BioMath

5. Faktoren

Kategoriale Variablen verstehen und mit forcats manipulieren
Dr. Paul Schmidt

Um alle in diesem Kapitel verwendeten Pakete zu installieren und zu laden, fihrt man
folgenden Code aus:

for (pkg in c("forcats", "janitor", "patchwork", "tidyverse")) {
if (!require (pkg, character.only = TRUE)) install.packages (pkqg)
}

forcats)
janitor)
patchwork)
tidyverse)

library
library
library
library

Einleitung

Wer in R mit kategorialen Daten arbeitet, sto3t friiher oder spater auf das Konzept der
Faktoren. Fur Einsteiger sind sie oft verwirrend: Warum verhalt sich eine Spalte plétzlich
anders als erwartet? Warum erscheinen die Balken im Diagramm in einer seltsamen
Reihenfolge?

Dieses Kapitel erklart, was Faktoren sind, wann man sie braucht und wie man sie mit dem
{forcats}-Paket elegant manipuliert.

Beispieldaten

Wir verwenden wieder den starwars -Datensatz, gefiltert auf Menschen:

humans <- starwars %>%
filter (species == "Human") %>%
select (name, height, mass, hair color, eye color, gender)

humans

A tibble: 35 x 6

name height mass hair color eye color gender

<chr> <int> <dbl> <chr> <chr> <chr>
1 Luke Skywalker 172 77 blond blue masculine
2 Darth Vader 202 136 none yellow masculine
3 Leia Organa 150 49 brown brown feminine
4 Owen Lars 178 120 brown, grey blue masculine
5 Beru Whitesun Lars 165 75 brown blue feminine
6 Biggs Darklighter 183 84 black brown masculine
7 Obi-Wan Kenobi 182 77 auburn, white blue-gray masculine
8 Anakin Skywalker 188 84 blond blue masculine
9 Wilhuff Tarkin 180 NA auburn, grey Dblue masculine
10 Han Solo 180 80 brown brown masculine

i 25 more rows

114

BioMath

Character vs. Factor: Der Unterschied

Character: Einfach Text

Eine Character-Variable ist schlicht Text. R behandelt jeden Wert als eigenstandigen String:

eye color ist ein Character-Vektor
class (humansSeye color)
I[l] "character"
Unique Werte (in der Reihenfolge des ersten Auftretens)
unique (humansSeye color)
[1] "blue" "yellow" "brown" "blue-gray" "hazel" "dark"
[7] "unknown"

Wenn wir Character-Werte sortieren, geschieht das alphabetisch:
Isort(unique(humans$eye_color))

[1] "blue" "blue-gray" "brown" "dark" "hazel" "unknown"
[7] "yellow"

Factor: Text mit Struktur
Ein Factor ist Text plus zusétzliche Information:

1. Levels: Die mdglichen Kategorien
2. Reihenfolge: Die Sortierung der Levels

Character zu Factor umwandeln
eye factor <- factor(humans$eye_color)

class (eye factor)

I[l] "factor"

Ilevels(eye_factor) # Die gespeicherten Levels
[1] "blue" "blue-gray" "brown" "dark" "hazel" "unknown"
[7] "yellow"

Die Levels sind standardmafig alphabetisch sortiert. Aber wir kdnnen eine eigene
Reihenfolge definieren:

eye custom <- factor (
humansSeye color,
levels = c("blue", "brown", "hazel", "dark", "blue-gray")

)

levels (eye custom)

I[l] "blue" "brown" "hazel" "dark" "blue-gray"

Warum ist das wichtig?
Die Level-Reihenfolge beeinflusst:

* Die Sortierung in Tabellen

214

BioMath

* Die Reihenfolge in Grafiken (z.B. Balkendiagramme)
» Die Referenzkategorie in statistischen Modellen

Mit Character: alphabetische Reihenfolge
pl <- humans %>%
count (eye color) %>%
ggplot (aes (x = eye color, y = n)) +
geom col () +
labs(title = "Character: alphabetisch") +
theme minimal ()

Mit Factor: unsere Reihenfolge
p2 <- humans %>%

mutate (eye color = factor (eye color,

levels = c("brown", "blue", "hazel", "dark", "blue-

gray"))) %>%

count (eye color) %>%

ggplot (aes (x = eye color, y = n)) +

geom_col () +

labs (title = "Factor: eigene Reihenfolge") +

theme minimal ()

Nebeneinander anzeigen

pl + p2
Character: alphabetisch Factor: eigene Reihenfolge
15
10
c
5
T s T e B e O -__-
blue blue-gray brown dark hazel unknown yellow brown blue hazel dark blue-gray

eye_color eye_color

© Ubung: Character vs. Factor

a) Prife mit class() ,0b hair color im humans -Datensatz ein Character oder Factor
ist.

b) Wandle hair_color in einen Factor um und zeige die Levels an.

c) Erstelle einen Factor fir hair_color mit der Reihenfolge: “brown”, “black”, “blond”,
“auburn”, dann alle anderen.

314

a) Klasse priifen
class (humansShair color)

b) In Factor umwandeln
hair factor <- factor (humansShair color)
levels (hair factor)

c) Mit eigener Reihenfolge
hair custom <- factor(
humansShair color,
levels = c("brown", "black", "blond", "auburn",
"auburn, grey", "auburn, white", "grey", "white", "none")
)

levels (hair_custom)

Faktoren erstellen

factor() vs. as_factor()
Es gibt zwei Hauptfunktionen zum Erstellen von Faktoren:

farben <- c("rot", "blau", "rot", "grun", "blau")

factor(): Levels alphabetisch
factor (farben)

[1] rot blau rot grin blau
Levels: blau grin rot

as factor(): Levels nach Reihenfolge des ersten Auftretens
as_factor (farben)

[1] rot blau rot grin blau
Levels: rot blau grin

Funktion Paket Level-Reihenfolge

factor () base R Alphabetisch

as factor() forcats Nach Auftreten im Vektor

as_factor () ist oft praktischer, weil die Reihenfolge der Daten erhalten bleibt.

Levels explizit angeben

Mit dem 1levels -Argument kénnen wir die Reihenfolge selbst bestimmen:

Eigene Reihenfolge
zufriedenheit <- c(

FALSCH: alphabetisch
factor (zufriedenheit)

[1] mittel hoch niedrig hoch mittel
Levels: hoch mittel niedrig

RICHTIG: logische Reihenfolge

[1] mittel hoch niedrig hoch mittel
Levels: niedrig mittel hoch

"mittel", "hoch", "niedrig", "hoch", "mittel")

factor (zufriedenheit, levels = c("niedrig", "mittel", "hoch"))

BioMath

5/14

BioMath

forcats: Faktoren manipulieren

Das {forcats}-Paket (Teil des tidyverse) bietet praktische Funktionen zur Factor-Manipulation.
Alle Funktionen beginnen mit fect_ .

Reihenfolge andern

fct_relevel() — Manuell umsortieren

Originalreihenfolge

humans %>%
mutate (eye color = factor (eye color)) %>%
pull (eye color) %>%
levels ()

[1] "blue" "blue-gray" "brown" "dark" "hazel" "unknown"
[7] "yellow"

"brown" an den Anfang setzen
humans %>%

mutate (eye color = fct relevel (eye color, "brown")) %>%
pull (eye color) %>%
levels ()
[1] "brown" "blue" "blue-gray" "dark" "hazel" "unknown"
[7] "yellow"
Mehrere Levels in bestimmter Reihenfolge
humans %>%
mutate (eye color = fct relevel (eye color, "brown", "blue", "hazel")) %>%
pull (eye color) %>%
levels ()
[1] "brown" "blue" "hazel" "blue-gray" "dark" "unknown"

[7] "yellow"

fct_reorder() — Nach anderer Variable sortieren
Besonders nutzlich fur Grafiken — sortiere Kategorien nach einem numerischen Wert:

Durchschnittliche GroBe pro Haarfarbe
hair height <- humans %>%

filter(!is.na(hair color), !is.na(height)) %>%
group by (hair color) 3%>%
summarise (mean height = mean (height), n = n()) %>%

filter(n >= 2) # Nur Gruppen mit mindestens 2 Personen

Ohne fct reorder: alphabetisch

pl <- hair height %>%
ggplot (aes (x = hair color, y = mean height)) +
geom col () +

labs (title = "Alphabetisch") +
theme minimal () +
theme (axis.text.x = element text (angle = 45, hjust = 1))

Mit fct reorder: nach GréRe sortiert

p2 <- hair height %>%
ggplot (aes(x = fct reorder (hair color, mean height), y = mean height)) +
geom _col () +

labs (title = "Nach GroBe sortiert", x = "hair color") +

theme minimal () +

theme (axis.text.x = element text (angle = 45, hjust = 1))
6

6/14

Ipl + p2
Alphabetisch Nach GréRe sortiert
. 150 . 150
e =
2 2
[))
-CI 100 -CI 100
C C
®© ®©
]]
£ 50 € 50
0 0
X Q> . & . X
6&) 6§ 6§§ Q&Q S§9 ddS 66\ £§9 df <§@
hair_color hair_color
fct_infreq() — Nach Haufigkeit sortieren
humans %>%
mutate (eye color = fctiinfreq(eye_color)) $>%
pull (eye color) %>%
levels ()
[1] "brown" "blue" "hazel" "yellow" "blue-gray" "dark"
[7] "unknown"

Die haufigsten Kategorien kommen zuerst — ideal fur Balkendiagramme.

fct_rev() — Reihenfolge umkehren

Haufigste zuerst, dann umkehren (seltenste zuerst)

humans %>%
mutate (eye color
pull (eye color) %>%
levels ()

fct rev(fct infreqg(eye color))) %>%

[1] "unknown" "dark" "blue-gray" "yellow" "hazel" "blue"
[7] "brown"

Levels zusammenfassen

fct_lump_n() — Seltene in “Other” zusammenfassen

Nur die 3 haufigsten behalten, Rest wird "Other"
humans %>%

mutate (eye color = fct lump n(eye color, n = 3))
tabyl (eye color)

o©

>

o©

eye color n percent
blue 12 0.34285714
brown 16 0.45714286
hazel 2 0.05714286
yellow 2 0.05714286
Other 3 0.08571429

Mit deutschem Label

humans %>%
mutate (eye color
tabyl (eye color)

fct lump n(eye color, n = 3, other level = "Sonstige")) %>%

BioMath

714

eye color n percent
blue 12 0.34285714
brown 16 0.45714286
hazel 2 0.05714286
yellow 2 0.05714286
Sonstige 3 0.08571429

Verwandte Funktionen:

* fet_lump min() —Zusammenfassen wenn weniger als n Vorkommen

fet_lump_prop () —Zusammenfassen wenn Anteil unter x%

fct_collapse() — Mehrere Levels zusammenfassen

humans %>%
mutate (
eye group = fct collapse(
eye color,
"hell”™ = c("blue", "blue-gray", "hazel"),
"dunkel" = c("brown", "dark")
)
) $>%
tabyl (eye group)

eye group n percent
hell 15 0.42857143
dunkel 17 0.48571429
unknown 1 0.02857143
yellow 2 0.05714286

Levels umbenennen

fct_recode()

humans $>%
mutate (
eye color de
eye color,

fct recode (

"Blau" = "blue",

"Braun" = "brown",
"Dunkel" = "dark",
"Haselnuss" = "hazel",
"Blau-Grau" = "blue-gray"

)
) $>%
tabyl (eye color de)

eye color de n percent
Blau 12 0.34285714
Blau-Grau 1 0.02857143
Braun 16 0.45714286

Dunkel 1 0.02857143
Haselnuss 2 0.05714286
unknown 1 0.02857143
yellow 2 0.05714286

BioMath

8/14

© Ubung: forcats

Arbeite mit dem humans -Datensatz:

a) Erstelle ein Balkendiagramm von hair_color , bei dem die Balken nach Haufigkeit
sortiert sind (haufigste links).

b) Fasse alle Haarfarben auller den 3 haufigsten unter “Andere” zusammen und erstelle
eine Haufigkeitstabelle mit tabyl () .

L]

c) Benenne die Levels von gender um: “feminine” — “weiblich”, “masculine” —
“méannlich”.

BioMath

9/14

1 Lésungsvorschlag

a) Balkendiagramm nach Haufigkeit

humans %>%
filter(!is.na(hair color)) %>%
ggplot (aes (x = fct infreq(hair color))) +
geom bar () +
labs (x = "Haarfarbe", y = "Anzahl") +
theme minimal () +

theme (axis.text.x = element text (angle = 45, hjust = 1))

10
| I
0 .--—————

Anzahl

N < xQ xQ
~0<°§ & & @o°b & ,bo’o\\}{\ . 9@* & R 9@* q&eﬁ
N & &
N o ©
? ~N ©
Haarfarbe
b) Lumpen und tabyl
humans %>%
mutate (hair color = fct lump n(hair color, n = 3, other level = "Andere")) %>%
tabyl (hair color, show na = FALSE)
hair color n percent
black 8 0.2285714
brown 13 0.3714286
none 4 0.1142857
Andere 10 0.2857143
c) Gender umbenennen
humans %>%
mutate (
gender de = fct recode (
gender,
"weiblich" = "feminine",
"mannlich" = "masculine"
)
) $>%
tabyl (gender de)
gender de n percent
weiblich 9 0.2571429
mannlich 26 0.7428571
10

BioMath

10/14

BioMath

Praktische Anwendungen

Faktoren in ggplot2

Die Level-Reihenfolge bestimmt die Anordnung in Grafiken:

Sinnvolle Reihenfolge fiir Balkendiagramm
humans %>%
filter(!is.na(eye color)) 3%>%
mutate (eye color = fct infreqg(eye color)) %>% # Nach Haufigkeit
ggplot (aes (x = eye color, fill = eye color)) +
geom bar () +
coord_flip() + # Horizontale Balken

labs (
title = "Augenfarben bei Star Wars Menschen",
x = NULL,
y = "Anzahl"
) +
theme minimal () +
theme (legend.position = "none")
Augenfarben bei Star Wars Menschen
unknown .
dark .
blue-gray .

Anzahl

Bei horizontalen Balkendiagrammen will man oft die haufigste Kategorie oben haben. Daflr

kombiniert man fct_infreq() mit fct_rev() :

humans %>%
filter(!is.na(eye color)) 3%>%
mutate (eye color = fct rev(fct infreg(eye color))) $%$>% # Umgekehrt
ggplot (aes(x = eye color, fill = eye color)) +
geom bar () +
coord flip() +
labs (
title = "Haufigste Kategorie oben",
x = NULL,
y = "Anzahl"
) +
theme minimal () +
theme (legend.position = "none")

1114

Haufigste Kategorie oben

brown

blue

hazel

yellow

blue-gray

dark

unknown

10 15

o
o

Anzahl

Faktoren in tabyl()

Auch tabyl () respektiert die Level-Reihenfolge:

Ohne Factor: alphabetisch
humans %>%
tabyl (eye color)

Mit Factor: nach unserer Reihenfolge

humans %>%
mutate (eye color = fct relevel (eye color, "brown", "blue")) 3%>%
tabyl (eye color)

Nach Haufigkeit

humans %>%
mutate (eye color = fct infreq(eye color)) %>%
tabyl (eye color)

Dies ist besonders nutzlich fiir Berichte, wo die Reihenfolge der Kategorien eine inhaltliche
Bedeutung haben soll (z.B. “sehr gut”, “gut”, “befriedigend”, “schlecht”).

13

Zusammenfassung

Faktoren sind machtiger als einfache Character-Variablen, weil sie eine definierte Menge an
Kategorien mit einer bestimmten Reihenfolge speichern.

1 Wichtige Erkenntnisse

Character vs. Factor:

Aspekt Character Factor

Speichert Nur Text Text + Levels + Reihenfolge
Sortierung Alphabetisch Nach Level-Reihenfolge
Unbekannte Werte Erlaubt Werden NA (wenn nicht in Levels)
Anwendung Freitext Kategorien mit fester Auspragung

Wann Character, wann Factor?

* Character: Freitext, Namen, IDs, Kommentare
» Factor: Kategorien mit definierter Auspragung (Geschlecht, Likert-Skalen, Regionen)

Die wichtigsten forcats-Funktionen:

Funktion Zweck

fct_relevel () Levels manuell umsortieren

fct reorder () Nach numerischer Variable sortieren
fct_infreq() Nach Haufigkeit sortieren

fct_rev() Reihenfolge umkehren

fct lump n() Seltene zu “Other” zusammenfassen
fct collapse() Mehrere Levels zusammenfassen
fct_recode () Levels umbenennen

Typischer Workflow fiur Grafiken:

daten %>%
mutate (kategorie = fct infreqg(kategorie)) 3%>% # Nach Haufigkeit
ggplot (aes (x = kategorie)) +
geom_bar ()

Weiterfiihrende Ressourcen:

 forcats Dokumentation
* R for Data Science: Factors

Bibliography

14

BioMath

14/14

https://forcats.tidyverse.org/
https://r4ds.hadley.nz/factors

	Einleitung
	Beispieldaten
	Character vs. Factor: Der Unterschied
	Character: Einfach Text
	Factor: Text mit Struktur
	Warum ist das wichtig?

	Faktoren erstellen
	factor() vs. as_factor()
	Levels explizit angeben

	forcats: Faktoren manipulieren
	Reihenfolge ändern
	fct_relevel() – Manuell umsortieren
	fct_reorder() – Nach anderer Variable sortieren
	fct_infreq() – Nach Häufigkeit sortieren
	fct_rev() – Reihenfolge umkehren

	Levels zusammenfassen
	fct_lump_n() – Seltene in "Other" zusammenfassen
	fct_collapse() – Mehrere Levels zusammenfassen

	Levels umbenennen
	fct_recode()

	Praktische Anwendungen
	Faktoren in ggplot2
	Faktoren in tabyl()

	Zusammenfassung
	Bibliography

