9. Iteration

Operationen auf viele Elemente anwenden mit for-Schleifen und purrr
Dr. Paul Schmidt

Warum lIteration?

lteration bedeutet, dieselbe Operation wiederholt auf verschiedene Elemente anzuwenden:
auf mehrere Spalten eines Dataframes, auf mehrere Dateien in einem Ordner, oder auf
mehrere Gruppen in den Daten. Wahrend das vorherige Kapitel zeigte, wie man
wiederholten Code in Funktionen kapselt, zeigt dieses Kapitel, wie man diese Funktionen
dann effizient auf viele Elemente anwendet.

R hat eine Besonderheit: Viele Operationen sind bereits vektorisiert. Wenn man x * 2

schreibt, multipliziert R automatisch jeden Wert in x mit 2 — man braucht keine Schleife. In
anderen Sprachen ware das nicht so selbstverstandlich:

x <- c¢(1, 2, 3, 4, 5)

Vektorisiert - kein explizites Iterieren ndtig

X * 2
I[l]246810
Isqrt(x)

I [1] 1.000000 1.414214 1.732051 2.000000 2.236068

Aber nicht alles Iasst sich so elegant vektorisieren. Wenn man 50 CSV-Dateien einlesen, 20
Plots erstellen, oder ein Modell auf jede Gruppe der Daten fitten mochte, braucht man
explizite Iteration. Dafir gibt es zwei Hauptansatze: for-Schleifen (imperativ) und map-
Funktionen (funktional).

© Weiterfiihrende Ressourcen

Dieses Kapitel basiert auf dem Kapitel 26: Iteration aus “R for Data Science” (2. Auflage).
Fir eine ausfuhrlichere Behandlung von purrr empfehlen wir Jenny Bryan’s purrr Tutorial
und die purrr-Dokumentation.

Implizite Iteration mit across()

Bevor wir zu expliziter Iteration kommen, sollte man wissen: Fur viele Spalten-basierte
Operationen braucht man gar keine Schleifen oder map-Funktionen. Die across () -Funktion
aus dplyr erledigt das elegant:

Ohne across() - repetitiv
mtcars $>%
summarize (
mpg mean = mean (mpg),
hp mean = mean (hp),

BioMath

118

https://r4ds.hadley.nz/iteration.html
https://jennybc.github.io/purrr-tutorial/
https://purrr.tidyverse.org/

wt _mean = mean (wt)

)

mpg mean hp mean wt mean
1 20.09062 146.6875 3.21725

Mit ac

ss () - kompakt
mtcars %>%
summarize (across (c (mpg, hp, wt), mean))

mpg hp wt
1 20.09062 146.6875 3.21725

Mit where () kann man Spalten nach Typ auswahlen:

Mittel
mtcars %>%

ert aller numerischen Spalten
summarize (across (where (is.numeric), \(x) mean (x,
mpg cyl disp hp drat

gear carb
1 3.6875 2.8125

na.rm = TRUE)))

wt gsec Vs am

1 20.09062 6.1875 230.7219 146.6875 3.596563 3.21725 17.84875 0.4375 0.40625

Und mit dem .names -Argument kontrolliert man die Spaltennamen im Output:

mtcars %>%
summarize (across (
c (mpg, hp, wt),

list (mean = \(x) mean(x, na.rm = TRUE),
sd = \(x) sd(x, na.rm = TRUE)),
.names = "{.col} {.fn}"

))

mpg mean mpg sd hp mean hp sd wt mean

wt sd

1 20.09062 6.026948 146.6875 68.56287 3.21725 0.9784574

| Syntax-Anderung in dplyr 1.1.0

Die alte Syntax across(a:b, mean, na.rm = TRUE) ist deprecated. Stattdessen eine

anonyme Funktion verwenden: across(a:b, \(x) mean(x, na.rm = TRUE)) .

© Ubung: across() mit mehreren Funktionen

Berechne fur den iris -Datensatz den Mittelwert und die Standardabweichung aller

numerischen Spalten, gruppiert nach Species . Verwende across() mitdem .names -

Argument.

BioMath

2/18

1 L6sung

iris %>%
group by (Species) %>%
summarize (across (
where (is.numeric),
list (mean = \(x) mean(x), sd = \(x) sd(x)),
.names = "{.col} {.fn}"

))

A tibble: 3 x 9

Species Sepal.Length mean Sepal.Length sd Sepal.Width mean Sepal.Width sd
<fct> <dbl> <dbl> <dbl> <dbl>
setosa 5.01 0.352 3.43 0.379
versicolor 5.94 0.516 2.77 0.314
virginica 6.59 0.636 2.97 0.322

i 4 more variables: Petal.Length mean <dbl>, Petal.Length sd <dbl>,
Petal.Width mean <dbl>, Petal.Width sd <dbl>

HH= W N

for-Schleifen

Grundsyntax

Eine for-Schleife wiederholt einen Codeblock fir jedes Element eines Vektors oder einer
Liste:

Einfache for-Schleife
for (i in 1:5) {

print (glue::glue ("Durchlauf {i}"))
}

Durchlauf
Durchlauf
Durchlauf
Durchlauf
Durchlauf

g w NP

Die Struktur ist immer gleich: for (variable in sequenz) { ... }.Injedem Durchlauf

nimmt variable den nachsten Wert aus sequenz an.

Ergebnisse speichern

Wenn man Ergebnisse aus einer Schleife speichern méchte, sollte man den Output-
Container vorher anlegen. Das ist wichtig fiir die Performance:

Gut: Vektor vorher anlegen

n <- 10
results <- vector ("double", n)

for (1 in 1l:n) {
results([i] <- 172

}

results

I [1] 1 4 9 16 25 36 49 64 81 100

BioMath

3/18

BioMath

Schlecht: Vektor in der Schleife "wachsen" lassen
results <- c()
for (i in 1:n) {

results <- c(results, i"72)

Das zweite Beispiel ist langsam, weil R bei jedem c() den gesamten Vektor kopieren muss.
Bei grolen Datenmengen kann das einen enormen Unterschied machen.

seq_along() statt 1:length()

Man verwendet besser seq_along() statt 1:length() , um Probleme mit leeren Vektoren zu
vermeiden:

R L= c("a", nbn’ "C")
y <- character (0)

seq along() ist sich

for (i in seq_along(x)) {
print (x[i])

}

[1] ngn
[1] np"
[1] nen

q_along(y)

integer (0

i3 length y)

| gth () hat ein Problem bei leeren Vektoren
o

Wann for-Schleifen sinnvoll sind

for-Schleifen sind besonders nutzlich, wenn:

+ Die Iteration Seiteneffekte hat (Dateien schreiben, Plots anzeigen)
* Jede Iteration vom Ergebnis der vorherigen abhangt
* Die Logik sehr komplex ist und man maximale Kontrolle braucht

Iteration mit Abhangigkeit: Kumulative Summe
W o<= @8, i, 4. i, 3)

cumsum manual <- vector ("double", length (x))
cumsum manual[1] <- x[1]

for (i in 2:length(x)) {
cumsum manual [i] <- cumsum manual[i - 1] + x[i]

}

cumsum manual
I[l] 3 4 8 9 14
Icumsum(x)

I[l] 3 4 8 9 14

4/18

BioMath

© Ubung: Spalten-Mittelwerte mit for-Schleife

Berechne die Mittelwerte der ersten vier Spalten von mtcars mit einer for-Schleife.
Speichere die Ergebnisse in einem vorab angelegten Vektor.

1 L6sung

Vektor vorher anlegen
means <- vector ("double", 4)
names (means) <- names (mtcars) [1:4]

for (i in 1:4) {
means[1] <- mean (mtcars[[i]])

}

means

mpg cyl disp hp
20.09062 6.18750 230.72188 146.68750

Die map-Familie aus purrr

Das Grundprinzip

Die map () -Funktion aus dem purrr-Paket ist die funktionale Alternative zur for-Schleife. Das

Prinzip: Man gibt eine Liste (oder einen Vektor) und eine Funktion — map () wendet die
Funktion auf jedes Element an und gibt eine Liste zurick.

Eine Funktion auf jedes Element anwenden
zahlen <- list(1:3, 4:6, 7:9)

map (zahlen, mean)

[[11]

[1] 2
(211
[1] 5
[[31]
[1] 8

Der Vorteil gegeniber for-Schleifen: Der Code ist kompakter und driickt klarer aus, was

passiert (Funktion auf alle Elemente anwenden), nicht wie es passiert (Schleifenvariable,
Index, etc.).

Typsichere Varianten

map () gibt immer eine Liste zurtick. Oft weil® man aber, welchen Typ man erwartet. Die

Varianten map dbl() , map chr() , map 1gl() und map_int() geben Vektoren des
entsprechenden Typs zurlick — und werfen einen Fehler, wenn das Ergebnis nicht passt:

5/18

map () gibt Liste zurick
map (zahlen, mean)

map_dbl () gibt numerischen Vektor zuriick
map dbl (zahlen, mean)

map chr () gibt Character-Vektor zuriick
map_chr(zahlen, \(x) glue::glue("Mittelwert: {mean(x)}"))

Fehler, wenn Typ nicht passt
map chr (zahlen, mean)

Funktionen spezifizieren

Es gibt mehrere Wege, die anzuwendende Funktion zu spezifizieren:

1. Benannte Funktion
map dbl (zahlen, mean)

2. Anonyme Funktion (moderne Syntax)
map_dbl (zahlen, \ (x) mean (x, na.rm = TRUE))

3. Anonyme Funktion (klassische Syntax)
map dbl (zahlen, function(x) mean(x, na.rm = TRUE))

4. purrr-Formel (legacy, aber noch verbreitet)
map dbl (zahlen, ~ mean(.x, na.rm = TRUE))

Die moderne \ (x) -Syntax (seit R 4.1) ist am klarsten. Die Formel-Syntax mit ~ und .x
wird man aber in alterem Code oft sehen.

Extraktion per Name oder Position

Ein besonders praktisches Feature: Man kann map () einen String oder eine Zahl
Ubergeben, um Elemente zu extrahieren:

Liste mit benannten Elementen
personen <- list(

list (name = "Anna", alter = 25),
list (name = "Bob", alter = 30),
list (name = "Clara", alter = 28)

)

Per Name extrahieren
map chr (personen, "name")

I[l] "Anna" "Bob" "Clara"

Per Position extrahieren
map int (personen, 2)

I[l] 25 30 28

© Ubung: map_dbl() anwenden

Gegeben ist eine Liste von Vektoren. Berechne flr jeden Vektor die Spannweite
(Maximum minus Minimum) mit map_dbl () .

daten <- list(
a:C(l, 5, 3)!

b = c(10, 20, 15, 25),
c = c(-5, 0, 5)
)
1 L6sung
Imapidbl(daten, \ (x) max(x) - min(x))
a b ¢
4 15 10
Oder mit range ()

map dbl (daten, \ (x) diff (range (x)))

a b c
4 15 10

map2 und pmap: Mehrere Inputs

Manchmal muss man Uber mehrere Listen parallel iterieren. map2 () nimmt zwei Listen,

pmap () nimmt beliebig viele:

Zweili Listen parallel
x <- list (1, 2, 3)
y <- list (10, 20, 30)

map2 dbl(x, y, \(a, b) a + b)

BioMath

7118

I[l] 11 22 33

Mehrere Listen mit pmap ()
params <- list(

n = c(10, 20, 30),

mean = c(0, 5, 10),

sd = c(1, 2, 3)
)

set.seed (42)

pmap (params, \(n, mean, sd) rnorm(n, mean, sd)) $%$>%
map dbl (mean)
I[l] 0.5472968 4.6584637 9.6342745
imap: Mit Index oder Namen
imap () ist eine Kurzform flr map2 (x, names(x), ...) — nitzlich, wenn man sowohl den

Wert als auch den Index/Namen braucht:
X <- c(a = 10, b = 20, c = 30)
imap chr(x, \ (wert, name) glue::glue("{name}: {wert}"))

a b e
"a: 10" "b: 20" "c: 30"

© Ubung: Robuste Division mit map2()

Schreibe eine Funktion safe divide() , die bei Division durch 0 NA zurlickgibt (statt
Inf). Wende sie dann mit map2_dbl () aufzwei Vektoren an.

zaehler <- c (10, 20, 30, 40)

nenner <- c (2, 0, 5, 0)

Gewlinschtes Ergebnis: c (5, NA, 6, NA)

1 Loésung

safe divide <- function(x, y) {
if (y == 0) return(NA real)
x /y

}

zaehler <- ¢ (10, 20, 30, 40)
nenner <- c(2, 0, 5, 0)

map2 dbl (zaehler, nenner, safe divide)

I[l] 5 NA 6 NA

Alternative mit possibly ()
map2 dbl (zaehler, nenner, possibly(\(x, y) x / y, otherwise = NA real))

I[l] 5 Inf 6 Inf

BioMath

8/18

BioMath

walk: Iteration fuer Seiteneffekte

Wenn man nicht am Rickgabewert interessiert ist, sondern an Seiteneffekten (Dateien
schreiben, Plots anzeigen), verwendet man walk() statt map() . Es gibt unsichtbar den

Input zuriick, was es ideal fiir Pipe-Ketten macht:

Mehrere Plots speichern
plots <- 1list(
ggplot (mtcars, aes(mpg)) + geom histogram(),
ggplot (mtcars, aes(hp)) + geom histogram(),
ggplot (mtcars, aes(wt)) + geom histogram()

)
dateinamen <- c("mpg.png", "hp.png", "wt.png")

walk2 (plots, dateinamen, \ (plot, datei) {
ggsave (datei, plot, width = 6, height = 4)
})

walk () existiert in denselben Varianten wie map () : walk2() , pwalk() , iwalk() .

Robuste Iteration: Fehler abfangen

Das Problem
Bei Iteration Uber viele Elemente kann ein einzelner Fehler die gesamte Operation
abbrechen:

Ein Element verursacht Fehler
inputs <- list (1, "a", 3)

map dbl (inputs, log)

Error in "map dbl () ":
i In index: 2.

Caused by error:
! Nicht-numerisches Argument fiir mathematische Funktion

Element 2 ist keine Zahl, und die ganze Operation schlagt fehl. Bei 1000 Dateien ware das
argerlich — man will wissen, welche Dateien Probleme hatten, aber trotzdem die anderen

verarbeiten.
safely(): Fehler als Daten

safely () istein “Wrapper” (Adverb), der eine Funktion so modifiziert, dass sie nie abbricht.

Stattdessen gibt sie eine Liste mit sresult und $error zurick:

safe log <- safely(log)
safe 1og(10)

Sresult
[1] 2.302585

Serror
NULL

Isafe_log("a")

9/18

Kombiniert mit map () :

inputs <- list(l, "a", 3, -1)
results <- map (inputs, safe log)

results

Mit transpose () kann man die Ergebnisse umstrukturieren:

results t <- results %>% transpose ()

results_ tSresult

BioMath

[[4]]
[1] NaN

Iresults_t$error

(0111
NULL

[[2]]
<simpleError in .Primitive("log") (x, base): Nicht-numerisches Argument fir
mathematische Funktion>

[[31]
NULL

[[411]
NULL

possibly(): Fehler mit Default ersetzen

Oft reicht ein einfacherer Ansatz: Fehler durch einen Default-Wert ersetzen. Daflr gibt es
possibly () :

Fehler werden zu NA

map dbl (inputs, possibly(log, otherwise = NA real))

IWarning in .Primitive ("log") (x, base): NaNs wurden erzeugt
I[l] 0.000000 NA 1.098612 NaN

Das ist besonders praktisch mit map_dbl () , da man direkt einen Vektor bekommt statt einer
verschachtelten Liste.

Fehler inspizieren
Nach der Iteration méchte man oft wissen, welche Elemente fehlgeschlagen sind:

Welche hatten Fehler?
results <- map(inputs, safe 1log)

IWarning in .Primitive ("log") (x, base): NaNs wurden erzeugt

fehlgeschlagen <- map 1lgl(results, \(x) !is.null (xSerror))
fehlgeschlagen

[1] FALSE TRUE FALSE FALSE

Die fehlerhaften Inputs
inputs[fehlgeschlagen]

[[1]]

[l] "a"
Nur die erfolgreichen Ergebnisse
erfolgreich <- map(results, "result") $>%

compact () %>%
map dbl (identity)

erfolgreich

I[l] 0.000000 1.098612 NaN

11
11/18

© Ubung: Fehler identifizieren

Gegeben ist eine Liste von Dateipfaden, von denen einige nicht existieren. Verwende
safely () , um alle vorhandenen Dateien einzulesen und herauszufinden, welche

Dateien nicht gefunden wurden.

Testdaten vorbereiten
temp dir <- tempdir ()

for (i in 1:2) {
tibble(id = 1:3, wert = rnorm(3)) %>%
write csv(file.path(temp dir, glue::glue("test {i}.csv")))

}

dateipfade <- c(
file.path(temp dir, "test 1.csv"),
"nicht vorhanden.csv",
file.path(temp dir, "test 2.csv"),
"auch nicht da.csv"

)

12

BioMath

12/18

1 L6sung

safe read <- safely(read csv)

ergebnisse <- dateipfade %$>%

set names () %>%

map (\ (f) safe read(f, show col types = FALSE))
Welche haben funktioniert?
erfolg <- map 1gl (ergebnisse, \(x) is.null (x$error))

cat ("Erfolgreich gelesen:\n")

IErfolgreich gelesen:
Inames(ergebnisse)[erfolg]

[1] "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpOE3DzZg/test 1.csv"
[2] "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpOE3DzZg/test 2.csv"

Icat("\nNicht gefunden:\n")

Nicht gefunden:

Inames(ergebnisse)[lerfolg]

I[l] "nicht vorhanden.csv" "auch nicht da.csv"

Nur die erfolgreichen Daten kombinieren

daten <- ergebnissel[erfolg] %>%

map ("result") %$>%
list rbind(names to = "quelle")
daten

A tibble: 6 x 3

quelle id wert

<chr> <dbl> <dbl>
1 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpOE3DZg/test 1.cs.. 1 -0.367
2 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpOE3DZg/test 1.cs.. 2 0.185
3 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpOE3DzZg/test 1.cs.. 3 0.582
4 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpOE3DzZg/test 2.cs.. 1 1.40
5 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpOE3DZg/test 2.cs.. 2 -0.727
6 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpOE3DZg/test 2.cs.. 3 1.30

Praktische Anwendungen

Batch-Import: Mehrere Dateien einlesen

Ein haufiger Anwendungsfall: Man hat einen Ordner voller CSV-Dateien und méchte alle
einlesen und kombinieren.

Alle CSV-Dateien im Ordner finden
dateien <- list.files("data/", pattern = "\\.csv$", full.names = TRUE)

Alle einlesen und zu einem Dataframe kombinieren
alle daten <- dateien $>%
map (\ (f) read csv(f, show col types = FALSE)) $%$>%
list rbind()

13

BioMath

13/18

Mit Dateinamen als Spalte

alle daten <- dateien $>%
set names () %>%
map (\ (f) read csv(f, show col types = FALSE)) $>%
list rbind(names to = "quelle")

Der Trick mit set_names () ohne Argument macht die Dateipfade zu Namen der Liste, die

dann in die quelle -Spalte Gbernommen werden.

Batch-Export: Mehrere Dateien schreiben
Das Gegenstick: Daten aufteilen und in separate Dateien schreiben.

Daten nach Gruppe aufteilen

mtcars split <- mtcars %>%
group by (cyl) %>%
group_split ()

Dateinamen generieren
dateinamen <- mtcars %>%
distinct (cyl) %>%
pull (cyl) %>%
map_chr (\ (x) glue::glue("output/mtcars cyl{x}.csv"))

Alle Dateien schreiben
walk2 (mtcars split, dateinamen, \(daten, datei) ({
write csv(daten, datei)

H)

© Ubung: Batch-Import simulieren

zu einem Dataframe.

Tempordre Dateien erstellen
batch dir <- tempdir ()

for (i in 1:3) {
tibble (
id = 1:5,
wert = rnorm(5),
gruppe = i
) $>%
write csv(file.path (batch dir, glue::glue("batch {i}.csv")))

Erstelle erst drei temporare CSV-Dateien, lies sie dann mit map () ein und kombiniere sie

14

BioMath

14/18

1 L6sung

dateien <- list.files(batch dir, pattern = "batch .*\\.csv$",

alle daten <- dateien $%>%
set names () %>%
map (\ (f) read csv(f, show col types = FALSE)) $>%
list rbind(names to = "quelle")

alle daten

A tibble: 15 x 4

quelle

<chr>
1 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpOE3DZg/...
2 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpOE3DZg/..
3 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpOE3DZg/...
4 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpOE3DZg/...
5 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpOE3DZg/...
6 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpOE3DZg/...
7 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpOE3DZg/...
8 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpOE3DZg/...
9 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpOE3DZg/...
10 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpOE3DZg/...
11 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpOE3DZqg/...
12 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpOE3DZg/...
13 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpOE3DZg/...
14 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpOE3DZg/...
15 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\RtmpOE3DZg/...

full.names

id

<dbl>

s WNE O wNDE O wbN P

TRUE)

wert gruppe

<dbl>

- 336
.04
.921
.721
.04
.0902
.624
.954
.543
.581
.768
.464
.886
.10
> 51

<dbl>

W wWwwwwbhDNhhdNDNDN PR P PP

Modelle auf Gruppen fitten

Mit nest () kann man Dataframes verschachteln und dann Modelle pro Gruppe fitten:

Daten

verschachteln

mtcars nested <- mtcars $>%
group by (cyl) %>%

nest ()

mtcars nested

A tibble: 3 x 2

Groups: cyl [3]
cyl data
<dbl> <list>
1 6 <tibble [7 x 10]>
2 4 <tibble [11 x 10]>
3 8 <tibble [14 x 10]>

#

Mode

pro Gruppe fitten

mtcars models <- mtcars nested %$>%

mutate (
model = map (data, \(df) lm(mpg ~ wt, data = df)),
tidied = map (model, broom::tidy)

Ergebnisse extrahieren
mtcars models %>%

select (cyl, tidied) %>%
unnest (tidied)

A tibble: 6 x 6
Groups: cyl [3]

15

BioMath

15/18

BioMath

cyl term estimate std.error statistic p.value
<dbl> <chr> <dbl> <dbl> <dbl> <dbl>
1 6 (Intercept) 28.4 4.18 6.79 0.00105
2 6 wt -2.78 1.33 -2.08 0.0918
3 4 (Intercept) 39.6 4.35 9.10 0.00000777
4 4 wt =5,65 1.85 -3.05 0.0137
5 8 (Intercept) 23.9 3.01 7.94 0.00000405
6 8 wt -2.19 0.739 -2.97 0.0118

Mehrere Plots erstellen und speichern
Ein vollstandiges Beispiel, das nest(), map() und walk() kombiniert:

Daten vorbereiten
plot data <- mtcars
group by (cyl) %>%
nest () %>%
mutate (
plot = map2(data, cyl, \(df, zyl) {
ggplot (df, aes(x = wt, y = mpg)) +
geom point () +
geom smooth (method = "1lm", se = FALSE) +
labs(title = glue::glue("{zyl} Zylinder: MPG vs. Weight"))

o0
\
00

b,
filename = glue::glue("plots/scatter cyl{cyl}.png")
)

Alle Plots speichern

walk? (plot data$plot, plot datasfilename, \(p, £f) {
ggsave (£, p, width = 6, height = 4)

})

© Ubung: Summary-Statistiken pro Gruppe

Verwende nest () und map() , um fur jeden Wert von cyl im mtcars-Datensatz

Mittelwert und Standardabweichung von mpg zu berechnen. Das Ergebnis sollte ein
ubersichtlicher Dataframe sein.

1 Losung

mtcars %$>%

group by (cyl) 3%>%

nest () %>%

mutate (
mean mpg = map dbl (data, \(df) mean (dfSmpg)),
sd mpg = map dbl (data, \(df) sd(dfSmpg))

) $>%

select (cyl, mean mpg, sd mpg)

A tibble: 3 x 3
Groups: cyl [3]
cyl mean mpg sd mpg
<dbl> <dbl> <dbl>

1 6 19,7 1.45
2 4 26.7 4.51
3 8 15,1 2.56

16
16/18

List-Columns: Dataframes mit Listen als
Spalten

Die vorherigen Beispiele haben bereits nest () verwendet, um “List-Columns” zu erstellen —
Spalten, die Listen statt atomarer Vektoren enthalten. Das ist ein machtiges Konzept, das

hier kurz vorgestellt wird.

mn

gsec
<dbl>

16.
17.
19,
20.
18.
18.
15,

nest () erstellt eine List-Colu
nested <- mtcars %

group_by (cyl)

nest ()
nested
A tibble: 3 x 2
Groups: cyl [3]

cyl data

<dbl> <list>
1 6 <tibble [7 x 10]>
2 4 <tibble [11 x 10]>
3 8 <tibble [14 x 10]>
Die data-Spalte entha Dataframe
nestedSdatal[[1]]
A tibble: 7 x 10

mpg disp hp drat wt

<dbl> <dbl> <dbl> <dbl> <dbl>
1 21 160 110 3.9 2.62
2 21 160 110 3.9 2.88
3 21.4 258 110 3.08 3.22
4 18.1 225 105 2.76 3.46
5 19.2 168. 123 3.92 3.44
6 17.8 168. 123 3.92 3.44
7 19.7 145 175 3.62 2.77

5

g o w N O

v
<dbl

S
>
0

O R PP o

am
<dbl>

P O OO o

gear
<dbl>
4

s s W W

Mit unnest () kann man List-Columns wieder “auspacken”:

nested

O W 0w J oy U b W

=

List-Columns sind besonders nitzlich in Kombination mit map () innerhalb von mutate () .

[)

6

SO s OV O O O OY O

>%

unnest (data)

A tibble: 32
Groups:
cyl
<dbl>

x 11

cyl [3]
mpg disp hp
<dbl> <dbl> <dbl>
21 160 110
21 160 110
21.4 258 110
18.1 225 105
19.2 168. 123
17.8 168. 123
19.7 145 175
22.8 108 93
24.4 147. 62
22.8 141. 95

i 22 more rows

drat
<dbl>

35

W wwwwwdhdww

9

29

.08
.76
- 92
- 92
.62
-85
.69
- 92

wt

<dbl>

2o
.88
.22
.46
.44
.44
77
.32
219
215

W WNNDWWWWN

62

gsec
<dbl>
16.
17.
19.
20.
18.
18.
15.
18.

20

22.

5

o U1 O W N B O

Vs
<dbl>
0

R R RO PR RO

am

<dbl

>

OO P P OO OOk

carb
<dbl>

[R N e >

gear carb
<dbl> <dbl>
4

BSOS O D DWW D
NN P oD DB D

Sie ermoglichen es, komplexe Workflows (wie das Fitten vieler Modelle) in einem
Ubersichtlichen, tabellarischen Format zu organisieren.

17

BioMath

17118

1 Weiterfuhrend

List-Columns und fortgeschrittene Anwendungen von nest () /unnest () sind ein eigenes

grolies Thema. Fur mehr Details empfehlen wir das Kapitel 23: Hierarchical Data und
das Kapitel 25: Many Models (aus der 1. Auflage von R4DS).

for vs. map: Entscheidungshilfe

Wann sollte man for-Schleifen verwenden, wann map-Funktionen? Hier eine Orientierung:
for-Schleifen sind oft besser, wenn:

* Die Logik komplex ist und man maximale Kontrolle braucht
 Jede lteration vom Ergebnis der vorherigen abhangt
» Man gerade erst programmieren lernt und die explizite Schreibweise hilft

map-Funktionen sind oft besser, wenn:

* Man dieselbe Operation auf viele Elemente anwendet (der Standardfall)
* Man den Code in einer Pipe-Kette verwenden méchte

* Man Typsicherheit will (map_dbl, map_chr, etc.)

* Man die funktionale, deklarative Schreibweise bevorzugt

Der wichtigste Ratschlag: Das verwenden, was man versteht. Beide Ansatze sind legitim.
for-Schleifen sind nicht “schlecht” oder “langsam” (dieses Vorurteil ist veraltet). map-
Funktionen sind nicht “besser”, nur anders. Mit der Zeit entwickelt man ein Gefihl daflr,
welcher Ansatz in welcher Situation naturlicher passt.

Dasselbe Ergebnis, unterschiedliche Stile
for-Schleife
ergebnisse_for <- vector ("double", 3)

for (1 in 1:3) {
ergebnisse for[i] <- mean (mtcars[[i]])
}

ergebnisse for

I[l] 20.09062 6.18750 230.72188

mar
ergebnisse_map <- map_ dbl (mtcars[1:3], mean)
ergebnisse map

mpg cyl disp
20.09062 6.18750 230.72188

Bibliography

18

BioMath

18/18

https://r4ds.hadley.nz/rectangling.html
https://r4ds.had.co.nz/many-models.html

	Warum Iteration?
	Implizite Iteration mit across()
	for-Schleifen
	Grundsyntax
	Ergebnisse speichern
	seq_along() statt 1:length()
	Wann for-Schleifen sinnvoll sind

	Die map-Familie aus purrr
	Das Grundprinzip
	Typsichere Varianten
	Funktionen spezifizieren
	Extraktion per Name oder Position
	map2 und pmap: Mehrere Inputs
	imap: Mit Index oder Namen

	walk: Iteration fuer Seiteneffekte
	Robuste Iteration: Fehler abfangen
	Das Problem
	safely(): Fehler als Daten
	possibly(): Fehler mit Default ersetzen
	Fehler inspizieren

	Praktische Anwendungen
	Batch-Import: Mehrere Dateien einlesen
	Batch-Export: Mehrere Dateien schreiben
	Modelle auf Gruppen fitten
	Mehrere Plots erstellen und speichern

	List-Columns: Dataframes mit Listen als Spalten
	for vs. map: Entscheidungshilfe
	Bibliography

