
BioMath

1/19

4. Strings und Text

Textmanipulation mit paste, glue, stringr und Zahlenformatierung
Dr. Paul Schmidt

Um alle in diesem Kapitel verwendeten Pakete zu installieren und zu laden, führt man
folgenden Code aus:

for (pkg in c("glue", "scales", "stringr", "tidyverse")) {
 if (!require(pkg, character.only = TRUE)) install.packages(pkg)
}

library(glue)
library(scales)
library(stringr)
library(tidyverse)

Einleitung
In der Datenanalyse arbeiten wir ständig mit Text: Dateinamen zusammensetzen,
Spaltennamen bereinigen, Kategorien vereinheitlichen, Labels für Grafiken erstellen. Auch
die Formatierung von Zahlen für Berichte und Tabellen gehört dazu – Prozente,
Tausendertrennzeichen, p-Werte.

R bietet verschiedene Werkzeuge dafür – von den eingebauten Funktionen paste() und
paste0() über das elegante {glue}-Paket, die mächtigen Manipulationsfunktionen aus
{stringr} bis hin zu spezialisierten Formatierungsfunktionen aus {scales}.

Dieses Kapitel zeigt die wichtigsten Techniken für typische Data-Cleaning-Aufgaben und die
Formatierung von Werten für Berichte.

Beispieldaten
Für dieses Kapitel erstellen wir einen kleinen Datensatz mit typischen “dreckigen” Strings,
wie sie in der Praxis häufig vorkommen:

umfrage <- tibble(
 id = 1:8,
 antwort = c("Ja", " Ja", "ja ", " JA ", "Nein", "nein", "NEIN ", "vielleicht"),
 kommentar = c(
 "Alles gut",
 " Leerzeichen am Anfang",
 "Leerzeichen am Ende ",
 " Beides ",
 "Zu viele Leerzeichen",
 NA,
 "",
 "Enthält Zahl: 42"
),
 kategorie = c("Kat_A", "Kat_B", "Kat_A", "KAT_C", "kat_a", "Kat-B", "Kat A",
"Kat_C")
)

umfrage

1

BioMath

2/19

A tibble: 8 × 4
 id antwort kommentar kategorie
 <int> <chr> <chr> <chr>
1 1 "Ja" "Alles gut" Kat_A
2 2 " Ja" " Leerzeichen am Anfang" Kat_B
3 3 "ja " "Leerzeichen am Ende " Kat_A
4 4 " JA " " Beides " KAT_C
5 5 "Nein" "Zu viele Leerzeichen" kat_a
6 6 "nein" <NA> Kat-B
7 7 "NEIN " "" Kat A
8 8 "vielleicht" "Enthält Zahl: 42" Kat_C

Man sieht typische Probleme: inkonsistente Groß-/Kleinschreibung, führende/nachfolgende
Leerzeichen, unterschiedliche Schreibweisen derselben Kategorie.

2

BioMath

3/19

Base R: paste() und paste0()
Die Funktionen paste() und paste0() sind in R eingebaut und dienen dazu, Strings
zusammenzufügen.

Grundprinzip
paste() fügt mit Leerzeichen zusammen (Standard)
paste("Hallo", "Welt")

[1] "Hallo Welt"

paste0() fügt ohne Trennzeichen zusammen
paste0("Hallo", "Welt")

[1] "HalloWelt"

Mit Variablen
name <- "Anna"
alter <- 28
paste("Name:", name, "- Alter:", alter)

[1] "Name: Anna - Alter: 28"

Das sep-Argument
Mit sep können wir das Trennzeichen zwischen den Elementen festlegen:

paste("2024", "01", "15", sep = "-")

[1] "2024-01-15"

paste("A", "B", "C", sep = "_")

[1] "A_B_C"

paste("Eins", "Zwei", "Drei", sep = " | ")

[1] "Eins | Zwei | Drei"

Das collapse-Argument
Wenn wir einen Vektor zu einem einzigen String zusammenfügen wollen:

staedte <- c("Berlin", "Hamburg", "München")

Ohne collapse: Vektor mit 3 Elementen
paste("Stadt:", staedte)

[1] "Stadt: Berlin" "Stadt: Hamburg" "Stadt: München"

Mit collapse: Ein einziger String
paste(staedte, collapse = ", ")

[1] "Berlin, Hamburg, München"

paste(staedte, collapse = " und ")

[1] "Berlin und Hamburg und München"

3

BioMath

4/19

Limitierung
Bei komplexeren Strings wird paste() schnell unübersichtlich:

kuerzel <- "Ei"
datum <- "2024-01-15"
version <- 2

Schwer lesbar
paste0("Tabellenband_", kuerzel, "_", datum, "_v", version, ".xlsx")

[1] "Tabellenband_Ei_2024-01-15_v2.xlsx"

Hier bietet glue() eine elegantere Lösung.

 Übung: paste() und paste0()

a) Erstelle mit paste() den String "R-Workshop-2024" aus den drei Teilen “R”,
“Workshop” und “2024”.

b) Gegeben ist der Vektor monate <- c("Jan", "Feb", "Mär") . Erstelle daraus den

String "Jan, Feb, Mär" .

 Lösungsvorschlag

a) Mit Bindestrich als Trennzeichen
paste("R", "Workshop", "2024", sep = "-")

[1] "R-Workshop-2024"

b) Vektor mit collapse zusammenfügen
monate <- c("Jan", "Feb", "Mär")
paste(monate, collapse = ", ")

[1] "Jan, Feb, Mär"

4

BioMath

5/19

glue: Elegante String-Interpolation
Das {glue}-Paket ermöglicht es, Variablen direkt in Strings einzubetten – mit geschweiften
Klammern {} .

Grundprinzip
name <- "Anna"
alter <- 28

glue("Mein Name ist {name} und ich bin {alter} Jahre alt.")

Mein Name ist Anna und ich bin 28 Jahre alt.

Der Code ist viel lesbarer als die entsprechende paste() -Version.

Praxisbeispiel: Dateinamen erzeugen
Ein häufiger Anwendungsfall ist das Erstellen von Dateinamen:

kuerzel <- "Ei"
datum <- Sys.Date()
version <- 2

Elegant und lesbar
dateiname <- glue("Tabellenband_{kuerzel}_{datum}_v{version}.xlsx")
dateiname

Tabellenband_Ei_2026-02-08_v2.xlsx

Ausdrücke in glue
Man kann auch R-Ausdrücke direkt in den Klammern verwenden:

x <- 10
glue("Das Doppelte von {x} ist {x * 2}.")

Das Doppelte von 10 ist 20.

glue("Heute ist {format(Sys.Date(), '%d.%m.%Y')}.")

Heute ist 08.02.2026.

glue_data() für Tibbles
Mit glue_data() können wir zeilenweise auf Spalten eines Tibbles zugreifen:

personen <- tibble(
 vorname = c("Anna", "Ben", "Clara"),
 nachname = c("Müller", "Schmidt", "Weber"),
 punkte = c(85, 92, 78)
)

personen %>%
 mutate(beschreibung = glue_data(., "{vorname} {nachname}: {punkte} Punkte"))

A tibble: 3 × 4
 vorname nachname punkte beschreibung
 <chr> <chr> <dbl> <glue>
1 Anna Müller 85 Anna Müller: 85 Punkte

5

BioMath

6/19

2 Ben Schmidt 92 Ben Schmidt: 92 Punkte
3 Clara Weber 78 Clara Weber: 78 Punkte

Vergleich: paste0() vs glue()
paste0: Variablen unterbrechen den String
paste0("Ergebnis_", name, "_", datum, "_final.csv")

glue: Flüssig lesbar
glue("Ergebnis_{name}_{datum}_final.csv")

Beide produzieren dasselbe Ergebnis, aber glue() ist bei komplexeren Strings deutlich
übersichtlicher.

 Übung: glue()

Gegeben sind die Variablen:

projekt <- "Analyse"
jahr <- 2024
monat <- "März"

a) Erstelle mit glue() den String "Projekt: Analyse (März 2024)" .

b) Erstelle den Dateinamen "Analyse_2024_März_report.pdf" .

 Lösungsvorschlag

a) Beschreibungstext
glue("Projekt: {projekt} ({monat} {jahr})")

Projekt: Analyse (März 2024)

b) Dateiname
glue("{projekt}_{jahr}_{monat}_report.pdf")

Analyse_2024_März_report.pdf

6

BioMath

7/19

stringr: Strings manipulieren
Das {stringr}-Paket (Teil des tidyverse) bietet konsistente Funktionen zur String-Manipulation.
Alle Funktionen beginnen mit str_ , was die Autovervollständigung erleichtert.

Leerzeichen entfernen
str_trim: Leerzeichen am Anfang/Ende entfernen
str_trim(" Hallo Welt ")

[1] "Hallo Welt"

str_trim(" Hallo Welt ", side = "left") # Nur links

[1] "Hallo Welt "

str_trim(" Hallo Welt ", side = "right") # Nur rechts

[1] " Hallo Welt"

str_squish: Zusätzlich mehrfache Leerzeichen im Text reduzieren
str_squish(" Zu viele Leerzeichen ")

[1] "Zu viele Leerzeichen"

Anwendung auf unseren Datensatz:

umfrage %>%
 mutate(
 antwort_clean = str_trim(antwort),
 kommentar_clean = str_squish(kommentar)
) %>%
 select(antwort, antwort_clean, kommentar, kommentar_clean)

A tibble: 8 × 4
 antwort antwort_clean kommentar kommentar_clean
 <chr> <chr> <chr> <chr>
1 "Ja" Ja "Alles gut" "Alles gut"
2 " Ja" Ja " Leerzeichen am Anfang" "Leerzeichen am Anfang"
3 "ja " ja "Leerzeichen am Ende " "Leerzeichen am Ende"
4 " JA " JA " Beides " "Beides"
5 "Nein" Nein "Zu viele Leerzeichen" "Zu viele Leerzeichen"
6 "nein" nein <NA> <NA>
7 "NEIN " NEIN "" ""
8 "vielleicht" vielleicht "Enthält Zahl: 42" "Enthält Zahl: 42"

Groß- und Kleinschreibung
text <- "HaLLo WeLT"

str_to_lower(text) # alles klein

[1] "hallo welt"

str_to_upper(text) # ALLES GROSS

[1] "HALLO WELT"

str_to_title(text) # Erster Buchstabe Jedes Wortes Groß

[1] "Hallo Welt"

7

BioMath

8/19

str_to_sentence(text) # Nur erster Buchstabe des Satzes groß

[1] "Hallo welt"

Anwendung: Antworten vereinheitlichen:

umfrage %>%
 mutate(antwort_standard = str_to_lower(str_trim(antwort))) %>%
 select(antwort, antwort_standard)

A tibble: 8 × 2
 antwort antwort_standard
 <chr> <chr>
1 "Ja" ja
2 " Ja" ja
3 "ja " ja
4 " JA " ja
5 "Nein" nein
6 "nein" nein
7 "NEIN " nein
8 "vielleicht" vielleicht

Suchen mit str_detect()
str_detect() prüft, ob ein Muster im String vorkommt (gibt TRUE/FALSE zurück):

Einzelne Strings
str_detect("Hallo Welt", "Welt")

[1] TRUE

str_detect("Hallo Welt", "welt") # Case-sensitive!

[1] FALSE

Auf Vektor/Spalte anwenden
umfrage %>%
 filter(str_detect(kommentar, "Leerzeichen"))

A tibble: 3 × 4
 id antwort kommentar kategorie
 <int> <chr> <chr> <chr>
1 2 " Ja" " Leerzeichen am Anfang" Kat_B
2 3 "ja " "Leerzeichen am Ende " Kat_A
3 5 "Nein" "Zu viele Leerzeichen" kat_a

Ersetzen mit str_replace()
Erstes Vorkommen ersetzen
str_replace("Kat_A und Kat_B", "_", "-")

[1] "Kat-A und Kat_B"

Alle Vorkommen ersetzen
str_replace_all("Kat_A und Kat_B", "_", "-")

[1] "Kat-A und Kat-B"

Anwendung: Kategorien vereinheitlichen:

8

BioMath

9/19

umfrage %>%
 mutate(
 kategorie_clean = kategorie %>%
 str_to_lower() %>% # Alles klein
 str_replace_all("-", "_") %>% # Bindestriche zu Unterstrichen
 str_replace_all(" ", "_") # Leerzeichen zu Unterstrichen
) %>%
 select(kategorie, kategorie_clean)

A tibble: 8 × 2
 kategorie kategorie_clean
 <chr> <chr>
1 Kat_A kat_a
2 Kat_B kat_b
3 Kat_A kat_a
4 KAT_C kat_c
5 kat_a kat_a
6 Kat-B kat_b
7 Kat A kat_a
8 Kat_C kat_c

Extrahieren mit str_extract()
Erstes Vorkommen extrahieren
str_extract("Enthält Zahl: 42 und 99", "\\d+")

[1] "42"

Alle Vorkommen extrahieren
str_extract_all("Enthält Zahl: 42 und 99", "\\d+")

[[1]]
[1] "42" "99"

Teilstrings mit str_sub()
text <- "ABCDEFGH"

str_sub(text, 1, 3) # Zeichen 1-3

[1] "ABC"

str_sub(text, -3, -1) # Letzte 3 Zeichen

[1] "FGH"

str_sub(text, 3) # Ab Zeichen 3 bis Ende

[1] "CDEFGH"

Weitere nützliche Funktionen
Länge eines Strings
str_length("Hallo")

[1] 5

Strings zusammenfügen (Alternative zu paste)
str_c("A", "B", "C", sep = "-")

[1] "A-B-C"

9

BioMath

10/19

Mit Nullen auffüllen (z.B. für IDs)
str_pad(1:5, width = 3, pad = "0")

[1] "001" "002" "003" "004" "005"

String aufteilen
str_split("A,B,C", ",")

[[1]]
[1] "A" "B" "C"

 Übung: stringr

Verwende den umfrage -Datensatz:

a) Bereinige die Spalte antwort : Entferne Leerzeichen und wandle alles in

Kleinbuchstaben um. Speichere das Ergebnis als neue Spalte antwort_clean .

b) Zähle, wie viele Zeilen in kommentar das Wort “Leerzeichen” enthalten.

c) Erstelle aus der id -Spalte eine neue Spalte id_formatted im Format “ID-001”,
“ID-002”, etc.

10

BioMath

11/19

 Lösungsvorschlag

a) Antworten bereinigen
umfrage %>%
 mutate(antwort_clean = str_to_lower(str_trim(antwort))) %>%
 select(antwort, antwort_clean)

A tibble: 8 × 2
 antwort antwort_clean
 <chr> <chr>
1 "Ja" ja
2 " Ja" ja
3 "ja " ja
4 " JA " ja
5 "Nein" nein
6 "nein" nein
7 "NEIN " nein
8 "vielleicht" vielleicht

b) Zeilen mit "Leerzeichen" zählen
umfrage %>%
 filter(str_detect(kommentar, "Leerzeichen")) %>%
 nrow()

[1] 3

c) IDs formatieren
umfrage %>%
 mutate(id_formatted = glue("ID-{str_pad(id, width = 3, pad = '0')}")) %>%
 select(id, id_formatted)

A tibble: 8 × 2
 id id_formatted
 <int> <glue>
1 1 ID-001
2 2 ID-002
3 3 ID-003
4 4 ID-004
5 5 ID-005
6 6 ID-006
7 7 ID-007
8 8 ID-008

11

BioMath

12/19

Zahlen formatieren
Beim Erstellen von Berichten und Tabellen müssen Zahlen oft ansprechend formatiert
werden: Prozente mit %-Zeichen, Tausendertrennzeichen, gerundete Dezimalstellen oder
korrekt formatierte p-Werte. R bietet dafür verschiedene Werkzeuge.

Base R: round() vs. format()
Ein häufiger Stolperstein ist der Unterschied zwischen round() und format() :

zahlen <- c(1.5, 2.0, 3.456, 10.1)

round(): Rundet mathematisch, entfernt aber trailing zeros
round(zahlen, 2)

[1] 1.50 2.00 3.46 10.10

format(): Behält trailing zeros, gibt aber Strings zurück
format(round(zahlen, 2), nsmall = 2)

[1] " 1.50" " 2.00" " 3.46" "10.10"

round() gibt Zahlen zurück (1.5 wird zu 1.5, nicht 1.50), während format() Strings mit
konstanter Dezimalstellenzahl erzeugt.

scales: Formatierung für Berichte
Das {scales}-Paket bietet spezialisierte Funktionen für häufige Formatierungsaufgaben:

Prozente
anteile <- c(0.1, 0.255, 0.5, 1)

Einfache Prozentformatierung
percent(anteile)

[1] "10%" "26%" "50%" "100%"

Mit Genauigkeit
percent(anteile, accuracy = 0.1)

[1] "10.0%" "25.5%" "50.0%" "100.0%"

Deutsche Dezimaltrennung
percent(anteile, accuracy = 0.1, decimal.mark = ",")

[1] "10,0%" "25,5%" "50,0%" "100,0%"

Tausendertrennzeichen
grosse_zahlen <- c(1234, 56789, 1234567)

Englisch (Komma als Tausendertrenner)
comma(grosse_zahlen)

[1] "1,234" "56,789" "1,234,567"

Deutsch (Punkt als Tausendertrenner)
number(grosse_zahlen, big.mark = ".")

12

BioMath

13/19

Warning in prettyNum(.Internal(format(x, trim, digits, nsmall, width, 3L, :
'big.mark' und 'decimal.mark' sind beide '.', was verwirrend sein könnte

[1] "1.234" "56.789" "1.234.567"

Allgemeine Zahlenformatierung
werte <- c(1.2345, 67.891, 0.0052)

Feste Dezimalstellen
number(werte, accuracy = 0.01)

[1] "1.23" "67.89" "0.01"

Mit Präfix/Suffix
number(werte, accuracy = 0.01, suffix = " kg")

[1] "1.23 kg" "67.89 kg" "0.01 kg"

number(grosse_zahlen, prefix = "€ ", big.mark = ".")

Warning in prettyNum(.Internal(format(x, trim, digits, nsmall, width, 3L, :
'big.mark' und 'decimal.mark' sind beide '.', was verwirrend sein könnte

[1] "€ 1.234" "€ 56.789" "€ 1.234.567"

P-Werte
p_werte <- c(0.5, 0.05, 0.001, 0.00001)

Automatische Formatierung
pvalue(p_werte)

[1] "0.500" "0.050" "0.001" "<0.001"

Mit Genauigkeit
pvalue(p_werte, accuracy = 0.001)

[1] "0.500" "0.050" "0.001" "<0.001"

 Weitere Formatierungsfunktionen

Für komplexe Formatierungen bietet base R auch sprintf() mit C-Style Syntax (z.B.
sprintf("%.2f", 3.14159) für zwei Dezimalstellen). Die Syntax ist mächtig, aber
kryptisch – für die meisten Anwendungsfälle sind die {scales}-Funktionen lesbarer.

13

BioMath

14/19

 Übung: Zahlen formatieren

Gegeben sind folgende Werte:

umsatz <- c(12500, 8900, 156000)
anteile <- c(0.125, 0.089, 0.786)
p <- 0.0234

a) Formatiere umsatz mit Tausenderpunkten und dem Suffix ” €“.

b) Formatiere anteile als Prozente mit einer Dezimalstelle.

c) Formatiere den p-Wert p mit pvalue() .

 Lösungsvorschlag

a) Umsatz formatieren
number(umsatz, big.mark = ".", suffix = " €")

Warning in prettyNum(.Internal(format(x, trim, digits, nsmall, width, 3L, :
'big.mark' und 'decimal.mark' sind beide '.', was verwirrend sein könnte

[1] "12.500 €" "8.900 €" "156.000 €"

b) Anteile als Prozent
percent(anteile, accuracy = 0.1)

[1] "12.5%" "8.9%" "78.6%"

c) p-Wert
pvalue(p)

[1] "0.023"

Ausblick: Intelligentes Runden mit BioMathR
Ein häufiges Problem beim Runden: Wie viele Dezimalstellen sind sinnvoll? Die Funktion
round_smart() aus dem {BioMathR}-Paket löst das elegant. Sie rundet so, dass die
Ergebnisse so wenige Stellen wie möglich haben, aber so viele wie nötig:

Installation von GitHub
remotes::install_github("SchmidtPaul/BioMathR")

library(BioMathR)

Verschiedene Zahlen, automatisch sinnvoll gerundet
round_smart(c(1.0001234, 0.0012345, 123.456))
Ergebnis: 1.0001, 0.001, 123.5

Auf ganze Spalten anwenden
daten %>%
 mutate(across(where(is.numeric), round_smart))

Das Besondere: round_smart() verändert nie den Teil vor dem Dezimaltrennzeichen und
erlaubt eine maximale Anzahl an Nachkommastellen. Details unter github.com/SchmidtPaul/
BioMathR.

14

https://github.com/SchmidtPaul/BioMathR
https://github.com/SchmidtPaul/BioMathR

BioMath

15/19

Ausblick: Regular Expressions
Regular Expressions (Regex) sind eine mächtige Sprache zur Musterbeschreibung in
Strings. Wir haben oben bereits \\d+ verwendet, um Zahlen zu extrahieren.

Ein Mini-Beispiel
texte <- c(
 "Bestellung Nr. 12345",
 "Kunde: Max Mustermann",
 "Betrag: 99.50 EUR",
 "Datum: 15.01.2024"
)

Alle Zahlen extrahieren
str_extract_all(texte, "\\d+")

[[1]]
[1] "12345"

[[2]]
character(0)

[[3]]
[1] "99" "50"

[[4]]
[1] "15" "01" "2024"

Nur Zahlen mit Dezimalpunkt
str_extract(texte, "\\d+\\.\\d+")

[1] NA NA "99.50" "15.01"

E-Mail-ähnliches Muster (vereinfacht)
email_text <- "Kontakt: info@example.com oder support@test.de"
str_extract_all(email_text, "[a-z]+@[a-z]+\\.[a-z]+")

[[1]]
[1] "info@example.com" "support@test.de"

Wichtige Regex-Bausteine
Muster Bedeutung

\\d Eine Ziffer (0-9)

\\w Ein “Wort-Zeichen” (Buchstabe, Ziffer, Unterstrich)

\\s Ein Whitespace (Leerzeichen, Tab, Newline)

. Ein beliebiges Zeichen

+ Ein oder mehrere des vorherigen

* Null oder mehrere des vorherigen

? Null oder eines des vorherigen

[abc] Eines der Zeichen a, b oder c

15

BioMath

16/19

Muster Bedeutung

^ Anfang des Strings

$ Ende des Strings

 Regex lernen

Regular Expressions haben eine steile Lernkurve, sind aber extrem mächtig. Gute
Ressourcen:

• regex101.com – Interaktiver Regex-Tester
• R for Data Science: Strings – Kapitel zu Strings und Regex
• ?regex in R für die Dokumentation

Ausblick: epoxy
Das {epoxy}-Paket erweitert die Idee von {glue} für dynamische Dokumente in Quarto und
RMarkdown. Es ermöglicht elegante Inline-Formatierung von Zahlen und Text direkt im
Fließtext.

Installation
install.packages("epoxy")

In Quarto: Zahlen automatisch formatieren
```{epoxy}
Die Analyse umfasst {nrow(daten)} Beobachtungen mit einem
Durchschnitt von {mean(daten$wert):.2f}.
```

Für wiederkehrende Reports, in denen Zahlen im Fließtext aktualisiert werden müssen, ist
{epoxy} sehr praktisch. Siehe epoxy Dokumentation.

16

https://regex101.com/
https://r4ds.hadley.nz/strings
https://pkg.garrickadenbuie.com/epoxy/

BioMath

17/19

Zusammenfassung
In diesem Kapitel haben wir die wichtigsten Werkzeuge für die Arbeit mit Strings in R
kennengelernt.

17

BioMath

18/19

 Wichtige Erkenntnisse

Vergleich der Methoden zum Zusammenfügen:

Funktion Paket Stärke

paste() / paste0() base R Immer verfügbar, sep/collapse

glue() glue Lesbarkeit bei vielen Variablen

str_c() stringr Konsistent mit stringr-Ökosystem

Die wichtigsten stringr-Funktionen für Data Cleaning:

Funktion Zweck

str_trim() Leerzeichen am Rand entfernen

str_squish() 1. mehrfache Leerzeichen reduzieren

str_to_lower() Alles kleinschreiben

str_detect() Muster suchen (TRUE/FALSE)

str_replace_all() Muster ersetzen

str_extract() Muster extrahieren

str_pad() Mit Zeichen auffüllen

Zahlen formatieren:

Funktion Paket Zweck

percent() scales Prozente (10%)

comma() / number() scales Tausendertrenner,
Dezimalstellen

pvalue() scales p-Werte

round_smart() BioMathR Intelligentes Runden
(so wenig wie möglich,
so viel wie nötig)

Typischer Cleaning-Workflow:
daten %>%
 mutate(
 spalte_clean = spalte %>%
 str_trim() %>% # Leerzeichen entfernen
 str_to_lower() %>% # Kleinschreibung
 str_replace_all(" ", "_") # Leerzeichen ersetzen
)

Weiterführende Ressourcen:

• stringr Dokumentation

18

https://stringr.tidyverse.org/

BioMath

19/19

• glue Dokumentation
• scales Dokumentation
• BioMathR auf GitHub
• R for Data Science: Strings
• epoxy für dynamische Dokumente

Bibliography

19

https://glue.tidyverse.org/
https://scales.r-lib.org/
https://github.com/SchmidtPaul/BioMathR
https://r4ds.hadley.nz/strings
https://pkg.garrickadenbuie.com/epoxy/

	Einleitung
	Beispieldaten
	Base R: paste() und paste0()
	Grundprinzip
	Das sep-Argument
	Das collapse-Argument
	Limitierung

	glue: Elegante String-Interpolation
	Grundprinzip
	Praxisbeispiel: Dateinamen erzeugen
	Ausdrücke in glue
	glue_data() für Tibbles
	Vergleich: paste0() vs glue()

	stringr: Strings manipulieren
	Leerzeichen entfernen
	Groß- und Kleinschreibung
	Suchen mit str_detect()
	Ersetzen mit str_replace()
	Extrahieren mit str_extract()
	Teilstrings mit str_sub()
	Weitere nützliche Funktionen

	Zahlen formatieren
	Base R: round() vs. format()
	scales: Formatierung für Berichte
	Prozente
	Tausendertrennzeichen
	Allgemeine Zahlenformatierung
	P-Werte

	Ausblick: Intelligentes Runden mit BioMathR

	Ausblick: Regular Expressions
	Ein Mini-Beispiel
	Wichtige Regex-Bausteine

	Ausblick: epoxy
	Zusammenfassung
	Bibliography

