
BioMath

1/17

8. Eigene Funktionen

Wiederverwendbaren Code schreiben und tidyeval verstehen
Dr. Paul Schmidt

Warum eigene Funktionen?
Einer der wichtigsten Schritte auf dem Weg vom R-Anwender zum R-Programmierer ist das
Schreiben eigener Funktionen. Das Grundprinzip dahinter ist einfach: Wenn man denselben
Code mehr als zweimal kopiert und eingefügt hat, sollte man eine Funktion daraus machen.
Diese Regel wird oft als DRY-Prinzip bezeichnet — “Don’t Repeat Yourself”.

Das Schreiben von Funktionen hat mehrere handfeste Vorteile. Erstens kann man der
Funktion einen aussagekräftigen Namen geben, der sofort verrät, was der Code tut.
Zweitens muss man bei Änderungen nur eine einzige Stelle im Code anpassen, nicht jede
Kopie. Drittens eliminiert man Fehler, die beim Kopieren und Einfügen entstehen — etwa
wenn man vergisst, einen Variablennamen an einer Stelle zu ändern. Und viertens kann man
Funktionen projektübergreifend wiederverwenden.

Betrachten wir folgenden Code, der Spalten auf einen Wertebereich von 0 bis 1 skaliert:

mtcars %>%
 select(mpg, hp, wt, qsec) %>%
 mutate(
 mpg = (mpg - min(mpg, na.rm = TRUE)) / (max(mpg, na.rm = TRUE) - min(mpg, na.rm
= TRUE)),
 hp = (hp - min(hp, na.rm = TRUE)) / (max(hp, na.rm = TRUE) - min(hp, na.rm =
TRUE)),
 wt = (wt - min(wt, na.rm = TRUE)) / (max(hp, na.rm = TRUE) - min(wt, na.rm =
TRUE)),
 qsec = (qsec - min(qsec, na.rm = TRUE)) / (max(qsec, na.rm = TRUE) - min(qsec,
na.rm = TRUE))
) %>%
 head()

 mpg hp wt qsec
Mazda RX4 0.4510638 0.2049470 -2.157895 0.2333333
Mazda RX4 Wag 0.4510638 0.2049470 -2.654971 0.3000000
Datsun 710 0.5276596 0.1448763 -1.573099 0.4892857
Hornet 4 Drive 0.4680851 0.2049470 -3.317739 0.5880952
Hornet Sportabout 0.3531915 0.4346290 -3.756335 0.3000000
Valiant 0.3276596 0.1872792 -3.795322 0.6809524

Dieser Code ist nicht nur lang und repetitiv, er enthält auch einen subtilen Fehler — lässt er
sich finden? Bei so viel Wiederholung ist es fast unvermeidlich, dass sich Tippfehler
einschleichen. Eine Funktion löst beide Probleme.

 Weiterführende Ressourcen

Dieses Kapitel orientiert sich stark am hervorragenden Kapitel 25: Functions aus “R for
Data Science” (2. Auflage). Für eine noch tiefere Behandlung von Tidy Evaluation
empfehlen wir die Programming with dplyr Vignette.

1

https://r4ds.hadley.nz/functions.html
https://dplyr.tidyverse.org/articles/programming.html

BioMath

2/17

Grundlagen: function()
Syntax und Aufbau
Eine Funktion in R besteht aus drei Teilen: einem Namen, den Argumenten und dem Body
(Funktionskörper). Die grundlegende Syntax sieht so aus:

funktionsname <- function(argument1, argument2) {
 # Body: Der Code, der ausgeführt wird
 ergebnis <- argument1 + argument2
 ergebnis
}

Wenden wir das auf unser Skalierungsproblem an. Der sich wiederholende Teil ist die Formel
(x - min(x)) / (max(x) - min(x)) . Das einzige, was sich ändert, ist die Variable — das
wird unser Argument:

rescale01 <- function(x) {
 rng <- range(x, na.rm = TRUE)
 (x - rng[1]) / (rng[2] - rng[1])
}

Testen wir die Funktion:

rescale01(c(-10, 0, 10))

[1] 0.0 0.5 1.0

rescale01(c(1, 2, 3, NA, 5))

[1] 0.00 0.25 0.50 NA 1.00

Jetzt wird unser ursprünglicher Code deutlich lesbarer und kürzer:

mtcars %>%
 select(mpg, hp, wt, qsec) %>%
 mutate(
 mpg = rescale01(mpg),
 hp = rescale01(hp),
 wt = rescale01(wt),
 qsec = rescale01(qsec)
) %>%
 head()

 mpg hp wt qsec
Mazda RX4 0.4510638 0.2049470 0.2830478 0.2333333
Mazda RX4 Wag 0.4510638 0.2049470 0.3482485 0.3000000
Datsun 710 0.5276596 0.1448763 0.2063411 0.4892857
Hornet 4 Drive 0.4680851 0.2049470 0.4351828 0.5880952
Hornet Sportabout 0.3531915 0.4346290 0.4927129 0.3000000
Valiant 0.3276596 0.1872792 0.4978266 0.6809524

Argumente mit und ohne Defaults
Funktionen können beliebig viele Argumente haben. Argumente ohne Default-Wert sind
erforderlich, Argumente mit Default-Wert sind optional:

na.rm hat einen Default-Wert, x nicht
my_mean <- function(x, na.rm = FALSE) {
 sum(x, na.rm = na.rm) / length(x)

2

BioMath

3/17

}

my_mean(c(1, 2, 3))

[1] 2

my_mean(c(1, 2, NA), na.rm = TRUE)

[1] 1

Bei der Reihenfolge gilt: Erforderliche Argumente zuerst, optionale danach. Das wichtigste
Argument (meist die Daten) kommt an erste Stelle — das ermöglicht die nahtlose Integration
in Pipe-Ketten.

Rueckgabewerte
R-Funktionen geben automatisch das Ergebnis der letzten Zeile zurück. Man kann auch
explizit return() verwenden, was besonders bei frühem Abbruch nützlich ist:

Implizite Rückgabe (letzte Zeile)
add_one <- function(x) {
 x + 1
}

Explizite Rückgabe mit return()
safe_divide <- function(x, y) {
 if (y == 0) {
 return(NA_real_)
 }
 x / y
}

safe_divide(10, 2)

[1] 5

safe_divide(10, 0)

[1] NA

Die Konvention ist: return() nur für frühe Abbrüche verwenden. Am Ende der Funktion ist
die implizite Rückgabe üblicher und lesbarer.

Das Ellipsis-Argument (…)
Das spezielle Argument ... (drei Punkte, auch “Ellipsis” genannt) erlaubt es, beliebig viele
zusätzliche Argumente an eine andere Funktion durchzureichen:

Alle zusätzlichen Argumente werden an mean() weitergegeben
my_summary <- function(x, ...) {
 c(
 mean = mean(x, ...),
 sd = sd(x, ...)
)
}

Ohne na.rm
my_summary(c(1, 2, 3))

3

BioMath

4/17

mean sd
 2 1

Mit na.rm = TRUE (wird an mean() und sd() durchgereicht)
my_summary(c(1, 2, NA), na.rm = TRUE)

 mean sd
1.5000000 0.7071068

Das ist besonders nützlich, wenn man Wrapper-Funktionen schreibt und nicht alle möglichen
Argumente der inneren Funktion explizit auflisten möchte.

 Übung: Standardabweichung vom Mittelwert

Schreibe eine Funktion cv() , die den Variationskoeffizienten (Standardabweichung

geteilt durch Mittelwert) berechnet. Die Funktion sollte ein optionales na.rm -Argument
haben.

cv(c(1, 2, 3, 4, 5))
cv(c(1, 2, NA, 4, 5), na.rm = TRUE)

 Lösung

cv <- function(x, na.rm = FALSE) {
 sd(x, na.rm = na.rm) / mean(x, na.rm = na.rm)
}

cv(c(1, 2, 3, 4, 5))

[1] 0.5270463

cv(c(1, 2, NA, 4, 5), na.rm = TRUE)

[1] 0.6085806

Drei Funktionstypen
Das R for Data Science Buch unterscheidet drei nützliche Kategorien von Funktionen, die
man häufig schreibt.

Vektor-Funktionen
Vektor-Funktionen nehmen einen oder mehrere Vektoren als Input und geben einen Vektor
zurück. Sie lassen sich weiter unterteilen in Mutate-Funktionen (Output hat gleiche Länge
wie Input) und Summary-Funktionen (Output hat Länge 1).

Mutate-Funktion: gleiche Länge wie Input
z_score <- function(x) {
 (x - mean(x, na.rm = TRUE)) / sd(x, na.rm = TRUE)
}

z_score(c(1, 2, 3, 4, 5))

[1] -1.2649111 -0.6324555 0.0000000 0.6324555 1.2649111

4

BioMath

5/17

Summary-Funktion: ein Wert als Output
coef_variation <- function(x, na.rm = FALSE) {
 sd(x, na.rm = na.rm) / mean(x, na.rm = na.rm)
}

coef_variation(c(1, 2, 3, 4, 5))

[1] 0.5270463

Dataframe-Funktionen
Dataframe-Funktionen nehmen einen Dataframe als Input und geben einen Dataframe
zurück. Sie sind typischerweise Wrapper um dplyr-Verben:

Beispiel einer Dataframe-Funktion
filter_extreme <- function(df, var, threshold = 2) {
 df %>%
 filter(abs(as.vector(scale({{ var }}))) > threshold)
}

Autos mit extremem Verbrauch (> 2 SD vom Mittelwert)
mtcars %>%
 filter_extreme(mpg) %>%
 select(mpg, hp, wt)

 mpg hp wt
Fiat 128 32.4 66 2.200
Toyota Corolla 33.9 65 1.835

Plot-Funktionen
Plot-Funktionen nehmen einen Dataframe und geben einen ggplot zurück:
Beispiel einer Plot-Funktion
histogram <- function(df, var, binwidth = NULL) {
 df %>%
 ggplot(aes(x = {{ var }})) +
 geom_histogram(binwidth = binwidth)
}

mtcars %>% histogram(mpg, binwidth = 2)

Die { } -Syntax im Plot-Beispiel wird im Abschnitt über Tidy Evaluation genauer erklärt.

5

BioMath

6/17

Defensive Programmierung
Gute Funktionen prüfen ihre Eingaben und geben verständliche Fehlermeldungen aus. Das
spart Debugging-Zeit und macht den Code robuster.

stop() fuer Fehlermeldungen
Die Funktion stop() bricht die Ausführung ab und zeigt eine Fehlermeldung an:

calculate_bmi <- function(weight_kg, height_m) {
 if (!is.numeric(weight_kg) || !is.numeric(height_m)) {
 stop("weight_kg und height_m muessen numerisch sein")
 }
 if (any(height_m <= 0)) {
 stop("height_m muss positiv sein")
 }
 weight_kg / height_m^2
}

calculate_bmi(70, 1.75)

[1] 22.85714

calculate_bmi(70, "groß")

Error in calculate_bmi(70, "groß"): weight_kg und height_m muessen numerisch sein

stopifnot() fuer schnelle Checks
Für einfache Bedingungen ist stopifnot() kompakter:

calculate_bmi <- function(weight_kg, height_m) {
 stopifnot(is.numeric(weight_kg), is.numeric(height_m))
 stopifnot(all(height_m > 0))

 weight_kg / height_m^2
}

calculate_bmi(70, 0)

Error in calculate_bmi(70, 0): all(height_m > 0) ist nicht TRUE

Der Nachteil: Die automatisch generierten Fehlermeldungen sind weniger informativ als
selbst formulierte.

match.arg() fuer kategorische Argumente
Wenn ein Argument nur bestimmte Werte annehmen darf, verwendet man match.arg() :

center <- function(x, type = c("mean", "median", "trimmed")) {
 type <- match.arg(type)

 switch(type,
 mean = mean(x, na.rm = TRUE),
 median = median(x, na.rm = TRUE),
 trimmed = mean(x, trim = 0.1, na.rm = TRUE)
)
}

center(1:10, "mean")

6

BioMath

7/17

[1] 5.5

center(1:10, "median")

[1] 5.5

center(1:10, "mena")

Error in match.arg(type): 'arg' sollte eines von '"mean", "median", "trimmed"' sein

Die erlaubten Werte werden im Default des Arguments definiert. match.arg() erlaubt auch
partielle Übereinstimmung und gibt hilfreiche Fehlermeldungen bei falschen Eingaben.

 Übung: Sichere Logarithmus-Funktion

Schreibe eine Funktion safe_log() , die:

1. Prüft, ob der Input numerisch ist
2. Prüft, ob alle Werte positiv sind
3. Bei negativen Werten eine hilfreiche Fehlermeldung gibt, die anzeigt, wie viele nicht-

positive Werte vorhanden sind

safe_log(c(1, 10, 100))
safe_log(c(-1, 10, 100))

 Lösung

safe_log <- function(x, base = exp(1)) {
 if (!is.numeric(x)) {
 stop("x muss numerisch sein, nicht ", typeof(x))
 }

 n_negative <- sum(x <= 0, na.rm = TRUE)
 if (n_negative > 0) {
 stop(
 glue::glue("x enthält {n_negative} Wert(e) <= 0. ",
 "Logarithmus ist nur für positive Zahlen definiert.")
)
 }

 log(x, base = base)
}

safe_log(c(1, 10, 100))

[1] 0.000000 2.302585 4.605170

safe_log(c(-1, 0, 10, 100))

Error in safe_log(c(-1, 0, 10, 100)): x enthält 2 Wert(e) <= 0. Logarithmus ist
nur für positive Zahlen definiert.

7

BioMath

8/17

Funktionen im tidyverse: Tidy Evaluation
Sobald man Funktionen schreibt, die tidyverse-Verben wie filter() , mutate() oder
ggplot() verwenden, stößt man auf ein besonderes Problem: Wie übergibt man
Spaltennamen als Argumente?

Das Problem: Indirection
Betrachten wir diese naive Funktion:

grouped_mean <- function(df, group_var, mean_var) {
 df %>%
 group_by(group_var) %>%
 summarize(mean = mean(mean_var))
}

mtcars %>% grouped_mean(cyl, mpg)

Error in `group_by()`:
! Must group by variables found in `.data`.
✖ Column `group_var` is not found.

Die Funktion sucht nach Spalten namens group_var und mean_var — aber die gibt es
nicht! Das Problem ist Indirection: dplyr verwendet Data Masking, um Spaltennamen ohne
Anführungszeichen zu erlauben. Das ist praktisch im interaktiven Gebrauch, aber macht das
Schreiben von Funktionen komplizierter.

 Data Masking erklärt

Data Masking bedeutet, dass man filter(df, x > 5) schreiben kann statt
filter(df, df$x > 5) . R sucht x zuerst in den Spalten des Dataframes, dann in der

Umgebung. Das ist der Grund, warum group_var als Spaltenname interpretiert wird —
nicht als Variable, die einen Spaltennamen enthält.

Die Standardloesung: Curly-Curly
Seit rlang 0.4.0 (2019) gibt es eine elegante Lösung: den Embracing-Operator { } (auch
“curly-curly” genannt). Er sagt dplyr: “Schau nicht nach einer Spalte mit diesem Namen,
sondern schau in diese Variable hinein”:

grouped_mean <- function(df, group_var, mean_var) {
 df %>%
 group_by({{ group_var }}) %>%
 summarize(mean = mean({{ mean_var }}), .groups = "drop")
}

mtcars %>% grouped_mean(cyl, mpg)

A tibble: 3 × 2
 cyl mean
 <dbl> <dbl>
1 4 26.7
2 6 19.7
3 8 15.1

8

BioMath

9/17

Die Regel ist einfach: Jedes Argument, das an eine tidyverse-Funktion weitergegeben
wird, die Data Masking oder Tidy Selection verwendet, muss embraced werden.

Woher weiß man, welche Funktionen das sind? Die Dokumentation verrät es: Man sucht
nach <data-masking> (für Funktionen wie filter() , mutate() , summarize()) oder
<tidy-select> (für Funktionen wie select() , rename() , across()).

Flexible Summary-Funktion
summary_stats <- function(df, var) {
 df %>%
 summarize(
 n = n(),
 mean = mean({{ var }}, na.rm = TRUE),
 sd = sd({{ var }}, na.rm = TRUE),
 min = min({{ var }}, na.rm = TRUE),
 max = max({{ var }}, na.rm = TRUE)
)
}

mtcars %>% summary_stats(mpg)

 n mean sd min max
1 32 20.09062 6.026948 10.4 33.9

mtcars %>% group_by(cyl) %>% summary_stats(mpg)

A tibble: 3 × 6
 cyl n mean sd min max
 <dbl> <int> <dbl> <dbl> <dbl> <dbl>
1 4 11 26.7 4.51 21.4 33.9
2 6 7 19.7 1.45 17.8 21.4
3 8 14 15.1 2.56 10.4 19.2

 Übung: Proportionen zählen

Schreibe eine Funktion count_prop() , die wie count() funktioniert, aber zusätzlich eine

Spalte prop mit dem Anteil hinzufügt.

Gewünschtes Ergebnis:
mtcars %>% count_prop(cyl)
A tibble: 3 × 3
cyl n prop
<dbl> <int> <dbl>
1 4 11 0.344
2 6 7 0.219
3 8 14 0.438

9

BioMath

10/17

 Lösung

count_prop <- function(df, var, sort = FALSE) {
 df %>%
 count({{ var }}, sort = sort) %>%
 mutate(prop = n / sum(n))
}

mtcars %>% count_prop(cyl)

 cyl n prop
1 4 11 0.34375
2 6 7 0.21875
3 8 14 0.43750

Dynamische Spaltennamen mit dem Walrus-Operator
Was, wenn man nicht nur eine Spalte lesen, sondern eine Spalte mit dynamischem Namen
erstellen möchte? Der normale = -Operator erlaubt links nur feste Namen. Hier kommt :=
ins Spiel (der “Walrus-Operator”):

Funktion, die eine neue Spalte mit dynamischem Namen erstellt
standardize <- function(df, var) {
 df %>%
 mutate(
 "{{ var }}_z" := ({{ var }} - mean({{ var }}, na.rm = TRUE)) /
 sd({{ var }}, na.rm = TRUE)
)
}

mtcars %>%
 select(mpg, cyl) %>%
 standardize(mpg) %>%
 head()

 mpg cyl mpg_z
Mazda RX4 21.0 6 0.1508848
Mazda RX4 Wag 21.0 6 0.1508848
Datsun 710 22.8 4 0.4495434
Hornet 4 Drive 21.4 6 0.2172534
Hornet Sportabout 18.7 8 -0.2307345
Valiant 18.1 6 -0.3302874

Die Syntax "{{ var }}_z" := kombiniert die glue-artige String-Interpolation mit dem

Walrus-Operator. Das { var } im String wird durch den Variablennamen ersetzt.

Spalten als Strings: .data Pronoun
Manchmal hat man Spaltennamen als Strings — etwa aus einer Konfigurationsdatei oder
Benutzereingabe. Hier verwendet man das .data -Pronoun:

Spaltenname kommt als String
summarize_column <- function(df, col_name) {
 df %>%
 summarize(mean = mean(.data[[col_name]], na.rm = TRUE))
}

summarize_column(mtcars, "mpg")

10

BioMath

11/17

 mean
1 20.09062

Nützlich für Iteration über Spaltennamen
col_names <- c("mpg", "hp", "wt")
map(col_names, ~ summarize_column(mtcars, .x))

[[1]]
 mean
1 20.09062

[[2]]
 mean
1 146.6875

[[3]]
 mean
1 3.21725

Fortgeschritten: enquo() und !!
Die { } -Syntax ist eine Kurzschreibweise für eine Kombination aus enquo() und !! . In
den meisten Fällen braucht man die explizite Form nicht, aber es gibt Situationen, wo sie
nötig ist — zum Beispiel wenn man den Variablennamen als String extrahieren möchte.

Hier dieselbe Funktion in beiden Schreibweisen:

Mit {{ }} - die empfohlene Kurzform
grouped_mean_short <- function(df, group_var, mean_var) {
 df %>%
 group_by({{ group_var }}) %>%
 summarize(mean = mean({{ mean_var }}), .groups = "drop")
}

Mit enquo() und !! - die explizite Form
grouped_mean_explicit <- function(df, group_var, mean_var) {
 group_var <- enquo(group_var) # Argument einfangen
 mean_var <- enquo(mean_var)

 df %>%
 group_by(!!group_var) %>% # Mit !! wieder einsetzen
 summarize(mean = mean(!!mean_var), .groups = "drop")
}

Beide liefern dasselbe Ergebnis
mtcars %>% grouped_mean_short(cyl, mpg)

A tibble: 3 × 2
 cyl mean
 <dbl> <dbl>
1 4 26.7
2 6 19.7
3 8 15.1

mtcars %>% grouped_mean_explicit(cyl, mpg)

A tibble: 3 × 2
 cyl mean
 <dbl> <dbl>
1 4 26.7
2 6 19.7
3 8 15.1

11

BioMath

12/17

enquo() fängt ein Argument ein, ohne es auszuwerten. !! (bang-bang) fügt den
eingefangenen Ausdruck wieder ein.

Wann braucht man die explizite Form? Wenn man den Variablennamen als String
extrahieren möchte:

as_label() extrahiert den Namen als String - nur mit enquo() möglich
summary_with_label <- function(df, var) {
 var_quo <- enquo(var)
 var_name <- rlang::as_label(var_quo)

 df %>%
 summarize(
 variable = var_name,
 mean = mean(!!var_quo, na.rm = TRUE)
)
}

mtcars %>% summary_with_label(mpg)

 variable mean
1 mpg 20.09062

mtcars %>% summary_with_label(hp)

 variable mean
1 hp 146.6875

Mehrere Spalten als Strings: syms() und !!!
Wenn man mehrere Spaltennamen als Character-Vektor hat und diese in einer tidyverse-
Funktion verwenden möchte, braucht man syms() und !!! :

• syms() wandelt einen Character-Vektor in eine Liste von Symbolen um
• !!! (splice-Operator) entpackt diese Liste, sodass jedes Element einzeln übergeben wird

Mehrere Gruppierungsvariablen als Character-Vektor
grouped_summary <- function(df, group_vars, summary_var) {
 # syms() wandelt c("cyl", "am") in list(sym("cyl"), sym("am")) um
 group_symbols <- syms(group_vars)

 df %>%
 # !!! entpackt die Liste: group_by(cyl, am) statt group_by(list(...))
 group_by(!!!group_symbols) %>%
 summarize(mean = mean({{ summary_var }}, na.rm = TRUE), .groups = "drop")
}

mtcars %>% grouped_summary(c("cyl", "am"), mpg)

A tibble: 6 × 3
 cyl am mean
 <dbl> <dbl> <dbl>
1 4 0 22.9
2 4 1 28.1
3 6 0 19.1
4 6 1 20.6
5 8 0 15.0
6 8 1 15.4

Diese Technik ist besonders nützlich, wenn die Gruppierungsvariablen dynamisch bestimmt
werden — etwa aus einer Konfiguration oder Benutzereingabe.

12

BioMath

13/17

pick() fuer Tidy Selection in Data-Masking-Kontext
Manchmal möchte man Tidy Selection (wie bei select()) innerhalb einer Data-Masking-

Funktion (wie group_by()) verwenden. Hier hilft pick() :

Mehrere Gruppierungsspalten mit Tidy Selection
count_by <- function(df, ...) {
 df %>%
 group_by(pick(...)) %>%
 summarize(n = n(), .groups = "drop")
}

mtcars %>% count_by(cyl, am)

A tibble: 6 × 3
 cyl am n
 <dbl> <dbl> <int>
1 4 0 3
2 4 1 8
3 6 0 4
4 6 1 3
5 8 0 12
6 8 1 2

mtcars %>% count_by(starts_with("c"))

A tibble: 9 × 3
 cyl carb n
 <dbl> <dbl> <int>
1 4 1 5
2 4 2 6
3 6 1 2
4 6 4 4
5 6 6 1
6 8 2 4
7 8 3 3
8 8 4 6
9 8 8 1

Wichtig: Bei ... verwendet man pick(...) direkt, nicht pick({{ ... }}) . Die { } -
Syntax ist nur für einzelne benannte Argumente gedacht.

Uebersicht: Wann welchen Ansatz?
Situation Lösung Beispiel

Spalte als “bare name”
übergeben

{ } filter({{ var }} > 0)

Spaltenname als String .data[[]] summarize(mean =
mean(.data[[col]]))

Mehrere Spalten via direkt
durchreichen

group_by(...) oder
pick(...)

Dynamischer Spaltenname
erstellen

:= mutate("{{ var }}
_new" := ...)

Variablenname als String
extrahieren

enquo() +
as_label()

as_label(enquo(var))

13

BioMath

14/17

Situation Lösung Beispiel

Liste von Strings zu Symbolen syms() + !!! group_by(!!!syms(cols))

Tidy Select in Data Masking pick() group_by(pick(...))

 Übung: Flexible Filterung

Schreibe eine Funktion filter_na() , die alle Zeilen entfernt, in denen eine bestimmte

Spalte NA ist.

Test-Daten
test_df <- tibble(
 x = c(1, NA, 3),
 y = c("a", "b", NA)
)

test_df %>% filter_na(x)
test_df %>% filter_na(y)

 Lösung

filter_na <- function(df, var) {
 df %>%
 filter(!is.na({{ var }}))
}

test_df <- tibble(
 x = c(1, NA, 3),
 y = c("a", "b", NA)
)

test_df %>% filter_na(x)

A tibble: 2 × 2
 x y
 <dbl> <chr>
1 1 a
2 3 <NA>

test_df %>% filter_na(y)

A tibble: 2 × 2
 x y
 <dbl> <chr>
1 1 a
2 NA b

14

BioMath

15/17

 Übung: Plot-Funktion mit dynamischem Titel

Erweitere die histogram() -Funktion so, dass der Titel automatisch den Variablennamen
enthält:

mtcars %>% histogram(mpg, binwidth = 2)
Sollte einen Titel wie "Histogramm von mpg" haben

Hinweis: rlang::englue() oder die Kombination aus enquo() und as_label()
verwenden.

 Lösung

histogram <- function(df, var, binwidth = NULL) {
 title <- rlang::englue("Histogramm von {{var}}")

 df %>%
 ggplot(aes(x = {{ var }})) +
 geom_histogram(binwidth = binwidth) +
 labs(title = title)
}

mtcars %>% histogram(mpg, binwidth = 2)

Best Practices und Style
Benennung
Funktionsnamen sollten Verben sein und klar beschreiben, was die Funktion tut:

Gut: Verben, beschreibend
impute_missing()
calculate_bmi()
extract_coefficients()

Schlecht: Zu kurz oder nicht beschreibend
f()

15

BioMath

16/17

my_function()
do_stuff()

Argumentnamen sollten Substantive sein. Das Daten-Argument heißt typischerweise df ,
data oder .data .

Code-Formatierung
Immer geschweifte Klammern {} verwenden, auch bei einzeiligen Funktionen. Der Body
wird mit zwei Leerzeichen eingerückt:

Gut
add_one <- function(x) {
 x + 1
}

Vermeiden
add_one <- function(x) x + 1

Dokumentation mit Roxygen
Wenn man ein R-Paket entwickelt, muss jede exportierte Funktion dokumentiert werden.
Diese Dokumentation wird im Roxygen-Format geschrieben — spezielle Kommentare direkt
über der Funktion, die mit #' beginnen. Beim Bauen des Pakets werden diese Kommentare

automatisch in die formatierten Hilfsseiten umgewandelt, die man mit ?funktionsname
aufruft.

Aber auch wenn man gar kein Paket schreibt, sondern nur ein Skript mit ein paar
Hilfsfunktionen, lohnt sich dieses Format. Statt unstrukturierte Kommentare neben die
Funktion zu schreiben, kann man gleich das Roxygen-Format verwenden. Es ist
übersichtlich, standardisiert, und falls die Funktion später doch in ein Paket wandert, ist die
Dokumentation bereits fertig.

Die wichtigsten Roxygen-Tags:

• Titel (erste Zeile): Eine kurze, einzeilige Beschreibung der Funktion
• Beschreibung (nach Leerzeile): Ausführlichere Erklärung, was die Funktion tut
• @param name : Beschreibt ein Argument der Funktion
• @return : Beschreibt, was die Funktion zurückgibt
• @examples : Ausführbare Beispiele für die Verwendung

#' Berechne den Body Mass Index
#'
#' Diese Funktion berechnet den BMI aus Gewicht und Größe.
#' Bei Vektoren wird der BMI elementweise berechnet.
#'
#' @param weight_kg Gewicht in Kilogramm (numerischer Vektor).
#' @param height_m Größe in Metern (numerischer Vektor).
#'
#' @return Ein numerischer Vektor mit BMI-Werten.
#'
#' @examples
#' calculate_bmi(70, 1.75)
#' calculate_bmi(c(60, 80), c(1.60, 1.80))
calculate_bmi <- function(weight_kg, height_m) {
 stopifnot(is.numeric(weight_kg), is.numeric(height_m))

16

BioMath

17/17

 stopifnot(all(height_m > 0))

 weight_kg / height_m^2
}

In RStudio und Positron kann man ein leeres Roxygen-Skelett automatisch einfügen lassen:
Cursor in die Funktion setzen und Code → Insert Roxygen Skeleton wählen (oder
Ctrl+Alt+Shift+R).

Bibliography

17

	Warum eigene Funktionen?
	Grundlagen: function()
	Syntax und Aufbau
	Argumente mit und ohne Defaults
	Rueckgabewerte
	Das Ellipsis-Argument (…)

	Drei Funktionstypen
	Vektor-Funktionen
	Dataframe-Funktionen
	Plot-Funktionen

	Defensive Programmierung
	stop() fuer Fehlermeldungen
	stopifnot() fuer schnelle Checks
	match.arg() fuer kategorische Argumente

	Funktionen im tidyverse: Tidy Evaluation
	Das Problem: Indirection
	Die Standardloesung: Curly-Curly
	Dynamische Spaltennamen mit dem Walrus-Operator
	Spalten als Strings: .data Pronoun
	Fortgeschritten: enquo() und !!
	Mehrere Spalten als Strings: syms() und !!!
	pick() fuer Tidy Selection in Data-Masking-Kontext
	Uebersicht: Wann welchen Ansatz?

	Best Practices und Style
	Benennung
	Code-Formatierung
	Dokumentation mit Roxygen

	Bibliography

