BioMath

8. Eigene Funktionen

Wiederverwendbaren Code schreiben und tidyeval verstehen
Dr. Paul Schmidt

Warum eigene Funktionen?

Einer der wichtigsten Schritte auf dem Weg vom R-Anwender zum R-Programmierer ist das
Schreiben eigener Funktionen. Das Grundprinzip dahinter ist einfach: Wenn man denselben
Code mehr als zweimal kopiert und eingefligt hat, sollte man eine Funktion daraus machen.
Diese Regel wird oft als DRY-Prinzip bezeichnet — “Don’t Repeat Yourself”.

Das Schreiben von Funktionen hat mehrere handfeste Vorteile. Erstens kann man der
Funktion einen aussagekraftigen Namen geben, der sofort verrat, was der Code tut.
Zweitens muss man bei Anderungen nur eine einzige Stelle im Code anpassen, nicht jede
Kopie. Drittens eliminiert man Fehler, die beim Kopieren und Einfligen entstehen — etwa
wenn man vergisst, einen Variablennamen an einer Stelle zu andern. Und viertens kann man
Funktionen projektibergreifend wiederverwenden.

Betrachten wir folgenden Code, der Spalten auf einen Wertebereich von 0 bis 1 skaliert:

mtcars %>%
select (mpg, hp, wt, gsec) $%>%
mutate (
mpg = (mpg - min(mpg, na.rm = TRUE)) / (max(mpg, na.rm = TRUE) - min(mpg, na.rm
= TRUE)),
hp = (hp - min(hp, na.rm = TRUE)) / (max(hp, na.rm = TRUE) - min (hp, na.rm =
TRUE)),
wt = (Wt - min(wt, na.rm = TRUE)) / (max(hp, na.rm = TRUE) - min(wt, na.rm =
TRUE)) ,
gsec = (gsec - min(gsec, na.rm = TRUE)) / (max(gsec, na.rm = TRUE) - min (gsec,

na.rm = TRUE))
) $>%

head ()

mpg hp wt gsec
Mazda RX4 0.4510638 0.2049470 -2.157895 0.2333333
Mazda RX4 Wag 0.4510638 0.2049470 -2.654971 0.3000000
Datsun 710 0.5276596 0.1448763 -1.573099 0.4892857
Hornet 4 Drive 0.4680851 0.2049470 -3.317739 0.5880952
Hornet Sportabout 0.3531915 0.4346290 -3.756335 0.3000000
Valiant 0.3276596 0.1872792 -3.795322 0.6809524

Dieser Code ist nicht nur lang und repetitiv, er enthalt auch einen subtilen Fehler — lasst er
sich finden? Bei so viel Wiederholung ist es fast unvermeidlich, dass sich Tippfehler
einschleichen. Eine Funktion 16st beide Probleme.

© Weiterfiihrende Ressourcen

Dieses Kapitel orientiert sich stark am hervorragenden Kapitel 25: Functions aus “R for
Data Science” (2. Auflage). Fir eine noch tiefere Behandlung von Tidy Evaluation
empfehlen wir die Programming with dplyr Vignette.

117

https://r4ds.hadley.nz/functions.html
https://dplyr.tidyverse.org/articles/programming.html

BioMath

Grundlagen: function()

Syntax und Aufbau

Eine Funktion in R besteht aus drei Teilen: einem Namen, den Argumenten und dem Body
(Funktionskérper). Die grundlegende Syntax sieht so aus:

funktionsname <- function (argumentl, argument2) {

Body: Der Code, der ausgefithrt wird
ergebnis <- argumentl + argument2
ergebnis

}

Wenden wir das auf unser Skalierungsproblem an. Der sich wiederholende Teil ist die Formel
(x - min(x)) / (max(x) - min(x)) . Das einzige, was sich andert, ist die Variable — das
wird unser Argument:

rescaleOl <- function(x) {

rng <- range(x, na.rm = TRUE)

(x - rng[l]) / (rngl[2] - rng[l])
Testen wir die Funktion:
IrescaleOl(c(—lO, 0, 10))
| t11 0.0 0.5 1.0
IrescaleOl(c(l, 2, 3, NA, 5))

I [1] 0.00 0.25 0.50 NA 1.00

Jetzt wird unser urspriinglicher Code deutlich lesbarer und krzer:

mtcars %$>%
select (mpg, hp, wt, gsec) %>%
mutate (
mpg = rescalelOl (mpg),
hp = rescaleOl (hp),
wt = rescaleOl (wt),
gsec = rescale0l (gsec)
) $>%
head ()
mpg hp wt gsec
Mazda RX4 0.4510638 0.2049470 0.2830478 0.2333333
Mazda RX4 Wag 0.4510638 0.2049470 0.3482485 0.3000000
Datsun 710 0.5276596 0.1448763 0.2063411 0.4892857
Hornet 4 Drive 0.4680851 0.2049470 0.4351828 0.5880952
Hornet Sportabout 0.3531915 0.4346290 0.4927129 0.3000000
Valiant 0.3276596 0.1872792 0.4978266 0.6809524

Argumente mit und ohne Defaults

Funktionen kdnnen beliebig viele Argumente haben. Argumente ohne Default-Wert sind
erforderlich, Argumente mit Default-Wert sind optional:

na.rm hat einen Default-Wert, x nicht
my mean <- function(x, na.rm = FALSE) {
sum(x, na.rm = na.rm) / length (x)

2117

BioMath

}
my mean(c(l, 2, 3))

I [1] 2

Imyimean(c(l, 2, NA), na.rm TRUE)

I[l] 1

Bei der Reihenfolge gilt: Erforderliche Argumente zuerst, optionale danach. Das wichtigste

Argument (meist die Daten) kommt an erste Stelle — das ermoglicht die nahtlose Integration
in Pipe-Ketten.

Rueckgabewerte

R-Funktionen geben automatisch das Ergebnis der letzten Zeile zurtick. Man kann auch
explizit return() verwenden, was besonders bei frihem Abbruch nitzlich ist:

Implizite Riickgabe (letzte Zeile)
add one <- function(x) {

x + 1
}

Explizite Riickgabe mit return ()
safe divide <- function(x, y) {
if (y == 0) {
return (NA real)

x /vy
}

safe divide (10, 2)

|[1]5
Isafeidivide(lo, 0)

I[l] NA

Die Konvention ist: return() nur fir frihe Abbriiche verwenden. Am Ende der Funktion ist
die implizite Ruckgabe ublicher und lesbarer.

Das Ellipsis-Argument (...)

Das spezielle Argument ... (drei Punkte, auch “Ellipsis” genannt) erlaubt es, beliebig viele
zusatzliche Argumente an eine andere Funktion durchzureichen:

2 e zusatzlichen Argumente werden an mean () weiltergegeben

my summary <- function(x, ...) {
c (
mean = mean(x, ...),
sd sd(x, ...)

Ohne na.rm

my summary(c(l, 2, 3))

3/17

mean sd

Mit na.rm = TRUE (wird an mean () und sd() durchgereicht)
my summary(c(l, 2, NA), na.rm = TRUE)

mean sd
1.5000000 0.7071068

Das ist besonders natzlich, wenn man Wrapper-Funktionen schreibt und nicht alle moglichen
Argumente der inneren Funktion explizit auflisten méchte.

© Ubung: Standardabweichung vom Mittelwert

Schreibe eine Funktion cv () , die den Variationskoeffizienten (Standardabweichung
geteilt durch Mittelwert) berechnet. Die Funktion sollte ein optionales na.rm -Argument

haben.

1 L6sung

cv <- function(x, na.rm = FALSE) ({
sd(x, na.rm = na.rm) / mean (X, na.rm = na.rm)

| [1] 0.5270463
Icv(c(l, 2, NA, 4, 5), na.rm = TRUE)

| [1] 0.6085806

Drei Funktionstypen

Das R for Data Science Buch unterscheidet drei nutzliche Kategorien von Funktionen, die
man haufig schreibt.

Vektor-Funktionen

Vektor-Funktionen nehmen einen oder mehrere Vektoren als Input und geben einen Vektor
zurtck. Sie lassen sich weiter unterteilen in Mutate-Funktionen (Output hat gleiche Lange
wie Input) und Summary-Funktionen (Output hat Lange 1).

Mutate-Funktion: gleiche Lange wie Input
z score <- function (x) {
(x - mean(x, na.rm = TRUE)) / sd(x, na.rm = TRUE)

}
z score(c(l, 2, 3, 4, 5))

I[l] -1.2649111 -0.6324555 0.0000000 0.6324555 1.2649111

BioMath

417

BioMath

Summary-Funktion: ein Wert als Output
coef variation <- function(x, na.rm = FALSE) {
sd(x, na.rm = na.rm) / mean(xX, na.rm = na.rm)

}
coef variation(c(l, 2, 3, 4, 5))

| [1] 0.5270463

Dataframe-Funktionen

Dataframe-Funktionen nehmen einen Dataframe als Input und geben einen Dataframe
zurlck. Sie sind typischerweise Wrapper um dplyr-Verben:

Beispiel einer Dataframe-Funktion
filter extreme <- function(df, var, threshold = 2) {
df %>%

filter (abs (as.vector (scale({{ var }}))) > threshold)
}

Autos mit extremem Verbrauch (> 2 SD vom Mittelwert)
mtcars %>%

filter extreme (mpg) %>%

select (mpg, hp, wt)

mpg hp wt
Fiat 128 32.4 66 2.200
Toyota Corolla 33.9 65 1.835

Plot-Funktionen

Plot-Funktionen nehmen einen Dataframe und geben einen ggplot zurick:

Beispiel einer Plot-Funktion
histogram <- function(df, var, binwidth = NULL) {
df $>%
ggplot (aes(x = {{ var }})) +
geom histogram(binwidth = binwidth)
}

mtcars $>% histogram(mpg, binwidth = 2)

5_

count

10 15 20 25 30 35
mpg

Die {) -Syntax im Plot-Beispiel wird im Abschnitt Gber Tidy Evaluation genauer erklart.

5/17

BioMath

Defensive Programmierung

Gute Funktionen prifen ihre Eingaben und geben verstandliche Fehlermeldungen aus. Das
spart Debugging-Zeit und macht den Code robuster.

stop() fuer Fehlermeldungen

Die Funktion stop () bricht die Ausfiihrung ab und zeigt eine Fehlermeldung an:

calculate bmi <- function(weight kg, height m) {
if (!is.numeric(weight kg) || !is.numeric (height m)) {
stop ("weight kg und height m muessen numerisch sein")
}
if (any(height m <= 0)) {
stop ("height m muss positiv sein")
}
weight kg / height m"2
}

calculate bmi (70, 1.75)

I[l] 22.85714
Icalculateibmi(70, "grofl")

IError in calculate bmi (70, "groR"): weight kg und height m muessen numerisch sein

stopifnot() fuer schnelle Checks
Fir einfache Bedingungen ist stopifnot () kompakter:

calculate bmi <- function(weight kg, height m) ({
stopifnot (is.numeric (weight kg), is.numeric(height m))
stopifnot (all (height m > 0))

weight kg / height m"2
}

calculate bmi (70, 0)
IError in calculate bmi (70, 0): all(height m > 0) ist nicht TRUE

Der Nachteil: Die automatisch generierten Fehlermeldungen sind weniger informativ als
selbst formulierte.

match.arg() fuer kategorische Argumente

Wenn ein Argument nur bestimmte Werte annehmen darf, verwendet man match.arg() :

center <- function(x, type = c("mean", "median", "trimmed")) {
type <- match.arg(type)

switch (type,
mean = mean (x, na.rm = TRUE),

median = median(x, na.rm = TRUE),
trimmed = mean(x, trim = 0.1, na.rm = TRUE)

}

center(1:10, "mean")

6/17

BioMath

| i1 5.5

Icenter(l:lO, "median")
| (11 5.5

Icenter(l:lo, "mena')

IError in match.arg(type): 'arg' sollte eines von '"mean", "median", "trimmed"' sein

Die erlaubten Werte werden im Default des Arguments definiert. match.arg() erlaubt auch
partielle Ubereinstimmung und gibt hilfreiche Fehlermeldungen bei falschen Eingaben.

© Ubung: Sichere Logarithmus-Funktion

Schreibe eine Funktion safe log() , die:

1. Prift, ob der Input numerisch ist

2. Prift, ob alle Werte positiv sind

3. Bei negativen Werten eine hilfreiche Fehlermeldung gibt, die anzeigt, wie viele nicht-
positive Werte vorhanden sind

safe log(c(l, 10, 100))
safe log(c(-1, 10, 100))

1 L6sung
safe log <- function(x, base = exp(l)) {
if (!is.numeric(x)) {

stop ("x muss numerisch sein, nicht ", typeof (x))

}

n _negative <- sum(x <= 0, na.rm = TRUE)
if (n_negative > 0) {
stop (

"

glue::glue("x enthalt {n negative} Wert(e) <= 0. ,
"Logarithmus ist nur fir positive Zahlen definiert.")

}

log (x, base = base)

}

safe log(c(l, 10, 100))
I[l] 0.000000 2.302585 4.605170
I safe log(c(-1, 0, 10, 100))

Error in safe log(c(-1, 0, 10, 100)): x enthalt 2 Wert(e) <= 0. Logarithmus ist
nur fir positive Zahlen definiert.

77

Funktionen im tidyverse: Tidy Evaluation

Sobald man Funktionen schreibt, die tidyverse-Verben wie filter() , mutate () oder

ggplot () verwenden, stof3t man auf ein besonderes Problem: Wie Ubergibt man
Spaltennamen als Argumente?

Das Problem: Indirection
Betrachten wir diese naive Funktion:

grouped mean <- function(df, group var, mean var) {

df %>%
group by (group var) %>%
summarize (mean = mean (mean_var))

}
mtcars %>% grouped mean (cyl, mpg)

Error in “group by () ":
! Must group by variables found in "~ .data’.

¥ Ccolumn ‘group var' 1is not found.

Die Funktion sucht nach Spalten namens group_var und mean_var — aber die gibt es
nicht! Das Problem ist Indirection: dplyr verwendet Data Masking, um Spaltennamen ohne
Anfuhrungszeichen zu erlauben. Das ist praktisch im interaktiven Gebrauch, aber macht das
Schreiben von Funktionen komplizierter.

1 Data Masking erklart

Data Masking bedeutet, dass man filter(df, x > 5) schreiben kann statt
filter (df, dfsx > 5) . Rsucht x zuerstin den Spalten des Dataframes, dann in der

Umgebung. Das ist der Grund, warum group_var als Spaltenname interpretiert wird —

nicht als Variable, die einen Spaltennamen enthalt.

Die Standardloesung: Curly-Curly

Seit rlang 0.4.0 (2019) gibt es eine elegante Lésung: den Embracing-Operator { } (auch

“curly-curly” genannt). Er sagt dplyr: “Schau nicht nach einer Spalte mit diesem Namen,
sondern schau in diese Variable hinein:

grouped mean <- function(df, group var, mean var) {

df $>%
group by ({{ group var }}) %>%
summarize (mean = mean ({{ mean var }}), .groups = "drop")

}

mtcars %>% grouped mean (cyl, mpg)

A tibble: 3 x 2
cyl mean
<dbl> <dbl>

1 4 26.7
2 6 19.7
3 8 15.1

BioMath

817

Die Regel ist einfach: Jedes Argument, das an eine tidyverse-Funktion weitergegeben
wird, die Data Masking oder Tidy Selection verwendet, muss embraced werden.

Woher weil¥ man, welche Funktionen das sind? Die Dokumentation verrat es: Man sucht

nach <data-masking> UUrFunkﬁoneane filter() , mutate() , summarize())oder

<tidy-select> (ﬂh‘Funkﬁoner\mﬂe select () , rename() , across|())

Flexible Summary-Funktion

summary stats <- function (df, var) {

df $>%
summarize (

n=n(),
mean = mean({{ var }}, na.rm = TRUE),

sd = sd({{ var }}, na.rm = TRUE),
min = min({{ var }}, na.rm = TRUE),
max = max({{ var }}, na.rm = TRUE)

}

mtcars %>% summary stats (mpg)

n mean sd min max
1 32 20.09062 6.026948 10.4 33.9

Imtcars $>% group by (cyl) $>% summary stats (mpg)

A tibble: 3 x 6

cyl n mean sd min max
<dbl> <int> <dbl> <dbl> <dbl> <dbl>

1 4 11 26.7 4.51 21.4 33.9
2 6 7 19.7 1.45 17.8 21.4
3 8 14 15.1 2.56 10.4 19.2

© Ubung: Proportionen zéhlen

Schreibe eine Funktion count prop () , die wie count () funktioniert, aber zusatzlich eine

Spalte prop mit dem Anteil hinzufugt.

Gewlinschtes Ergebnis:
mtcars %>% count prop(cyl)
A tibble: 3 x 3

i vyl n

1> <int>

1 4 11 0

2 6 7 0

8 14 0.438

BioMath

917

1 L6sung

count prop <- function(df, var, sort = FALSE) {
df %$>%
count ({{ var }}, sort = sort) %>%
mutate (prop = n / sum(n))

}

mtcars %>% count prop(cyl)

cyl n prop
1 4 11 0.34375
2 6 7 0.21875
3 8 14 0.43750

Dynamische Spaltennamen mit dem Walrus-Operator

Was, wenn man nicht nur eine Spalte lesen, sondern eine Spalte mit dynamischem Namen
erstellen méchte? Der normale = -Operator erlaubt links nur feste Namen. Hier kommt :=
ins Spiel (der “Walrus-Operator”):

Funktion, die eine neue Spalte mit dynamischem Namen erstellt
standardize <- function(df, wvar) {
df $>%
mutate (
"{{ var }} z" := ({{ var }} - mean({{ var }}, na.rm = TRUE)) /

sd({{ var }}, na.rm = TRUE)

}

mtcars %>%

select (mpg, cyl) %>%

standardize (mpg) $%>%

head ()

mpg cyl mpg_z

Mazda RX4 21.0 6 0.1508848
Mazda RX4 Wag 21.0 6 0.1508848
Datsun 710 22.8 4 0.4495434
Hornet 4 Drive 21.4 6 0.2172534
Hornet Sportabout 18.7 8 -0.2307345
Valiant 18.1 6 -0.3302874
Die Syntax "{({ var }} _z" := kombiniert die glue-artige String-Interpolation mit dem

Walrus-Operator. Das { var } im String wird durch den Variablennamen ersetzt.

Spalten als Strings: .data Pronoun

Manchmal hat man Spaltennamen als Strings — etwa aus einer Konfigurationsdatei oder
Benutzereingabe. Hier verwendet man das .data -Pronoun:

Spaltenname kommt als String
summarize column <- function(df, col name) {
df $>%
summarize (mean = mean(.data[[col name]], na.rm = TRUE))

}

summarize column (mtcars, "mpg")

10

BioMath

10117

BioMath

mean
1 20.09062

NUtzlich fiir Iteration iUber Spaltennamen
col names <- c("mpg", "hp", "wt")
map (col names, ~ summarize column (mtcars, .x))

[[1]]
mean
1 20.09062

[[211]
mean
1 146.6875

[[3]11]
mean
1 3.21725

Fortgeschritten: enquo() und !!

Die { } -Syntax ist eine Kurzschreibweise fir eine Kombination aus enquo() und !!.In

den meisten Fallen braucht man die explizite Form nicht, aber es gibt Situationen, wo sie
nodtig ist — zum Beispiel wenn man den Variablennamen als String extrahieren mdchte.

Hier dieselbe Funktion in beiden Schreibweisen:

Mit {{ }} - die empfohlene Kurzform
grouped mean short <- function(df, group var, mean var) {
df $>%
group by ({{ group var }}) %>%
summarize (mean = mean ({{ mean var }}), .groups = "drop")
}
Mit enquo() und !! - die explizite Form

grouped mean explicit <- function(df, group var, mean var) {
group_var <- enquo(group var) # Argument einfangen
mean var <- enquo (mean var)

df $>%
group by (!!group var) %$>% # Mit !! wieder einsetzen
summarize (mean = mean (!!mean var), .groups = "drop")
}
Beide liefern dasselbe Ergebnis

mtcars %>% grouped mean short (cyl, mpg)

A tibble: 3 x 2
cyl mean
<dbl> <dbl>

1 4 26.7
2 6 19.7
E 8 15.1

A tibble: 3 x 2
cyl mean
<dbl> <dbl>

1 4 26.7
2 6 19.7
3 8 15.1

11
1117

BioMath

enquo() fangt ein Argument ein, ohne es auszuwerten. !! (bang-bang) fugt den
eingefangenen Ausdruck wieder ein.

Wann braucht man die explizite Form? Wenn man den Variablennamen als String
extrahieren mdchte:

as label () extrahiert den Namen als String - nur mit enquo () mdglich
summary with label <- function(df, wvar) {

var quo <- enquo (var)

var name <- rlang::as label (var quo)

df $>%
summarize (
variable = var name,
mean = mean (!!var quo, na.rm = TRUE)

}

mtcars %>% summary with label (mpg)

variable mean
1 mpg 20.09062

Imtcars $>% summary with label (hp)

variable mean
1 hp 146.6875

Mehrere Spalten als Strings: syms() und !!!

Wenn man mehrere Spaltennamen als Character-Vektor hat und diese in einer tidyverse-
Funktion verwenden mdéchte, braucht man syms () und !!!:

» syms() wandelt einen Character-Vektor in eine Liste von Symbolen um
« 111 (splice-Operator) entpackt diese Liste, sodass jedes Element einzeln Gbergeben wird

Mehrere Gruppierungsvariablen als Character-Vektor
grouped summary <- function(df, group vars, summary var) {
syms () wandelt c("cyl", "am") in list(sym("cyl"), sym("am")) um

group_ symbols <- syms(group vars)

df %>%
!!! entpackt die Liste: group by(cyl, am) statt group by (list(...))
group by (!!!group symbols) %>%
summarize (mean = mean ({{ summary var }}, na.rm = TRUE), .groups = "drop")

}
mtcars %>% grouped summary (c("cyl", "am"), mpg)

A tibble: 6 x 3

cyl am mean
<dbl> <dbl> <dbl>

1 4 0 22.9
2 4 1 28.1
3 6 0 19.1
4 6 1 20.6
5 8 0 15.0
6 8 1 15.4

Diese Technik ist besonders nutzlich, wenn die Gruppierungsvariablen dynamisch bestimmt
werden — etwa aus einer Konfiguration oder Benutzereingabe.

12
12117

BioMath

pick() fuer Tidy Selection in Data-Masking-Kontext

Manchmal mdchte man Tidy Selection (wie bei select ())innerhalb einer Data-Masking-

Funktion (wie group by ()) verwenden. Hier hilft pick() :

Mehrere Gruppierungsspalten mit Tidy Selection

count by <- function(df, ...) {
df $>%
group by (pick(...)) %>%
summarize(n = n(), .groups = "drop")

}
mtcars %>% count by (cyl, am)

A tibble: 6 x 3

cyl am n
<dbl> <dbl> <int>

1 4 0 3
2 4 1 8
3 6 0 4
4 6 1 3
5 8 0 12
6 8 1 2

Imtcars $>% count by (starts with("c"))

A tibble: 9 x 3
cyl carb n

<dbl> <dbl> <int>
1 4 1 5
2 4 6
3 6 1 2
4 6 4 4
5 6 6 1
6 8 2 4
7 8 3 3
8 8 4 6
9 8 8 1
Wichtig: Bei ... verwendet man pick(...) direkt, nicht pick({{ ... }}) .Die { } -
Syntax ist nur fir einzelne benannte Argumente gedacht.
Uebersicht: Wann welchen Ansatz?
Situation Lésung Beispiel
Spalte als “bare name” ! filter ({{ var 1} > 0)
Ubergeben
Spaltenname als String .datal[]] summarize (mean =

mean (.data[[col]]))

Mehrere Spalten via direkt group by(...) oder
durchreichen pick(...)
Dynamischer Spaltenname = mutate ("{{ var }}
erstellen B ESETT)
Variablenname als String enquo () + as_label (enquo (var))
extrahieren as_label ()
13

13117

BioMath

Situation Lésung Beispiel
Liste von Strings zu Symbolen syms () + !!! group by (!!!syms (cols))
Tidy Select in Data Masking pick () group by (pick(...))

© Ubung: Flexible Filterung

Schreibe eine Funktion filter na() , die alle Zeilen entfernt, in denen eine bestimmte

Spalte na ist.

Test-Daten
test_df <- tibble(

X = c(l, NA, 3),

y = c("a", "b", NA)
)

test df %>% filter na(x)
test df $>% filter na(y)

1 Losung

filter na <- function(df, var) {
df %$>%
filter(!is.na({{ var }1}))
}
test _df <- tibble(
x = c(l, NA, 3),
y = c("a", "b", NA)
)

test df $>% filter na(x)

A tibble: 2 x 2

Xy
<dbl> <chr>

1 1 a
2 3 <NA>

Itest_df %>% filter nal(y)

A tibble: 2 x 2

Xy

<dbl> <chr>
1 1 a
2 NA b

14
14/17

BioMath

© Ubung: Plot-Funktion mit dynamischem Titel

Erweitere die histogram() -Funktion so, dass der Titel automatisch den Variablennamen
enthalt:

mtcars %$>% histogram(mpg, binwidth = 2)
Sollte einen Titel wie "Histogramm von mpg" haben

Hinweis: rlang::englue() oder die Kombination aus enguo() und as_label ()
verwenden.

1 Losung

histogram <- function(df, var, binwidth = NULL) ({
title <- rlang::englue ("Histogramm von {{var}}")

df %$>%
ggplot (aes(x = {{ var }})) +
geom histogram(binwidth = binwidth) +
labs (title = title)

}

mtcars %$>% histogram(mpg, binwidth = 2)

Histogramm von mpg

5_
4-
4—-3'
c
>
3
2_
) I
O_
10 15 20 25 30 35

mpg

Best Practices und Style

Benennung
Funktionsnamen sollten Verben sein und klar beschreiben, was die Funktion tut:

Gut: Verben, beschreibend
impute missing()
calculate bmi ()

extract coefficients ()

Schlecht: Zu kurz oder nicht beschreibend
()

15
15117

my function ()
do_stuff ()
Argumentnamen sollten Substantive sein. Das Daten-Argument heif3t typischerweise df ,

data oder .data .

Code-Formatierung

Immer geschweifte Klammern {} verwenden, auch bei einzeiligen Funktionen. Der Body
wird mit zwei Leerzeichen eingerickt:
add one <- function(x) {

x + 1

}

>rmeiden

add one <- function(x) x + 1

Dokumentation mit Roxygen

Wenn man ein R-Paket entwickelt, muss jede exportierte Funktion dokumentiert werden.
Diese Dokumentation wird im Roxygen-Format geschrieben — spezielle Kommentare direkt

Uber der Funktion, die mit #' beginnen. Beim Bauen des Pakets werden diese Kommentare
automatisch in die formatierten Hilfsseiten umgewandelt, die man mit 2funktionsname
aufruft.

Aber auch wenn man gar kein Paket schreibt, sondern nur ein Skript mit ein paar
Hilfsfunktionen, lohnt sich dieses Format. Statt unstrukturierte Kommentare neben die
Funktion zu schreiben, kann man gleich das Roxygen-Format verwenden. Es ist
Ubersichtlich, standardisiert, und falls die Funktion spater doch in ein Paket wandert, ist die
Dokumentation bereits fertig.

Die wichtigsten Roxygen-Tags:

Titel (erste Zeile): Eine kurze, einzeilige Beschreibung der Funktion
» Beschreibung (nach Leerzeile): Ausfuhrlichere Erklarung, was die Funktion tut

@param name : Beschreibt ein Argument der Funktion

@return : Beschreibt, was die Funktion zuriickgibt

@examples : Ausflhrbare Beispiele flr die Verwendung

alculate bmi (70, .75)

#' Berechne den Body Mass Index

#' Diese Funktion berechnet den BMI aus Gewicht und Grobe.

#' Bel Vektorer ird der BMI elementweise berechnet.

ﬁ L}

#' @param weight kg Gewicht in Kilogramm (numerischer Vektor).
#' Qparam height m GroRe in Metern (numerischer Vektor)

#' @return Ein numerischer Vektor mit BMI-Werten.

ﬁ L}

#' @examples

calculate bmi(c (60, 80), c(l.60, .80))
calculate bmi <- function(weight kg, height m) {

stopifnot (is.numeric (weight kg), is.numeric(height m))

16

BioMath

16/17

BioMath

stopifnot (all (height m > 0))

weight kg / height m"2
}

In RStudio und Positron kann man ein leeres Roxygen-Skelett automatisch einfugen lassen:
Cursor in die Funktion setzen und Code — Insert Roxygen Skeleton wahlen (oder
Ctrl+Alt+Shift+R),

Bibliography

17
17117

	Warum eigene Funktionen?
	Grundlagen: function()
	Syntax und Aufbau
	Argumente mit und ohne Defaults
	Rueckgabewerte
	Das Ellipsis-Argument (…)

	Drei Funktionstypen
	Vektor-Funktionen
	Dataframe-Funktionen
	Plot-Funktionen

	Defensive Programmierung
	stop() fuer Fehlermeldungen
	stopifnot() fuer schnelle Checks
	match.arg() fuer kategorische Argumente

	Funktionen im tidyverse: Tidy Evaluation
	Das Problem: Indirection
	Die Standardloesung: Curly-Curly
	Dynamische Spaltennamen mit dem Walrus-Operator
	Spalten als Strings: .data Pronoun
	Fortgeschritten: enquo() und !!
	Mehrere Spalten als Strings: syms() und !!!
	pick() fuer Tidy Selection in Data-Masking-Kontext
	Uebersicht: Wann welchen Ansatz?

	Best Practices und Style
	Benennung
	Code-Formatierung
	Dokumentation mit Roxygen

	Bibliography

