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4. Strings und Text

Textmanipulation mit paste, glue, stringr und Zahlenformatierung
Dr. Paul Schmidt

Um alle in diesem Kapitel verwendeten Pakete zu installieren und zu laden, fihrt man
folgenden Code aus:

for (pkg in c("glue", "scales", "stringr", "tidyverse")) {
if (!require (pkg, character.only = TRUE)) install.packages (pkqg)
}

library (glue)
library(scales)
library (stringr)
library (tidyverse)

Einleitung

In der Datenanalyse arbeiten wir standig mit Text: Dateinamen zusammensetzen,
Spaltennamen bereinigen, Kategorien vereinheitlichen, Labels fir Grafiken erstellen. Auch
die Formatierung von Zahlen fir Berichte und Tabellen gehort dazu — Prozente,
Tausendertrennzeichen, p-Werte.

R bietet verschiedene Werkzeuge dafir — von den eingebauten Funktionen paste () und

paste0 () Uber das elegante {glue}-Paket, die machtigen Manipulationsfunktionen aus
{stringr} bis hin zu spezialisierten Formatierungsfunktionen aus {scales}.

Dieses Kapitel zeigt die wichtigsten Techniken fiir typische Data-Cleaning-Aufgaben und die
Formatierung von Werten fir Berichte.

Beispieldaten

Fir dieses Kapitel erstellen wir einen kleinen Datensatz mit typischen “dreckigen” Strings,
wie sie in der Praxis haufig vorkommen:

umfrage <- tibble (
id = 1:8,
antwort = c("Ja", " Ja", "ja ", " JA ", "Nein", "nein", "NEIN ", "vielleicht"),
kommentar = c(
"Alles gut",

Leerzeichen am Anfang",
"Leerzeichen am Ende "
" Beides W
"Zu viele Leerzeichen",
NA,
"Enthalt Zahl: 42"
)I
kategorie = c("Kat A", "Kat B", "Kat A", "KAT C", "kat a", "Kat-B", "Kat A",
"Kat C")
)

umfrage

119



Man sieht typische Probleme: inkonsistente Grofl3-/Kleinschreibung, fuhrende/nachfolgende
Leerzeichen, unterschiedliche Schreibweisen derselben Kategorie.
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Base R: paste() und paste0()

Die Funktionen paste () und paste0() sind in R eingebaut und dienen dazu, Strings

zusammenzuflugen.

Grundprinzip

# paste () figt mit Leerzeichen zusammen (Standard)
paste ("Hallo", "Welt")

I[l] "Hallo Welt"

# pasteO () flugt ohne Trennzeichen zusammen
pastel ("Hallo", "Welt")

|[1] "HalloWelt"

# Mit Variablen

name <- "Anna"
alter <- 28
paste ("Name:", name, "- Alter:", alter)

I[l] "Name: Anna - Alter: 28"

Das sep-Argument

Mit sep kdénnen wir das Trennzeichen zwischen den Elementen festlegen:

| paste (m2024v, 017, "15v, sep = v-m)
| (11 2024-01-15"

Ipaste(”A”, VgV, WE, gep = U W)

| [1] "A B C"

|paste("Eins", "Zwei", "Drei", sep =

I[l] "Eins | Zweil | Drei"

Das collapse-Argument
Wenn wir einen Vektor zu einem einzigen String zusammenfugen wollen:
staedte <- c("Berlin", "Hamburg", "Minchen")

# Ohne collapse: Vektor mit 3 Elementen
paste ("Stadt:", staedte)

I[l] "Stadt: Berlin" "Stadt: Hamburg" "Stadt: Minchen"

# Mit collapse: Ein einziger String
paste (staedte, collapse = ", ")

|[1] "Berlin, Hamburg, Minchen"
|paste(staedte, collapse = " und ")

|[1] "Berlin und Hamburg und Minchen"
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Limitierung
Bei komplexeren Strings wird paste () schnell undbersichtlich:

kuerzel <- "Ei"
datum <- "2024-01-15"
version <- 2

# Schwer lesbar
pastel ("Tabellenband ", kuerzel, " ", datum, " v", version, ".xlsx")

I[l] "Tabellenband Ei 2024-01-15 v2.xlsx"

Hier bietet glue () eine elegantere Lésung.

© Ubung: paste() und paste0()
a) Erstelle mit paste() den String "R-Workshop-2024" aus den drei Teilen “R”,
“Workshop” und “2024”.

b) Gegeben ist der Vektor monate <- c("Jan", "Feb", "Mar") . Erstelle daraus den

String "Jan, Feb, Mar" .

1 Lésungsvorschlag

# a) Mit Bindestrich als Trennzeichen
"

paste ("R", "Workshop", "2024", sep = "-")

I[l] "R-Workshop-2024"

# b) Vektor mit collapse zusammenfiigen
monate <- c("Jan", "Feb", "Mar")
paste (monate, collapse = ", ")

I[l] "Jan, Feb, Mar"
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glue: Elegante String-Interpolation

Das {glue}-Paket ermdglicht es, Variablen direkt in Strings einzubetten — mit geschweiften
Klammern {} .

Grundprinzip

name <- "Anna"
alter <- 28

glue ("Mein Name ist {name} und ich bin {alter} Jahre alt.")

IMein Name ist Anna und ich bin 28 Jahre alt.
Der Code ist viel lesbarer als die entsprechende paste () -Version.

Praxisbeispiel: Dateinamen erzeugen
Ein haufiger Anwendungsfall ist das Erstellen von Dateinamen:

kuerzel <- "Ei"
datum <- Sys.Date ()
version <- 2

# Elegant und lesbar
dateiname <- glue ("Tabellenband {kuerzel} {datum} v{version}.xlsx")
dateiname

ITabellenband_Ei_ZOZ6—02—08_v2.xlsx

Ausdriicke in glue
Man kann auch R-Ausdriicke direkt in den Klammern verwenden:

x <- 10
glue ("Das Doppelte von {x} ist {x * 2}.")

IDas Doppelte von 10 ist 20.

Iglue(”Heute ist {format (Sys.Date(), 'S

0,
o\°
3
o\°
=<

IHeute ist 08.02.2026.

glue_data() fur Tibbles
Mit glue data() kdnnen wir zeilenweise auf Spalten eines Tibbles zugreifen:

personen <- tibble (
vorname = c ("Anna", "Ben", "Clara"),
nachname = c("Miller", "Schmidt", "Weber"),
punkte = c (85, 92, 78)

)

personen $>%
mutate (beschreibung = glue data(., "{vorname} {nachname}: {punkte} Punkte"))

# A tibble: 3 x 4
vorname nachname punkte beschreibung
<chr> <chr> <dbl> <glue>
1 Anna Miller 85 Anna Miller: 85 Punkte
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2 Ben Schmidt 92 Ben Schmidt: 92 Punkte
3 Clara Weber 78 Clara Weber: 78 Punkte

Vergleich: paste0() vs glue()

# paste0: Variablen unterbrechen den String
pastel ("Ergebnis ", name, " ", datum, " final.csv")

# glue: Flissig lesbar
glue ("Ergebnis {name} {datum} final.csv")

Beide produzieren dasselbe Ergebnis, aber glue () ist bei komplexeren Strings deutlich
Ubersichtlicher.

© Ubung: glue()
Gegeben sind die Variablen:

projekt <- "Analyse"
jahr <- 2024
monat <- "Marz"

a) Erstelle mit glue ) den String "Projekt: Analyse (Marz 2024)" ,

b) Erstelle den Dateinamen "Analyse 2024 Marz_ report.pdf" .

1 Lésungsvorschlag

# a) Beschreibungstext
glue ("Projekt: {projekt} ({monat} {jahr})")

IProjekt: Analyse (Marz 2024)

# b) Dateiname
glue ("{projekt} {jahr} {monat} report.pdf")

IAnalyse_2024_Mérz_report.pdf
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stringr: Strings manipulieren

Das {stringr}-Paket (Teil des tidyverse) bietet konsistente Funktionen zur String-Manipulation.

Alle Funktionen beginnen mit str_ , was die Autovervollstandigung erleichtert.

Leerzeichen entfernen

# str trim: Leerzeichen am Anfang/Ende entfernen
str trim(" Hallo Welt ")

I[l] "Hallo Welt"

Istritrim(" Hallo Welt ", side = "left") # Nur links
I[l] "Hallo Welt "

Istritrim(” Hallo Welt ", side = "right") # Nur rechts
I[l] " Hallo Welt"

# str squish: Zus&tzlich mehrfache Leerzeichen im Text reduzieren
str squish(" Zu viele Leerzeichen ")

I[l] "Zu viele Leerzeichen"

Anwendung auf unseren Datensatz:
umfrage $>%
mutate (
antwort clean = str trim(antwort),
kommentar clean = str squish (kommentar)
) %>%
select (antwort, antwort clean, kommentar, kommentar clean)

# A tibble: 8 x 4

antwort antwort clean kommentar kommentar clean
<chr> <chr> <chr> <chr>
1 "Ja" Ja "Alles gut" "Alles gut"
2 " Ja" Ja " Leerzeichen am Anfang" "Leerzeichen am Anfang"
3 "ja " Jja "Leerzeichen am Ende " "Leerzeichen am Ende"
4 " JA " JA " Beides " "Beides"
5 "Nein" Nein "Zu viele Leerzeichen" "Zu viele Leerzeichen"
6 "nein" nein <NA> <NA>
7 "NEIN " NEIN ne ne
8 "vielleicht" vielleicht "Enthalt Zahl: 42" "Enthalt Zahl: 42"

Grof- und Kleinschreibung
text <- "HaLLo WeLT"
str to lower (text) # alles klein
I[l] "hallo welt"
Istritoiupper(text) # ALLES GROSS
I[l] "HALLO WELT"
Istritoititle(text) # Erster Buchstabe Jedes Wortes Grof

I[l] "Hallo Welt"
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str to sentence(text) # Nur erster Buchstabe des Satzes grof

Anwendung: Antworten vereinheitlichen:

umfrage %>%
mutate (antwort standard = str to lower(str trim(antwort))) %>%
select (antwort, antwort standard)

Suchen mit str_detect()
str_detect () prift, ob ein Muster im String vorkommt (gibt TRUE/FALSE zurtick):

# Einzelne Strings
str detect("Hallo Welt", "Welt")

str detect ("Hallo Welt", "welt") # Case-sensitive!

# Auf Vektor/Spalte anwenden
umfrage $>%
filter (str detect (kommentar, "Leerzeichen"))

Ersetzen mit str_replace()

# Erstes Vorkommen ersetzen
str replace("Kat A und Kat B", " ", "-")

# Alle Vorkommen ersetzen
str replace all("Kat A und Kat B", " ", "-")

Anwendung: Kategorien vereinheitlichen:




umfrage $>%

mutate (
kategorie clean = kategorie %>%
str to lower() $>% # Alles klein
str replace all("-", " ") %>% # Bindestriche zu Unterstrichen
str replace all(" ", " ") # Leerzeichen zu Unterstrichen

) >%

select (kategorie, kategorie clean)

Extrahieren mit str_extract()

# Erstes Vorkommen extrahieren
str extract ("Enthdlt Zahl: 42 und 99", "\\d+")

# Alle Vorkommen extrahieren
str extract all("Enthdlt Zahl: 42 und 99", "\\dt+")

Teilstrings mit str_sub()

text <- "ABCDEFGH"

str sub(text, 1, 3) # Zeichen 1-3

str sub(text, -3, -1) # Letzte 3 Zeichen

str sub (text, 3) # Ab Zeichen 3 bis Ende

Weitere nutzliche Funktionen

# Lange eines Strings
str length("Hallo")

# Strings zusammenfiigen (Alternative zu paste)
Str_C("A", "B", "C", Sep = "_")

(o




# Mit Nullen aufftillen (z.B. fur I
str pad(l:5, width = 3, pad = "0")

[1] "001"™ "002"™ "003"™ "Q04" "Q0O5"

# String aufteilen

str split("a,B,C", ",")

[[11]
[1] npm o mpn o nweon

)s)

© Ubung: stringr

Verwende den umfrage -Datensatz:

a) Bereinige die Spalte antwort : Entferne Leerzeichen und wandle alles in

Kleinbuchstaben um. Speichere das Ergebnis als neue Spalte antwort clean .

b) Zahle, wie viele Zeilen in kommentar das Wort “Leerzeichen” enthalten.

c) Erstelle aus der id -Spalte eine neue Spalte id formatted im Format “ID-001”

“ID-002", etc.

10
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# a) Antworten bereinigen

umfrage %>%
mutate (antwort clean = str to lower (str trim(antwort))) %>%
select (antwort, antwort clean)

# b) Zeilen mit "Leerzeichen" zdhlen

umfrage %>%
filter(str detect (kommentar, "Leerzeichen"))
nrow ()

oe

>

oe

# c) IDs formatieren

umfrage %>%
mutate (id formatted = glue("ID-{str pad(id, width = 3, pad = '0")}")) %>%
select (id, id formatted)

11
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Zahlen formatieren

Beim Erstellen von Berichten und Tabellen missen Zahlen oft ansprechend formatiert
werden: Prozente mit %-Zeichen, Tausendertrennzeichen, gerundete Dezimalstellen oder
korrekt formatierte p-Werte. R bietet dafiir verschiedene Werkzeuge.

Base R: round() vs. format()

Ein haufiger Stolperstein ist der Unterschied zwischen round() und format () :

zahlen <- c(1.5, 2.0, 3.456, 10.1)

# round(): Rundet mathematisch, entfernt aber trailing zeros
round (zahlen, 2)

|[1] 1.50 2.00 3.46 10.10

# format (): Behdlt trailing zeros, gibt aber Strings zuriick
format (round (zahlen, 2), nsmall = 2)

I[l] " 1.50" " 2.00" " 3.46" "10.10"

round () gibt Zahlen zurtck (1.5 wird zu 1.5, nicht 1.50), wahrend format () Strings mit
konstanter Dezimalstellenzahl erzeugt.

scales: Formatierung fur Berichte

Das {scales}-Paket bietet spezialisierte Funktionen fur haufige Formatierungsaufgaben:
Prozente

anteile <- c(0.1, 0.255, 0.5, 1)

# Einfache Prozentformatierung
percent (anteile)

I [l] "Iog" n"oeen n"50g" "100%"

# Mit Genauigkeit
percent (anteile, accuracy = 0.1)

I[l] "10.0%" "25.5%" "50.0%" "100.0%"

# Deutsche Dezimaltrennung
percent (anteile, accuracy = 0.1, decimal.mark = ",")

|[1] "10,0%" "25,5%" "50,0%" "100,0%"

Tausendertrennzeichen
grosse zahlen <- c(1234, 56789, 1234567)

# Englisch (Komma als Tausendertrenner)

comma (grosse_zahlen)
I[l] "1,234" "56,789" "1,234,567"

# Deutsch (Punkt als Tausendertrenner)
number (grosse zahlen, big.mark = ".")

12
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Warning in prettyNum(.Internal (format (x, trim, digits, nsmall, width, 3L,
'big.mark' und 'decimal.mark' sind beide '.', was verwirrend sein konnte

I[l] "1.234" "56.789" "1.234.567"

Allgemeine Zahlenformatierung
werte <- c(1.2345, 67.891, 0.0052)

# Feste Dezimalstellen
number (werte, accuracy = 0.01)

I[l] "1.23" "e67.89" "0.01"

# Mit Prafix/Suffix
number (werte, accuracy = 0.01, suffix = " kg")

| (11 "1.23 kg" "67.89 kg" "0.01 kg"
I number (grosse zahlen, prefix = "€ ", big.mark = ".")

Warning in prettyNum(.Internal (format (x, trim, digits, nsmall, width, 3L,

'big.mark' und 'decimal.mark' sind beide '.', was verwirrend sein konnte
I[l] "e 1.234" "€ 56.789" "€ 1.234.567"
P-Werte

p_werte <- c(0.5, 0.05, 0.001, 0.00001)

# Automatische Formatierung
pvalue (p_werte)

I[l] "0.500" "0.050" "0.001" "<0.001"

# Mit Genauigkeit
pvalue (p_werte, accuracy = 0.001)

I[l] "0.500"™ "0.050"™ "0.001" "<O.O0O1"

1 Weitere Formatierungsfunktionen

Fir komplexe Formatierungen bietet base R auch sprintf() mit C-Style Syntax (z.B.

sprintf ("$.2f", 3.14159) flr zwei Dezimalstellen). Die Syntax ist machtig, aber
kryptisch — fur die meisten Anwendungsfalle sind die {scales}-Funktionen lesbarer.

13
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© Ubung: Zahlen formatieren

Gegeben sind folgende Werte:

umsatz <- c (12500, 8900, 156000)
anteile <- c¢(0.125, 0.089, 0.786)
p <- 0.0234

a) Formatiere umsatz mit Tausenderpunkten und dem Suffix ” €°.
b) Formatiere anteile als Prozente mit einer Dezimalstelle.

c) Formatiere den p-Wert p mit pvalue() .

1 Lésungsvorschlag

# a) Umsatz formatieren
number (umsatz, big.mark = ".", suffix = " €")

Warning in prettyNum(.Internal (format (x, trim, digits, nsmall, width, 3L,
'big.mark' und 'decimal.mark' sind beide '.', was verwirrend sein koénnte

I[l] "12.500 €" "8.900 €" "156.000 €"

# b) Anteile als Prozent
percent (anteile, accuracy = 0.1)

| t11 v12.55" "s.0%n n78.6%

# c) p-Wert

pvalue (p)

| [1] "0.023"

Ausblick: Intelligentes Runden mit BioMathR

Ein haufiges Problem beim Runden: Wie viele Dezimalstellen sind sinnvoll? Die Funktion
round_smart () aus dem {BioMathR}-Paket |6st das elegant. Sie rundet so, dass die
Ergebnisse so wenige Stellen wie mdglich haben, aber so viele wie notig:

# Installation von GitHub
# remotes::insta github ("SchmidtPaul/BioMathR")

library (BioMathR)

# Verschiedene Zahlen, automatisch sinnvoll gerundet
round smart (c(1.0001234, 0.0012345, 123.456))

# Ergebnis: 1.0001, 0.001, 123.5

# Auf ganze Spalten anwenden

daten $>%
mutate (across (where (is.numeric), round smart))

Das Besondere: round smart () verandert nie den Teil vor dem Dezimaltrennzeichen und

erlaubt eine maximale Anzahl an Nachkommastellen. Details unter github.com/SchmidtPaul/

BioMathR.

14
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Ausblick: Regular Expressions

Regular Expressions (Regex) sind eine machtige Sprache zur Musterbeschreibung in
Strings. Wir haben oben bereits \\d+ verwendet, um Zahlen zu extrahieren.

Ein Mini-Beispiel

texte <- c(
"Bestellung Nr. 12345",
"Kunde: Max Mustermann",
"Betrag: 99.50 EUR",
"Datum: 15.01.2024"

)

# Alle Zahlen extrahieren
str extract all (texte, "\\d+")

[[1]]
[1] "12345"

(0211

character (0)

[[3]11]
[1] nggn nwgQon

[[4]]
[l] nign nol" "o024"

# Nur Zahlen mit Dezimalpunkt
str extract (texte, "\\d+\\.\\d+")

| i1 wa NA "99.50" "15.01"
# E-Mail-&hnliches Muster (vereinfacht)
email text <- "Kontakt: info@example.com oder support@test.de"

str extract all (email text, "[a-z]+@[a-z]+\\.[a-z]+")

|[[1]]

[1] "infolexample.com" "support@test.de"

Wichtige Regex-Bausteine

Muster Bedeutung
\\d Eine Ziffer (0-9)

\\w Ein “Wort-Zeichen” (Buchstabe, Ziffer, Unterstrich)
\\s Ein Whitespace (Leerzeichen, Tab, Newline)

Ein beliebiges Zeichen

& Ein oder mehrere des vorherigen
* Null oder mehrere des vorherigen
2 Null oder eines des vorherigen

[abc] Eines der Zeichen a, b oder c

15
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Muster Bedeutung

A Anfang des Strings

s Ende des Strings

1 Regex lernen

Regular Expressions haben eine steile Lernkurve, sind aber extrem machtig. Gute
Ressourcen:

* regex101.com — Interaktiver Regex-Tester
* R for Data Science: Strings — Kapitel zu Strings und Regex

2regex in R fir die Dokumentation

Ausblick: epoxy

Das {epoxy}-Paket erweitert die Idee von {glue} fir dynamische Dokumente in Quarto und
RMarkdown. Es ermoglicht elegante Inline-Formatierung von Zahlen und Text direkt im
Flief3text.

# Installation
install.packages ("epoxy")

In Quarto: Zahlen automatisch formatieren

fasst {nrow(daten)} Beobachtungen mit einem
Durchschnitt von {mean (datenSwert):.2f}.

SNSRI

Fur wiederkehrende Reports, in denen Zahlen im Flie3text aktualisiert werden missen, ist
{epoxy} sehr praktisch. Siehe epoxy Dokumentation.

16
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https://regex101.com/
https://r4ds.hadley.nz/strings
https://pkg.garrickadenbuie.com/epoxy/

Zusammenfassung

In diesem Kapitel haben wir die wichtigsten Werkzeuge fur die Arbeit mit Strings in R
kennengelernt.
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Funktion

1 Wichtige Erkenntnisse

Vergleich der Methoden zum Zusammenfiigen:

Paket Starke

paste() / paste0 ()
glue ()

str c()

Funktion

base R Immer verflugbar, sep/collapse

glue Lesbarkeit bei vielen Variablen

stringr  Konsistent mit stringr-Okosystem

Die wichtigsten stringr-Funktionen fiir Data Cleaning:

Zweck

str trim()

str squish()

str to lower ()
str detect ()

str replace all ()
str extract()

str pad()

Zahlen formatieren:

Leerzeichen am Rand entfernen

1. mehrfache Leerzeichen reduzieren

Alles kleinschreiben

Muster suchen (TRUE/FALSE)

Muster ersetzen
Muster extrahieren

Mit Zeichen aufflllen

Funktion Paket Zweck
percent () scales Prozente (10%)
comma () / number () scales Tausendertrenner,
Dezimalstellen
pvalue () scales p-Werte
round_smart () BioMathR Intelligentes Runden
(so wenig wie mdglich,
so viel wie notig)
Typischer Cleaning-Workflow:
daten %>%
mutate (
spalte clean = spalte $>%
str trim() %$>%
str to lower() %>%
str replace all(" ", " ")
)
Weiterfiihrende Ressourcen:
» stringr Dokumentation
18
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https://stringr.tidyverse.org/

* glue Dokumentation

+ scales Dokumentation

BioMathR auf GitHub

R for Data Science: Strings

+ epoxy flr dynamische Dokumente

Bibliography
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