
BioMath

1/14

5. Faktoren

Kategoriale Variablen verstehen und mit forcats manipulieren
Dr. Paul Schmidt

Um alle in diesem Kapitel verwendeten Pakete zu installieren und zu laden, führt man
folgenden Code aus:

for (pkg in c("forcats", "janitor", "patchwork", "tidyverse")) {
 if (!require(pkg, character.only = TRUE)) install.packages(pkg)
}

library(forcats)
library(janitor)
library(patchwork)
library(tidyverse)

Einleitung
Wer in R mit kategorialen Daten arbeitet, stößt früher oder später auf das Konzept der
Faktoren. Für Einsteiger sind sie oft verwirrend: Warum verhält sich eine Spalte plötzlich
anders als erwartet? Warum erscheinen die Balken im Diagramm in einer seltsamen
Reihenfolge?

Dieses Kapitel erklärt, was Faktoren sind, wann man sie braucht und wie man sie mit dem
{forcats}-Paket elegant manipuliert.

Beispieldaten
Wir verwenden wieder den starwars -Datensatz, gefiltert auf Menschen:

humans <- starwars %>%
 filter(species == "Human") %>%
 select(name, height, mass, hair_color, eye_color, gender)

humans

A tibble: 35 × 6
 name height mass hair_color eye_color gender
 <chr> <int> <dbl> <chr> <chr> <chr>
 1 Luke Skywalker 172 77 blond blue masculine
 2 Darth Vader 202 136 none yellow masculine
 3 Leia Organa 150 49 brown brown feminine
 4 Owen Lars 178 120 brown, grey blue masculine
 5 Beru Whitesun Lars 165 75 brown blue feminine
 6 Biggs Darklighter 183 84 black brown masculine
 7 Obi-Wan Kenobi 182 77 auburn, white blue-gray masculine
 8 Anakin Skywalker 188 84 blond blue masculine
 9 Wilhuff Tarkin 180 NA auburn, grey blue masculine
10 Han Solo 180 80 brown brown masculine
ℹ 25 more rows

1

BioMath

2/14

Character vs. Factor: Der Unterschied
Character: Einfach Text
Eine Character-Variable ist schlicht Text. R behandelt jeden Wert als eigenständigen String:

eye_color ist ein Character-Vektor
class(humans$eye_color)

[1] "character"

Unique Werte (in der Reihenfolge des ersten Auftretens)
unique(humans$eye_color)

[1] "blue" "yellow" "brown" "blue-gray" "hazel" "dark"
[7] "unknown"

Wenn wir Character-Werte sortieren, geschieht das alphabetisch:

sort(unique(humans$eye_color))

[1] "blue" "blue-gray" "brown" "dark" "hazel" "unknown"
[7] "yellow"

Factor: Text mit Struktur
Ein Factor ist Text plus zusätzliche Information:

1. Levels: Die möglichen Kategorien
2. Reihenfolge: Die Sortierung der Levels

Character zu Factor umwandeln
eye_factor <- factor(humans$eye_color)

class(eye_factor)

[1] "factor"

levels(eye_factor) # Die gespeicherten Levels

[1] "blue" "blue-gray" "brown" "dark" "hazel" "unknown"
[7] "yellow"

Die Levels sind standardmäßig alphabetisch sortiert. Aber wir können eine eigene
Reihenfolge definieren:

eye_custom <- factor(
 humans$eye_color,
 levels = c("blue", "brown", "hazel", "dark", "blue-gray")
)

levels(eye_custom)

[1] "blue" "brown" "hazel" "dark" "blue-gray"

Warum ist das wichtig?
Die Level-Reihenfolge beeinflusst:

• Die Sortierung in Tabellen

2

BioMath

3/14

• Die Reihenfolge in Grafiken (z.B. Balkendiagramme)
• Die Referenzkategorie in statistischen Modellen
Mit Character: alphabetische Reihenfolge
p1 <- humans %>%
 count(eye_color) %>%
 ggplot(aes(x = eye_color, y = n)) +
 geom_col() +
 labs(title = "Character: alphabetisch") +
 theme_minimal()

Mit Factor: unsere Reihenfolge
p2 <- humans %>%
 mutate(eye_color = factor(eye_color,
 levels = c("brown", "blue", "hazel", "dark", "blue-
gray"))) %>%
 count(eye_color) %>%
 ggplot(aes(x = eye_color, y = n)) +
 geom_col() +
 labs(title = "Factor: eigene Reihenfolge") +
 theme_minimal()

Nebeneinander anzeigen
p1 + p2

 Übung: Character vs. Factor

a) Prüfe mit class() , ob hair_color im humans -Datensatz ein Character oder Factor
ist.

b) Wandle hair_color in einen Factor um und zeige die Levels an.

c) Erstelle einen Factor für hair_color mit der Reihenfolge: “brown”, “black”, “blond”,
“auburn”, dann alle anderen.

3

BioMath

4/14

 Lösungsvorschlag

a) Klasse prüfen
class(humans$hair_color)

[1] "character"

b) In Factor umwandeln
hair_factor <- factor(humans$hair_color)
levels(hair_factor)

 [1] "auburn" "auburn, grey" "auburn, white" "black"
 [5] "blond" "brown" "brown, grey" "grey"
 [9] "none" "white"

c) Mit eigener Reihenfolge
hair_custom <- factor(
 humans$hair_color,
 levels = c("brown", "black", "blond", "auburn",
 "auburn, grey", "auburn, white", "grey", "white", "none")
)
levels(hair_custom)

[1] "brown" "black" "blond" "auburn"
[5] "auburn, grey" "auburn, white" "grey" "white"
[9] "none"

4

BioMath

5/14

Faktoren erstellen
factor() vs. as_factor()
Es gibt zwei Hauptfunktionen zum Erstellen von Faktoren:

farben <- c("rot", "blau", "rot", "grün", "blau")

factor(): Levels alphabetisch
factor(farben)

[1] rot blau rot grün blau
Levels: blau grün rot

as_factor(): Levels nach Reihenfolge des ersten Auftretens
as_factor(farben)

[1] rot blau rot grün blau
Levels: rot blau grün

Funktion Paket Level-Reihenfolge

factor() base R Alphabetisch

as_factor() forcats Nach Auftreten im Vektor

as_factor() ist oft praktischer, weil die Reihenfolge der Daten erhalten bleibt.

Levels explizit angeben
Mit dem levels -Argument können wir die Reihenfolge selbst bestimmen:

Eigene Reihenfolge
zufriedenheit <- c("mittel", "hoch", "niedrig", "hoch", "mittel")

FALSCH: alphabetisch
factor(zufriedenheit)

[1] mittel hoch niedrig hoch mittel
Levels: hoch mittel niedrig

RICHTIG: logische Reihenfolge
factor(zufriedenheit, levels = c("niedrig", "mittel", "hoch"))

[1] mittel hoch niedrig hoch mittel
Levels: niedrig mittel hoch

5

BioMath

6/14

forcats: Faktoren manipulieren
Das {forcats}-Paket (Teil des tidyverse) bietet praktische Funktionen zur Factor-Manipulation.
Alle Funktionen beginnen mit fct_ .

Reihenfolge ändern

fct_relevel() – Manuell umsortieren
Originalreihenfolge
humans %>%
 mutate(eye_color = factor(eye_color)) %>%
 pull(eye_color) %>%
 levels()

[1] "blue" "blue-gray" "brown" "dark" "hazel" "unknown"
[7] "yellow"

"brown" an den Anfang setzen
humans %>%
 mutate(eye_color = fct_relevel(eye_color, "brown")) %>%
 pull(eye_color) %>%
 levels()

[1] "brown" "blue" "blue-gray" "dark" "hazel" "unknown"
[7] "yellow"

Mehrere Levels in bestimmter Reihenfolge
humans %>%
 mutate(eye_color = fct_relevel(eye_color, "brown", "blue", "hazel")) %>%
 pull(eye_color) %>%
 levels()

[1] "brown" "blue" "hazel" "blue-gray" "dark" "unknown"
[7] "yellow"

fct_reorder() – Nach anderer Variable sortieren
Besonders nützlich für Grafiken – sortiere Kategorien nach einem numerischen Wert:
Durchschnittliche Größe pro Haarfarbe
hair_height <- humans %>%
 filter(!is.na(hair_color), !is.na(height)) %>%
 group_by(hair_color) %>%
 summarise(mean_height = mean(height), n = n()) %>%
 filter(n >= 2) # Nur Gruppen mit mindestens 2 Personen

Ohne fct_reorder: alphabetisch
p1 <- hair_height %>%
 ggplot(aes(x = hair_color, y = mean_height)) +
 geom_col() +
 labs(title = "Alphabetisch") +
 theme_minimal() +
 theme(axis.text.x = element_text(angle = 45, hjust = 1))

Mit fct_reorder: nach Größe sortiert
p2 <- hair_height %>%
 ggplot(aes(x = fct_reorder(hair_color, mean_height), y = mean_height)) +
 geom_col() +
 labs(title = "Nach Größe sortiert", x = "hair_color") +
 theme_minimal() +
 theme(axis.text.x = element_text(angle = 45, hjust = 1))

6

BioMath

7/14

p1 + p2

fct_infreq() – Nach Häufigkeit sortieren
humans %>%
 mutate(eye_color = fct_infreq(eye_color)) %>%
 pull(eye_color) %>%
 levels()

[1] "brown" "blue" "hazel" "yellow" "blue-gray" "dark"
[7] "unknown"

Die häufigsten Kategorien kommen zuerst – ideal für Balkendiagramme.

fct_rev() – Reihenfolge umkehren
Häufigste zuerst, dann umkehren (seltenste zuerst)
humans %>%
 mutate(eye_color = fct_rev(fct_infreq(eye_color))) %>%
 pull(eye_color) %>%
 levels()

[1] "unknown" "dark" "blue-gray" "yellow" "hazel" "blue"
[7] "brown"

Levels zusammenfassen

fct_lump_n() – Seltene in “Other” zusammenfassen
Nur die 3 häufigsten behalten, Rest wird "Other"
humans %>%
 mutate(eye_color = fct_lump_n(eye_color, n = 3)) %>%
 tabyl(eye_color)

 eye_color n percent
 blue 12 0.34285714
 brown 16 0.45714286
 hazel 2 0.05714286
 yellow 2 0.05714286
 Other 3 0.08571429

Mit deutschem Label
humans %>%
 mutate(eye_color = fct_lump_n(eye_color, n = 3, other_level = "Sonstige")) %>%
 tabyl(eye_color)

7

BioMath

8/14

 eye_color n percent
 blue 12 0.34285714
 brown 16 0.45714286
 hazel 2 0.05714286
 yellow 2 0.05714286
 Sonstige 3 0.08571429

Verwandte Funktionen:

• fct_lump_min() – Zusammenfassen wenn weniger als n Vorkommen
• fct_lump_prop() – Zusammenfassen wenn Anteil unter x%

fct_collapse() – Mehrere Levels zusammenfassen
humans %>%
 mutate(
 eye_group = fct_collapse(
 eye_color,
 "hell" = c("blue", "blue-gray", "hazel"),
 "dunkel" = c("brown", "dark")
)
) %>%
 tabyl(eye_group)

 eye_group n percent
 hell 15 0.42857143
 dunkel 17 0.48571429
 unknown 1 0.02857143
 yellow 2 0.05714286

Levels umbenennen

fct_recode()
humans %>%
 mutate(
 eye_color_de = fct_recode(
 eye_color,
 "Blau" = "blue",
 "Braun" = "brown",
 "Dunkel" = "dark",
 "Haselnuss" = "hazel",
 "Blau-Grau" = "blue-gray"
)
) %>%
 tabyl(eye_color_de)

 eye_color_de n percent
 Blau 12 0.34285714
 Blau-Grau 1 0.02857143
 Braun 16 0.45714286
 Dunkel 1 0.02857143
 Haselnuss 2 0.05714286
 unknown 1 0.02857143
 yellow 2 0.05714286

8

BioMath

9/14

 Übung: forcats

Arbeite mit dem humans -Datensatz:

a) Erstelle ein Balkendiagramm von hair_color , bei dem die Balken nach Häufigkeit
sortiert sind (häufigste links).

b) Fasse alle Haarfarben außer den 3 häufigsten unter “Andere” zusammen und erstelle
eine Häufigkeitstabelle mit tabyl() .

c) Benenne die Levels von gender um: “feminine” → “weiblich”, “masculine” →
“männlich”.

9

BioMath

10/14

 Lösungsvorschlag

a) Balkendiagramm nach Häufigkeit
humans %>%
 filter(!is.na(hair_color)) %>%
 ggplot(aes(x = fct_infreq(hair_color))) +
 geom_bar() +
 labs(x = "Haarfarbe", y = "Anzahl") +
 theme_minimal() +
 theme(axis.text.x = element_text(angle = 45, hjust = 1))

b) Lumpen und tabyl
humans %>%
 mutate(hair_color = fct_lump_n(hair_color, n = 3, other_level = "Andere")) %>%
 tabyl(hair_color, show_na = FALSE)

 hair_color n percent
 black 8 0.2285714
 brown 13 0.3714286
 none 4 0.1142857
 Andere 10 0.2857143

c) Gender umbenennen
humans %>%
 mutate(
 gender_de = fct_recode(
 gender,
 "weiblich" = "feminine",
 "männlich" = "masculine"
)
) %>%
 tabyl(gender_de)

 gender_de n percent
 weiblich 9 0.2571429
 männlich 26 0.7428571

10

BioMath

11/14

Praktische Anwendungen
Faktoren in ggplot2
Die Level-Reihenfolge bestimmt die Anordnung in Grafiken:
Sinnvolle Reihenfolge für Balkendiagramm
humans %>%
 filter(!is.na(eye_color)) %>%
 mutate(eye_color = fct_infreq(eye_color)) %>% # Nach Häufigkeit
 ggplot(aes(x = eye_color, fill = eye_color)) +
 geom_bar() +
 coord_flip() + # Horizontale Balken
 labs(
 title = "Augenfarben bei Star Wars Menschen",
 x = NULL,
 y = "Anzahl"
) +
 theme_minimal() +
 theme(legend.position = "none")

Bei horizontalen Balkendiagrammen will man oft die häufigste Kategorie oben haben. Dafür
kombiniert man fct_infreq() mit fct_rev() :

humans %>%
 filter(!is.na(eye_color)) %>%
 mutate(eye_color = fct_rev(fct_infreq(eye_color))) %>% # Umgekehrt
 ggplot(aes(x = eye_color, fill = eye_color)) +
 geom_bar() +
 coord_flip() +
 labs(
 title = "Häufigste Kategorie oben",
 x = NULL,
 y = "Anzahl"
) +
 theme_minimal() +
 theme(legend.position = "none")

11

BioMath

12/14

Faktoren in tabyl()
Auch tabyl() respektiert die Level-Reihenfolge:

Ohne Factor: alphabetisch
humans %>%
 tabyl(eye_color)

 eye_color n percent
 blue 12 0.34285714
 blue-gray 1 0.02857143
 brown 16 0.45714286
 dark 1 0.02857143
 hazel 2 0.05714286
 unknown 1 0.02857143
 yellow 2 0.05714286

Mit Factor: nach unserer Reihenfolge
humans %>%
 mutate(eye_color = fct_relevel(eye_color, "brown", "blue")) %>%
 tabyl(eye_color)

 eye_color n percent
 brown 16 0.45714286
 blue 12 0.34285714
 blue-gray 1 0.02857143
 dark 1 0.02857143
 hazel 2 0.05714286
 unknown 1 0.02857143
 yellow 2 0.05714286

Nach Häufigkeit
humans %>%
 mutate(eye_color = fct_infreq(eye_color)) %>%
 tabyl(eye_color)

12

BioMath

13/14

 eye_color n percent
 brown 16 0.45714286
 blue 12 0.34285714
 hazel 2 0.05714286
 yellow 2 0.05714286
 blue-gray 1 0.02857143
 dark 1 0.02857143
 unknown 1 0.02857143

Dies ist besonders nützlich für Berichte, wo die Reihenfolge der Kategorien eine inhaltliche
Bedeutung haben soll (z.B. “sehr gut”, “gut”, “befriedigend”, “schlecht”).

13

BioMath

14/14

Zusammenfassung
Faktoren sind mächtiger als einfache Character-Variablen, weil sie eine definierte Menge an
Kategorien mit einer bestimmten Reihenfolge speichern.

 Wichtige Erkenntnisse

Character vs. Factor:

Aspekt Character Factor

Speichert Nur Text Text + Levels + Reihenfolge

Sortierung Alphabetisch Nach Level-Reihenfolge

Unbekannte Werte Erlaubt Werden NA (wenn nicht in Levels)

Anwendung Freitext Kategorien mit fester Ausprägung

Wann Character, wann Factor?

• Character: Freitext, Namen, IDs, Kommentare
• Factor: Kategorien mit definierter Ausprägung (Geschlecht, Likert-Skalen, Regionen)

Die wichtigsten forcats-Funktionen:

Funktion Zweck

fct_relevel() Levels manuell umsortieren

fct_reorder() Nach numerischer Variable sortieren

fct_infreq() Nach Häufigkeit sortieren

fct_rev() Reihenfolge umkehren

fct_lump_n() Seltene zu “Other” zusammenfassen

fct_collapse() Mehrere Levels zusammenfassen

fct_recode() Levels umbenennen

Typischer Workflow für Grafiken:
daten %>%
 mutate(kategorie = fct_infreq(kategorie)) %>% # Nach Häufigkeit
 ggplot(aes(x = kategorie)) +
 geom_bar()

Weiterführende Ressourcen:

• forcats Dokumentation
• R for Data Science: Factors

Bibliography

14

https://forcats.tidyverse.org/
https://r4ds.hadley.nz/factors

	Einleitung
	Beispieldaten
	Character vs. Factor: Der Unterschied
	Character: Einfach Text
	Factor: Text mit Struktur
	Warum ist das wichtig?

	Faktoren erstellen
	factor() vs. as_factor()
	Levels explizit angeben

	forcats: Faktoren manipulieren
	Reihenfolge ändern
	fct_relevel() – Manuell umsortieren
	fct_reorder() – Nach anderer Variable sortieren
	fct_infreq() – Nach Häufigkeit sortieren
	fct_rev() – Reihenfolge umkehren

	Levels zusammenfassen
	fct_lump_n() – Seltene in "Other" zusammenfassen
	fct_collapse() – Mehrere Levels zusammenfassen

	Levels umbenennen
	fct_recode()

	Praktische Anwendungen
	Faktoren in ggplot2
	Faktoren in tabyl()

	Zusammenfassung
	Bibliography

