BioMath

4. Strings und Text

Textmanipulation mit paste, glue, stringr und Zahlenformatierung
Dr. Paul Schmidt

Um alle in diesem Kapitel verwendeten Pakete zu installieren und zu laden, fihrt man
folgenden Code aus:

for (pkg in c("glue", "scales", "stringr", "tidyverse")) {
if (!require (pkg, character.only = TRUE)) install.packages (pkqg)
}

library (glue)
library(scales)
library (stringr)
library (tidyverse)

Einleitung

In der Datenanalyse arbeiten wir standig mit Text: Dateinamen zusammensetzen,
Spaltennamen bereinigen, Kategorien vereinheitlichen, Labels fir Grafiken erstellen. Auch
die Formatierung von Zahlen fir Berichte und Tabellen gehort dazu — Prozente,
Tausendertrennzeichen, p-Werte.

R bietet verschiedene Werkzeuge dafir — von den eingebauten Funktionen paste () und

paste0 () Uber das elegante {glue}-Paket, die machtigen Manipulationsfunktionen aus
{stringr} bis hin zu spezialisierten Formatierungsfunktionen aus {scales}.

Dieses Kapitel zeigt die wichtigsten Techniken fiir typische Data-Cleaning-Aufgaben und die
Formatierung von Werten fir Berichte.

Beispieldaten

Fir dieses Kapitel erstellen wir einen kleinen Datensatz mit typischen “dreckigen” Strings,
wie sie in der Praxis haufig vorkommen:

umfrage <- tibble (
id = 1:8,
antwort = c("Ja", " Ja", "ja ", " JA ", "Nein", "nein", "NEIN ", "vielleicht"),
kommentar = c(
"Alles gut",

Leerzeichen am Anfang",
"Leerzeichen am Ende "
" Beides W
"Zu viele Leerzeichen",
NA,
"Enthalt Zahl: 42"
)I
kategorie = c("Kat A", "Kat B", "Kat A", "KAT C", "kat a", "Kat-B", "Kat A",
"Kat C")
)

umfrage

119

Man sieht typische Probleme: inkonsistente Grofl3-/Kleinschreibung, fuhrende/nachfolgende
Leerzeichen, unterschiedliche Schreibweisen derselben Kategorie.

BioMath

Base R: paste() und paste0()

Die Funktionen paste () und paste0() sind in R eingebaut und dienen dazu, Strings

zusammenzuflugen.

Grundprinzip

paste () figt mit Leerzeichen zusammen (Standard)
paste ("Hallo", "Welt")

I[l] "Hallo Welt"

pasteO () flugt ohne Trennzeichen zusammen
pastel ("Hallo", "Welt")

|[1] "HalloWelt"

Mit Variablen

name <- "Anna"
alter <- 28
paste ("Name:", name, "- Alter:", alter)

I[l] "Name: Anna - Alter: 28"

Das sep-Argument

Mit sep kdénnen wir das Trennzeichen zwischen den Elementen festlegen:

| paste (m2024v, 017, "15v, sep = v-m)
| (11 2024-01-15"

Ipaste(”A”, VgV, WE, gep = U W)

| [1] "A B C"

|paste("Eins", "Zwei", "Drei", sep =

I[l] "Eins | Zweil | Drei"

Das collapse-Argument
Wenn wir einen Vektor zu einem einzigen String zusammenfugen wollen:
staedte <- c("Berlin", "Hamburg", "Minchen")

Ohne collapse: Vektor mit 3 Elementen
paste ("Stadt:", staedte)

I[l] "Stadt: Berlin" "Stadt: Hamburg" "Stadt: Minchen"

Mit collapse: Ein einziger String
paste (staedte, collapse = ", ")

|[1] "Berlin, Hamburg, Minchen"
|paste(staedte, collapse = " und ")

|[1] "Berlin und Hamburg und Minchen"

3/19

Limitierung
Bei komplexeren Strings wird paste () schnell undbersichtlich:

kuerzel <- "Ei"
datum <- "2024-01-15"
version <- 2

Schwer lesbar
pastel ("Tabellenband ", kuerzel, " ", datum, " v", version, ".xlsx")

I[l] "Tabellenband Ei 2024-01-15 v2.xlsx"

Hier bietet glue () eine elegantere Lésung.

© Ubung: paste() und paste0()
a) Erstelle mit paste() den String "R-Workshop-2024" aus den drei Teilen “R”,
“Workshop” und “2024”.

b) Gegeben ist der Vektor monate <- c("Jan", "Feb", "Mar") . Erstelle daraus den

String "Jan, Feb, Mar" .

1 Lésungsvorschlag

a) Mit Bindestrich als Trennzeichen
"

paste ("R", "Workshop", "2024", sep = "-")

I[l] "R-Workshop-2024"

b) Vektor mit collapse zusammenfiigen
monate <- c("Jan", "Feb", "Mar")
paste (monate, collapse = ", ")

I[l] "Jan, Feb, Mar"

BioMath

4/19

glue: Elegante String-Interpolation

Das {glue}-Paket ermdglicht es, Variablen direkt in Strings einzubetten — mit geschweiften
Klammern {} .

Grundprinzip

name <- "Anna"
alter <- 28

glue ("Mein Name ist {name} und ich bin {alter} Jahre alt.")

IMein Name ist Anna und ich bin 28 Jahre alt.
Der Code ist viel lesbarer als die entsprechende paste () -Version.

Praxisbeispiel: Dateinamen erzeugen
Ein haufiger Anwendungsfall ist das Erstellen von Dateinamen:

kuerzel <- "Ei"
datum <- Sys.Date ()
version <- 2

Elegant und lesbar
dateiname <- glue ("Tabellenband {kuerzel} {datum} v{version}.xlsx")
dateiname

ITabellenband_Ei_ZOZ6—02—08_v2.xlsx

Ausdriicke in glue
Man kann auch R-Ausdriicke direkt in den Klammern verwenden:

x <- 10
glue ("Das Doppelte von {x} ist {x * 2}.")

IDas Doppelte von 10 ist 20.

Iglue(”Heute ist {format (Sys.Date(), 'S

0,
o\°
3
o\°
=<

IHeute ist 08.02.2026.

glue_data() fur Tibbles
Mit glue data() kdnnen wir zeilenweise auf Spalten eines Tibbles zugreifen:

personen <- tibble (
vorname = c ("Anna", "Ben", "Clara"),
nachname = c("Miller", "Schmidt", "Weber"),
punkte = c (85, 92, 78)

)

personen $>%
mutate (beschreibung = glue data(., "{vorname} {nachname}: {punkte} Punkte"))

A tibble: 3 x 4
vorname nachname punkte beschreibung
<chr> <chr> <dbl> <glue>
1 Anna Miller 85 Anna Miller: 85 Punkte

BioMath

5/19

BioMath

2 Ben Schmidt 92 Ben Schmidt: 92 Punkte
3 Clara Weber 78 Clara Weber: 78 Punkte

Vergleich: paste0() vs glue()

paste0: Variablen unterbrechen den String
pastel ("Ergebnis ", name, " ", datum, " final.csv")

glue: Flissig lesbar
glue ("Ergebnis {name} {datum} final.csv")

Beide produzieren dasselbe Ergebnis, aber glue () ist bei komplexeren Strings deutlich
Ubersichtlicher.

© Ubung: glue()
Gegeben sind die Variablen:

projekt <- "Analyse"
jahr <- 2024
monat <- "Marz"

a) Erstelle mit glue) den String "Projekt: Analyse (Marz 2024)" ,

b) Erstelle den Dateinamen "Analyse 2024 Marz_ report.pdf" .

1 Lésungsvorschlag

a) Beschreibungstext
glue ("Projekt: {projekt} ({monat} {jahr})")

IProjekt: Analyse (Marz 2024)

b) Dateiname
glue ("{projekt} {jahr} {monat} report.pdf")

IAnalyse_2024_Mérz_report.pdf

6/19

stringr: Strings manipulieren

Das {stringr}-Paket (Teil des tidyverse) bietet konsistente Funktionen zur String-Manipulation.

Alle Funktionen beginnen mit str_ , was die Autovervollstandigung erleichtert.

Leerzeichen entfernen

str trim: Leerzeichen am Anfang/Ende entfernen
str trim(" Hallo Welt ")

I[l] "Hallo Welt"

Istritrim(" Hallo Welt ", side = "left") # Nur links
I[l] "Hallo Welt "

Istritrim(” Hallo Welt ", side = "right") # Nur rechts
I[l] " Hallo Welt"

str squish: Zus&tzlich mehrfache Leerzeichen im Text reduzieren
str squish(" Zu viele Leerzeichen ")

I[l] "Zu viele Leerzeichen"

Anwendung auf unseren Datensatz:
umfrage $>%
mutate (
antwort clean = str trim(antwort),
kommentar clean = str squish (kommentar)
) %>%
select (antwort, antwort clean, kommentar, kommentar clean)

A tibble: 8 x 4

antwort antwort clean kommentar kommentar clean
<chr> <chr> <chr> <chr>
1 "Ja" Ja "Alles gut" "Alles gut"
2 " Ja" Ja " Leerzeichen am Anfang" "Leerzeichen am Anfang"
3 "ja " Jja "Leerzeichen am Ende " "Leerzeichen am Ende"
4 " JA " JA " Beides " "Beides"
5 "Nein" Nein "Zu viele Leerzeichen" "Zu viele Leerzeichen"
6 "nein" nein <NA> <NA>
7 "NEIN " NEIN ne ne
8 "vielleicht" vielleicht "Enthalt Zahl: 42" "Enthalt Zahl: 42"

Grof- und Kleinschreibung
text <- "HaLLo WeLT"
str to lower (text) # alles klein
I[l] "hallo welt"
Istritoiupper(text) # ALLES GROSS
I[l] "HALLO WELT"
Istritoititle(text) # Erster Buchstabe Jedes Wortes Grof

I[l] "Hallo Welt"

BioMath

719

str to sentence(text) # Nur erster Buchstabe des Satzes grof

Anwendung: Antworten vereinheitlichen:

umfrage %>%
mutate (antwort standard = str to lower(str trim(antwort))) %>%
select (antwort, antwort standard)

Suchen mit str_detect()
str_detect () prift, ob ein Muster im String vorkommt (gibt TRUE/FALSE zurtick):

Einzelne Strings
str detect("Hallo Welt", "Welt")

str detect ("Hallo Welt", "welt") # Case-sensitive!

Auf Vektor/Spalte anwenden
umfrage $>%
filter (str detect (kommentar, "Leerzeichen"))

Ersetzen mit str_replace()

Erstes Vorkommen ersetzen
str replace("Kat A und Kat B", " ", "-")

Alle Vorkommen ersetzen
str replace all("Kat A und Kat B", " ", "-")

Anwendung: Kategorien vereinheitlichen:

umfrage $>%

mutate (
kategorie clean = kategorie %>%
str to lower() $>% # Alles klein
str replace all("-", " ") %>% # Bindestriche zu Unterstrichen
str replace all(" ", " ") # Leerzeichen zu Unterstrichen

) >%

select (kategorie, kategorie clean)

Extrahieren mit str_extract()

Erstes Vorkommen extrahieren
str extract ("Enthdlt Zahl: 42 und 99", "\\d+")

Alle Vorkommen extrahieren
str extract all("Enthdlt Zahl: 42 und 99", "\\dt+")

Teilstrings mit str_sub()

text <- "ABCDEFGH"

str sub(text, 1, 3) # Zeichen 1-3

str sub(text, -3, -1) # Letzte 3 Zeichen

str sub (text, 3) # Ab Zeichen 3 bis Ende

Weitere nutzliche Funktionen

Lange eines Strings
str length("Hallo")

Strings zusammenfiigen (Alternative zu paste)
Str_C("A", "B", "C", Sep = "_")

(o

Mit Nullen aufftillen (z.B. fur I
str pad(l:5, width = 3, pad = "0")

[1] "001"™ "002"™ "003"™ "Q04" "Q0O5"

String aufteilen

str split("a,B,C", ",")

[[11]
[1] npm o mpn o nweon

)s)

© Ubung: stringr

Verwende den umfrage -Datensatz:

a) Bereinige die Spalte antwort : Entferne Leerzeichen und wandle alles in

Kleinbuchstaben um. Speichere das Ergebnis als neue Spalte antwort clean .

b) Zahle, wie viele Zeilen in kommentar das Wort “Leerzeichen” enthalten.

c) Erstelle aus der id -Spalte eine neue Spalte id formatted im Format “ID-001”

“ID-002", etc.

10

BioMath

10/19

a) Antworten bereinigen

umfrage %>%
mutate (antwort clean = str to lower (str trim(antwort))) %>%
select (antwort, antwort clean)

b) Zeilen mit "Leerzeichen" zdhlen

umfrage %>%
filter(str detect (kommentar, "Leerzeichen"))
nrow ()

oe

>

oe

c) IDs formatieren

umfrage %>%
mutate (id formatted = glue("ID-{str pad(id, width = 3, pad = '0")}")) %>%
select (id, id formatted)

11

BioMath

Zahlen formatieren

Beim Erstellen von Berichten und Tabellen missen Zahlen oft ansprechend formatiert
werden: Prozente mit %-Zeichen, Tausendertrennzeichen, gerundete Dezimalstellen oder
korrekt formatierte p-Werte. R bietet dafiir verschiedene Werkzeuge.

Base R: round() vs. format()

Ein haufiger Stolperstein ist der Unterschied zwischen round() und format () :

zahlen <- c(1.5, 2.0, 3.456, 10.1)

round(): Rundet mathematisch, entfernt aber trailing zeros
round (zahlen, 2)

|[1] 1.50 2.00 3.46 10.10

format (): Behdlt trailing zeros, gibt aber Strings zuriick
format (round (zahlen, 2), nsmall = 2)

I[l] " 1.50" " 2.00" " 3.46" "10.10"

round () gibt Zahlen zurtck (1.5 wird zu 1.5, nicht 1.50), wahrend format () Strings mit
konstanter Dezimalstellenzahl erzeugt.

scales: Formatierung fur Berichte

Das {scales}-Paket bietet spezialisierte Funktionen fur haufige Formatierungsaufgaben:
Prozente

anteile <- c(0.1, 0.255, 0.5, 1)

Einfache Prozentformatierung
percent (anteile)

I [l] "Iog" n"oeen n"50g" "100%"

Mit Genauigkeit
percent (anteile, accuracy = 0.1)

I[l] "10.0%" "25.5%" "50.0%" "100.0%"

Deutsche Dezimaltrennung
percent (anteile, accuracy = 0.1, decimal.mark = ",")

|[1] "10,0%" "25,5%" "50,0%" "100,0%"

Tausendertrennzeichen
grosse zahlen <- c(1234, 56789, 1234567)

Englisch (Komma als Tausendertrenner)

comma (grosse_zahlen)
I[l] "1,234" "56,789" "1,234,567"

Deutsch (Punkt als Tausendertrenner)
number (grosse zahlen, big.mark = ".")

12
12/19

Warning in prettyNum(.Internal (format (x, trim, digits, nsmall, width, 3L,
'big.mark' und 'decimal.mark' sind beide '.', was verwirrend sein konnte

I[l] "1.234" "56.789" "1.234.567"

Allgemeine Zahlenformatierung
werte <- c(1.2345, 67.891, 0.0052)

Feste Dezimalstellen
number (werte, accuracy = 0.01)

I[l] "1.23" "e67.89" "0.01"

Mit Prafix/Suffix
number (werte, accuracy = 0.01, suffix = " kg")

| (11 "1.23 kg" "67.89 kg" "0.01 kg"
I number (grosse zahlen, prefix = "€ ", big.mark = ".")

Warning in prettyNum(.Internal (format (x, trim, digits, nsmall, width, 3L,

'big.mark' und 'decimal.mark' sind beide '.', was verwirrend sein konnte
I[l] "e 1.234" "€ 56.789" "€ 1.234.567"
P-Werte

p_werte <- c(0.5, 0.05, 0.001, 0.00001)

Automatische Formatierung
pvalue (p_werte)

I[l] "0.500" "0.050" "0.001" "<0.001"

Mit Genauigkeit
pvalue (p_werte, accuracy = 0.001)

I[l] "0.500"™ "0.050"™ "0.001" "<O.O0O1"

1 Weitere Formatierungsfunktionen

Fir komplexe Formatierungen bietet base R auch sprintf() mit C-Style Syntax (z.B.

sprintf ("$.2f", 3.14159) flr zwei Dezimalstellen). Die Syntax ist machtig, aber
kryptisch — fur die meisten Anwendungsfalle sind die {scales}-Funktionen lesbarer.

13

BioMath

13/19

© Ubung: Zahlen formatieren

Gegeben sind folgende Werte:

umsatz <- c (12500, 8900, 156000)
anteile <- c¢(0.125, 0.089, 0.786)
p <- 0.0234

a) Formatiere umsatz mit Tausenderpunkten und dem Suffix ” €°.
b) Formatiere anteile als Prozente mit einer Dezimalstelle.

c) Formatiere den p-Wert p mit pvalue() .

1 Lésungsvorschlag

a) Umsatz formatieren
number (umsatz, big.mark = ".", suffix = " €")

Warning in prettyNum(.Internal (format (x, trim, digits, nsmall, width, 3L,
'big.mark' und 'decimal.mark' sind beide '.', was verwirrend sein koénnte

I[l] "12.500 €" "8.900 €" "156.000 €"

b) Anteile als Prozent
percent (anteile, accuracy = 0.1)

| t11 v12.55" "s.0%n n78.6%

c) p-Wert

pvalue (p)

| [1] "0.023"

Ausblick: Intelligentes Runden mit BioMathR

Ein haufiges Problem beim Runden: Wie viele Dezimalstellen sind sinnvoll? Die Funktion
round_smart () aus dem {BioMathR}-Paket |6st das elegant. Sie rundet so, dass die
Ergebnisse so wenige Stellen wie mdglich haben, aber so viele wie notig:

Installation von GitHub
remotes::insta github ("SchmidtPaul/BioMathR")

library (BioMathR)

Verschiedene Zahlen, automatisch sinnvoll gerundet
round smart (c(1.0001234, 0.0012345, 123.456))

Ergebnis: 1.0001, 0.001, 123.5

Auf ganze Spalten anwenden

daten $>%
mutate (across (where (is.numeric), round smart))

Das Besondere: round smart () verandert nie den Teil vor dem Dezimaltrennzeichen und

erlaubt eine maximale Anzahl an Nachkommastellen. Details unter github.com/SchmidtPaul/

BioMathR.

14

BioMath

14/19

https://github.com/SchmidtPaul/BioMathR
https://github.com/SchmidtPaul/BioMathR

BioMath

Ausblick: Regular Expressions

Regular Expressions (Regex) sind eine machtige Sprache zur Musterbeschreibung in
Strings. Wir haben oben bereits \\d+ verwendet, um Zahlen zu extrahieren.

Ein Mini-Beispiel

texte <- c(
"Bestellung Nr. 12345",
"Kunde: Max Mustermann",
"Betrag: 99.50 EUR",
"Datum: 15.01.2024"

)

Alle Zahlen extrahieren
str extract all (texte, "\\d+")

[[1]]
[1] "12345"

(0211

character (0)

[[3]11]
[1] nggn nwgQon

[[4]]
[l] nign nol" "o024"

Nur Zahlen mit Dezimalpunkt
str extract (texte, "\\d+\\.\\d+")

| i1 wa NA "99.50" "15.01"
E-Mail-&hnliches Muster (vereinfacht)
email text <- "Kontakt: info@example.com oder support@test.de"

str extract all (email text, "[a-z]+@[a-z]+\\.[a-z]+")

|[[1]]

[1] "infolexample.com" "support@test.de"

Wichtige Regex-Bausteine

Muster Bedeutung
\\d Eine Ziffer (0-9)

\\w Ein “Wort-Zeichen” (Buchstabe, Ziffer, Unterstrich)
\\s Ein Whitespace (Leerzeichen, Tab, Newline)

Ein beliebiges Zeichen

& Ein oder mehrere des vorherigen
* Null oder mehrere des vorherigen
2 Null oder eines des vorherigen

[abc] Eines der Zeichen a, b oder c

15
15/19

Muster Bedeutung

A Anfang des Strings

s Ende des Strings

1 Regex lernen

Regular Expressions haben eine steile Lernkurve, sind aber extrem machtig. Gute
Ressourcen:

* regex101.com — Interaktiver Regex-Tester
* R for Data Science: Strings — Kapitel zu Strings und Regex

2regex in R fir die Dokumentation

Ausblick: epoxy

Das {epoxy}-Paket erweitert die Idee von {glue} fir dynamische Dokumente in Quarto und
RMarkdown. Es ermoglicht elegante Inline-Formatierung von Zahlen und Text direkt im
Flief3text.

Installation
install.packages ("epoxy")

In Quarto: Zahlen automatisch formatieren

fasst {nrow(daten)} Beobachtungen mit einem
Durchschnitt von {mean (datenSwert):.2f}.

SNSRI

Fur wiederkehrende Reports, in denen Zahlen im Flie3text aktualisiert werden missen, ist
{epoxy} sehr praktisch. Siehe epoxy Dokumentation.

16

BioMath

16/19

https://regex101.com/
https://r4ds.hadley.nz/strings
https://pkg.garrickadenbuie.com/epoxy/

Zusammenfassung

In diesem Kapitel haben wir die wichtigsten Werkzeuge fur die Arbeit mit Strings in R
kennengelernt.

17

Funktion

1 Wichtige Erkenntnisse

Vergleich der Methoden zum Zusammenfiigen:

Paket Starke

paste() / paste0 ()
glue ()

str c()

Funktion

base R Immer verflugbar, sep/collapse

glue Lesbarkeit bei vielen Variablen

stringr Konsistent mit stringr-Okosystem

Die wichtigsten stringr-Funktionen fiir Data Cleaning:

Zweck

str trim()

str squish()

str to lower ()
str detect ()

str replace all ()
str extract()

str pad()

Zahlen formatieren:

Leerzeichen am Rand entfernen

1. mehrfache Leerzeichen reduzieren

Alles kleinschreiben

Muster suchen (TRUE/FALSE)

Muster ersetzen
Muster extrahieren

Mit Zeichen aufflllen

Funktion Paket Zweck
percent () scales Prozente (10%)
comma () / number () scales Tausendertrenner,
Dezimalstellen
pvalue () scales p-Werte
round_smart () BioMathR Intelligentes Runden
(so wenig wie mdglich,
so viel wie notig)
Typischer Cleaning-Workflow:
daten %>%
mutate (
spalte clean = spalte $>%
str trim() %$>%
str to lower() %>%
str replace all(" ", " ")
)
Weiterfiihrende Ressourcen:
» stringr Dokumentation
18

BioMath

18/19

https://stringr.tidyverse.org/

* glue Dokumentation

+ scales Dokumentation

BioMathR auf GitHub

R for Data Science: Strings

+ epoxy flr dynamische Dokumente

Bibliography

19

https://glue.tidyverse.org/
https://scales.r-lib.org/
https://github.com/SchmidtPaul/BioMathR
https://r4ds.hadley.nz/strings
https://pkg.garrickadenbuie.com/epoxy/

	Einleitung
	Beispieldaten
	Base R: paste() und paste0()
	Grundprinzip
	Das sep-Argument
	Das collapse-Argument
	Limitierung

	glue: Elegante String-Interpolation
	Grundprinzip
	Praxisbeispiel: Dateinamen erzeugen
	Ausdrücke in glue
	glue_data() für Tibbles
	Vergleich: paste0() vs glue()

	stringr: Strings manipulieren
	Leerzeichen entfernen
	Groß- und Kleinschreibung
	Suchen mit str_detect()
	Ersetzen mit str_replace()
	Extrahieren mit str_extract()
	Teilstrings mit str_sub()
	Weitere nützliche Funktionen

	Zahlen formatieren
	Base R: round() vs. format()
	scales: Formatierung für Berichte
	Prozente
	Tausendertrennzeichen
	Allgemeine Zahlenformatierung
	P-Werte

	Ausblick: Intelligentes Runden mit BioMathR

	Ausblick: Regular Expressions
	Ein Mini-Beispiel
	Wichtige Regex-Bausteine

	Ausblick: epoxy
	Zusammenfassung
	Bibliography

