100 20
B 10 30
Total 110 50

Losung: Die Gesamtzeile bei Mittelwerten separat und korrekt berechnen:

Schritt 1: Gruppierte Mittelwerte
height by gender <- humans %>%
group by (gender) 3$>%
summarise (
n=n(),
mean height = mean(height, na.rm = TRUE)
)

Schritt 2

gesamt <- humans %$>%
summarise (

gender = "Total",

n = n(),

Gesamtzeile separat berechnen

17

BioMath

17/20

mean _height = mean (height, na.rm = TRUE)
)

Schritt 3: Zusammenfiigen
bind rows (height by gender, gesamt)

A tibble: 3 x 3

gender n mean height

<chr> <int> <dbl>
1 feminine 9 164.
2 masculine 26 182.
3 Total 35 178

© Ubung: Praxisanwendung

Verwende den vollstidndigen starwars -Datensatz (nicht nur Menschen):

a) Erstelle eine Haufigkeitstabelle flr species , aber zeige nur die 5 haufigsten Spezies.
Alle anderen sollen unter “Andere” zusammengefasst werden. Tipp: Nutze fct_lump_n ()

aus dem {forcats}-Paket.

b) Flige eine Summenzeile mit dem Namen “Gesamt” hinzu und formatiere die Prozente
mit einer Dezimalstelle.

1 Lésungsvorschlag

a) + b) Haufigkeitstabelle der Top-5 Spezies

starwars %>%
mutate (species = fct lump n(species, n = 5, other level = "Andere")) %>%
tabyl (species, show na = FALSE) %>%
adorn totals("row", name = "Gesamt") $>%

adorn pct formatting(digits = 1)

species n percent

Droid 6 7.2%
Gungan 3 3.6%
Human 35 42 .2%
Kaminoan 2 2.4%
Mirialan 2 2.4%
Twi'lek 2 2.4%
Wookiee 2 2.4%
Zabrak 2 2.4%

Andere 29 34.9
Gesamt 83 100.0

o

oe

18

BioMath

18/20

BioMath

Zusammenfassung

In diesem Kapitel haben wir drei Wege kennengelernt, Haufigkeitstabellen in R zu erstellen,

und gesehen, warum Jjanitor::tabyl () in den meisten Fallen die beste Wahl ist.

1 Wichtige Erkenntnisse

Vergleich der Methoden:

Aspekt table () count () tabyl ()
Ruckgabetyp table-Objekt tibble tibble

Prozente Nein Manuell Automatisch
NA-Handling Eingeschrankt Manuell show na
Summenzeile Manuell Manuell adorn_totals ()
Kreuztabellen Ja Umstandlich Ja
Weiterverarbeitung Umstandlich Gut Sehr gut

Die wichtigsten tabyl() -Features:

* tabyl (df, var) : Einweg-Tabelle mit n, percent, valid_percent

tabyl (df, varl, var2) : Kreuztabelle

* show na = FALSE : NA-Werte ausblenden

show _missing levels = TRUE : Leere Faktor-Levels anzeigen

Die adorn_*() Familie:

adorn_totals () : Summenzeile/-spalte hinzufligen

adorn_percentages () : Prozente berechnen (row/col/all)

adorn_pct_formatting () : Prozente formatieren

adorn_ns () : Fallzahlen zu Prozenten hinzufligen

adorn_title () : Zeilen-/Spaltentitel setzen
Praxistipps:

* Named Vectors fur Recoding statt langes case_when ()

* Vorsicht bei adorn totals() und Mittelwerten — der Mittelwert von Mittelwerten ist
nicht der Gesamtmittelwert!
* Die typische Pipeline:

tabyl () %>% adorn totals() %>% adorn percentages () %>% adorn pct formatting()
%$>% adorn ns ()

Weiterfithrende Ressourcen:

* janitor Package Dokumentation
+ tabyl Vignette

19
19/20

https://sfirke.github.io/janitor/
https://sfirke.github.io/janitor/articles/tabyls.html

Bibliography

20

	Einleitung
	Beispieldaten
	Der klassische Weg: table()
	Der tidyverse-Weg: count() + mutate()
	janitor::tabyl() – Die elegante Lösung
	Einweg-Tabelle (eine Variable)
	NA-Werte kontrollieren
	Leere Kategorien anzeigen

	Zweiweg-Tabellen (Kreuztabellen)
	Dreiweg-Tabellen

	Die adorn_*() Familie
	adorn_totals() – Summenzeilen und -spalten
	adorn_percentages() – Prozente berechnen
	adorn_pct_formatting() – Prozente formatieren
	adorn_ns() – Fallzahlen zu Prozenten hinzufügen
	adorn_title() – Tabellentitel hinzufügen
	Kombinierte Pipelines

	Fortgeschritten: Praxistipps
	Named Vectors für Recoding
	Warnung: Mittelwert von Mittelwerten

	Zusammenfassung
	Bibliography

