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9. Iteration

Operationen auf viele Elemente anwenden mit for-Schleifen und purrr
Dr. Paul Schmidt

Warum Iteration?
Iteration bedeutet, dieselbe Operation wiederholt auf verschiedene Elemente anzuwenden:
auf mehrere Spalten eines Dataframes, auf mehrere Dateien in einem Ordner, oder auf
mehrere Gruppen in den Daten. Während das vorherige Kapitel zeigte, wie man
wiederholten Code in Funktionen kapselt, zeigt dieses Kapitel, wie man diese Funktionen
dann effizient auf viele Elemente anwendet.

R hat eine Besonderheit: Viele Operationen sind bereits vektorisiert. Wenn man x * 2

schreibt, multipliziert R automatisch jeden Wert in x  mit 2 — man braucht keine Schleife. In
anderen Sprachen wäre das nicht so selbstverständlich:

x <- c(1, 2, 3, 4, 5)

# Vektorisiert - kein explizites Iterieren nötig
x * 2

[1]  2  4  6  8 10

sqrt(x)

[1] 1.000000 1.414214 1.732051 2.000000 2.236068

Aber nicht alles lässt sich so elegant vektorisieren. Wenn man 50 CSV-Dateien einlesen, 20
Plots erstellen, oder ein Modell auf jede Gruppe der Daten fitten möchte, braucht man
explizite Iteration. Dafür gibt es zwei Hauptansätze: for-Schleifen (imperativ) und map-
Funktionen (funktional).

 Weiterführende Ressourcen

Dieses Kapitel basiert auf dem Kapitel 26: Iteration aus “R for Data Science” (2. Auflage).
Für eine ausführlichere Behandlung von purrr empfehlen wir Jenny Bryan’s purrr Tutorial
und die purrr-Dokumentation.

Implizite Iteration mit across()
Bevor wir zu expliziter Iteration kommen, sollte man wissen: Für viele Spalten-basierte
Operationen braucht man gar keine Schleifen oder map-Funktionen. Die across() -Funktion
aus dplyr erledigt das elegant:

# Ohne across() - repetitiv
mtcars %>%
  summarize(
    mpg_mean = mean(mpg),
    hp_mean = mean(hp),
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    wt_mean = mean(wt)
  )

  mpg_mean  hp_mean wt_mean
1 20.09062 146.6875 3.21725

# Mit across() - kompakt
mtcars %>%
  summarize(across(c(mpg, hp, wt), mean))

       mpg       hp      wt
1 20.09062 146.6875 3.21725

Mit where()  kann man Spalten nach Typ auswählen:

# Mittelwert aller numerischen Spalten
mtcars %>%
  summarize(across(where(is.numeric), \(x) mean(x, na.rm = TRUE)))

       mpg    cyl     disp       hp     drat      wt     qsec     vs      am
1 20.09062 6.1875 230.7219 146.6875 3.596563 3.21725 17.84875 0.4375 0.40625
    gear   carb
1 3.6875 2.8125

Und mit dem .names -Argument kontrolliert man die Spaltennamen im Output:

mtcars %>%
  summarize(across(
    c(mpg, hp, wt),
    list(mean = \(x) mean(x, na.rm = TRUE),
         sd = \(x) sd(x, na.rm = TRUE)),
    .names = "{.col}_{.fn}"
  ))

  mpg_mean   mpg_sd  hp_mean    hp_sd wt_mean     wt_sd
1 20.09062 6.026948 146.6875 68.56287 3.21725 0.9784574

! Syntax-Änderung in dplyr 1.1.0

Die alte Syntax across(a:b, mean, na.rm = TRUE)  ist deprecated. Stattdessen eine

anonyme Funktion verwenden: across(a:b, \(x) mean(x, na.rm = TRUE)) .

 Übung: across() mit mehreren Funktionen

Berechne für den iris -Datensatz den Mittelwert und die Standardabweichung aller

numerischen Spalten, gruppiert nach Species . Verwende across()  mit dem .names -
Argument.
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 Lösung

iris %>%
  group_by(Species) %>%
  summarize(across(
    where(is.numeric),
    list(mean = \(x) mean(x), sd = \(x) sd(x)),
    .names = "{.col}_{.fn}"
  ))

# A tibble: 3 × 9
  Species    Sepal.Length_mean Sepal.Length_sd Sepal.Width_mean Sepal.Width_sd
  <fct>                  <dbl>           <dbl>            <dbl>          <dbl>
1 setosa                  5.01           0.352             3.43          0.379
2 versicolor              5.94           0.516             2.77          0.314
3 virginica               6.59           0.636             2.97          0.322
# ℹ 4 more variables: Petal.Length_mean <dbl>, Petal.Length_sd <dbl>,
#   Petal.Width_mean <dbl>, Petal.Width_sd <dbl>

for-Schleifen
Grundsyntax
Eine for-Schleife wiederholt einen Codeblock für jedes Element eines Vektors oder einer
Liste:

# Einfache for-Schleife
for (i in 1:5) {
  print(glue::glue("Durchlauf {i}"))
}

Durchlauf 1
Durchlauf 2
Durchlauf 3
Durchlauf 4
Durchlauf 5

Die Struktur ist immer gleich: for (variable in sequenz) { ... } . In jedem Durchlauf

nimmt variable  den nächsten Wert aus sequenz  an.

Ergebnisse speichern
Wenn man Ergebnisse aus einer Schleife speichern möchte, sollte man den Output-
Container vorher anlegen. Das ist wichtig für die Performance:

# Gut: Vektor vorher anlegen
n <- 10
results <- vector("double", n)

for (i in 1:n) {
  results[i] <- i^2
}

results

 [1]   1   4   9  16  25  36  49  64  81 100
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# Schlecht: Vektor in der Schleife "wachsen" lassen
results <- c()
for (i in 1:n) {
  results <- c(results, i^2)
}

Das zweite Beispiel ist langsam, weil R bei jedem c()  den gesamten Vektor kopieren muss.
Bei großen Datenmengen kann das einen enormen Unterschied machen.

seq_along() statt 1:length()
Man verwendet besser seq_along()  statt 1:length() , um Probleme mit leeren Vektoren zu
vermeiden:

x <- c("a", "b", "c")
y <- character(0)

# seq_along() ist sicher
for (i in seq_along(x)) {
  print(x[i])
}

[1] "a"
[1] "b"
[1] "c"

seq_along(y)

integer(0)

# 1:length() hat ein Problem bei leeren Vektoren
1:length(y)

[1] 1 0

Wann for-Schleifen sinnvoll sind
for-Schleifen sind besonders nützlich, wenn:

• Die Iteration Seiteneffekte hat (Dateien schreiben, Plots anzeigen)
• Jede Iteration vom Ergebnis der vorherigen abhängt
• Die Logik sehr komplex ist und man maximale Kontrolle braucht

# Iteration mit Abhängigkeit: Kumulative Summe
x <- c(3, 1, 4, 1, 5)
cumsum_manual <- vector("double", length(x))
cumsum_manual[1] <- x[1]

for (i in 2:length(x)) {
  cumsum_manual[i] <- cumsum_manual[i - 1] + x[i]
}

cumsum_manual

[1]  3  4  8  9 14

cumsum(x)

[1]  3  4  8  9 14
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 Übung: Spalten-Mittelwerte mit for-Schleife

Berechne die Mittelwerte der ersten vier Spalten von mtcars  mit einer for-Schleife.
Speichere die Ergebnisse in einem vorab angelegten Vektor.

 Lösung

# Vektor vorher anlegen
means <- vector("double", 4)
names(means) <- names(mtcars)[1:4]

for (i in 1:4) {
  means[i] <- mean(mtcars[[i]])
}

means

      mpg       cyl      disp        hp 
 20.09062   6.18750 230.72188 146.68750 

Die map-Familie aus purrr
Das Grundprinzip
Die map() -Funktion aus dem purrr-Paket ist die funktionale Alternative zur for-Schleife. Das

Prinzip: Man gibt eine Liste (oder einen Vektor) und eine Funktion — map()  wendet die
Funktion auf jedes Element an und gibt eine Liste zurück.

# Eine Funktion auf jedes Element anwenden
zahlen <- list(1:3, 4:6, 7:9)

map(zahlen, mean)

[[1]]
[1] 2

[[2]]
[1] 5

[[3]]
[1] 8

Der Vorteil gegenüber for-Schleifen: Der Code ist kompakter und drückt klarer aus, was
passiert (Funktion auf alle Elemente anwenden), nicht wie es passiert (Schleifenvariable,
Index, etc.).

Typsichere Varianten
map()  gibt immer eine Liste zurück. Oft weiß man aber, welchen Typ man erwartet. Die

Varianten map_dbl() , map_chr() , map_lgl()  und map_int()  geben Vektoren des
entsprechenden Typs zurück — und werfen einen Fehler, wenn das Ergebnis nicht passt:
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# map() gibt Liste zurück
map(zahlen, mean)

[[1]]
[1] 2

[[2]]
[1] 5

[[3]]
[1] 8

# map_dbl() gibt numerischen Vektor zurück
map_dbl(zahlen, mean)

[1] 2 5 8

# map_chr() gibt Character-Vektor zurück
map_chr(zahlen, \(x) glue::glue("Mittelwert: {mean(x)}"))

[1] "Mittelwert: 2" "Mittelwert: 5" "Mittelwert: 8"

# Fehler, wenn Typ nicht passt
map_chr(zahlen, mean)

Warning: Automatic coercion from double to character was deprecated in purrr 1.0.0.
ℹ Please use an explicit call to `as.character()` within `map_chr()` instead.

[1] "2.000000" "5.000000" "8.000000"

Funktionen spezifizieren
Es gibt mehrere Wege, die anzuwendende Funktion zu spezifizieren:

# 1. Benannte Funktion
map_dbl(zahlen, mean)

[1] 2 5 8

# 2. Anonyme Funktion (moderne Syntax)
map_dbl(zahlen, \(x) mean(x, na.rm = TRUE))

[1] 2 5 8

# 3. Anonyme Funktion (klassische Syntax)
map_dbl(zahlen, function(x) mean(x, na.rm = TRUE))

[1] 2 5 8

# 4. purrr-Formel (legacy, aber noch verbreitet)
map_dbl(zahlen, ~ mean(.x, na.rm = TRUE))

[1] 2 5 8

Die moderne \(x) -Syntax (seit R 4.1) ist am klarsten. Die Formel-Syntax mit ~  und .x
wird man aber in älterem Code oft sehen.
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Extraktion per Name oder Position
Ein besonders praktisches Feature: Man kann map()  einen String oder eine Zahl
übergeben, um Elemente zu extrahieren:

# Liste mit benannten Elementen
personen <- list(
  list(name = "Anna", alter = 25),
  list(name = "Bob", alter = 30),
  list(name = "Clara", alter = 28)
)

# Per Name extrahieren
map_chr(personen, "name")

[1] "Anna"  "Bob"   "Clara"

# Per Position extrahieren
map_int(personen, 2)

[1] 25 30 28

 Übung: map_dbl() anwenden

Gegeben ist eine Liste von Vektoren. Berechne für jeden Vektor die Spannweite
(Maximum minus Minimum) mit map_dbl() .

daten <- list(
  a = c(1, 5, 3),
  b = c(10, 20, 15, 25),
  c = c(-5, 0, 5)
)

 Lösung

map_dbl(daten, \(x) max(x) - min(x))

 a  b  c 
 4 15 10 

# Oder mit range()
map_dbl(daten, \(x) diff(range(x)))

 a  b  c 
 4 15 10 

map2 und pmap: Mehrere Inputs
Manchmal muss man über mehrere Listen parallel iterieren. map2()  nimmt zwei Listen,
pmap()  nimmt beliebig viele:

# Zwei Listen parallel
x <- list(1, 2, 3)
y <- list(10, 20, 30)

map2_dbl(x, y, \(a, b) a + b)
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[1] 11 22 33

# Mehrere Listen mit pmap()
params <- list(
  n = c(10, 20, 30),
  mean = c(0, 5, 10),
  sd = c(1, 2, 3)
)

set.seed(42)
pmap(params, \(n, mean, sd) rnorm(n, mean, sd)) %>%
  map_dbl(mean)

[1] 0.5472968 4.6584637 9.6342745

imap: Mit Index oder Namen
imap()  ist eine Kurzform für map2(x, names(x), ...)  — nützlich, wenn man sowohl den
Wert als auch den Index/Namen braucht:

x <- c(a = 10, b = 20, c = 30)

imap_chr(x, \(wert, name) glue::glue("{name}: {wert}"))

      a       b       c 
"a: 10" "b: 20" "c: 30" 

 Übung: Robuste Division mit map2()

Schreibe eine Funktion safe_divide() , die bei Division durch 0 NA  zurückgibt (statt
Inf ). Wende sie dann mit map2_dbl()  auf zwei Vektoren an.

zaehler <- c(10, 20, 30, 40)
nenner <- c(2, 0, 5, 0)

# Gewünschtes Ergebnis: c(5, NA, 6, NA)

 Lösung

safe_divide <- function(x, y) {
  if (y == 0) return(NA_real_)
  x / y
}

zaehler <- c(10, 20, 30, 40)
nenner <- c(2, 0, 5, 0)

map2_dbl(zaehler, nenner, safe_divide)

[1]  5 NA  6 NA

# Alternative mit possibly()
map2_dbl(zaehler, nenner, possibly(\(x, y) x / y, otherwise = NA_real_))

[1]   5 Inf   6 Inf
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walk: Iteration fuer Seiteneffekte
Wenn man nicht am Rückgabewert interessiert ist, sondern an Seiteneffekten (Dateien
schreiben, Plots anzeigen), verwendet man walk()  statt map() . Es gibt unsichtbar den
Input zurück, was es ideal für Pipe-Ketten macht:

# Mehrere Plots speichern
plots <- list(
  ggplot(mtcars, aes(mpg)) + geom_histogram(),
  ggplot(mtcars, aes(hp)) + geom_histogram(),
  ggplot(mtcars, aes(wt)) + geom_histogram()
)

dateinamen <- c("mpg.png", "hp.png", "wt.png")

walk2(plots, dateinamen, \(plot, datei) {
  ggsave(datei, plot, width = 6, height = 4)
})

walk()  existiert in denselben Varianten wie map() : walk2() , pwalk() , iwalk() .

Robuste Iteration: Fehler abfangen
Das Problem
Bei Iteration über viele Elemente kann ein einzelner Fehler die gesamte Operation
abbrechen:

# Ein Element verursacht Fehler
inputs <- list(1, "a", 3)

map_dbl(inputs, log)

Error in `map_dbl()`:
ℹ In index: 2.
Caused by error:
! Nicht-numerisches Argument für mathematische Funktion

Element 2 ist keine Zahl, und die ganze Operation schlägt fehl. Bei 1000 Dateien wäre das
ärgerlich — man will wissen, welche Dateien Probleme hatten, aber trotzdem die anderen
verarbeiten.

safely(): Fehler als Daten
safely()  ist ein “Wrapper” (Adverb), der eine Funktion so modifiziert, dass sie nie abbricht.

Stattdessen gibt sie eine Liste mit $result  und $error  zurück:

safe_log <- safely(log)

safe_log(10)

$result
[1] 2.302585

$error
NULL

safe_log("a")
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$result
NULL

$error
<simpleError in .Primitive("log")(x, base): Nicht-numerisches Argument für
mathematische Funktion>

Kombiniert mit map() :

inputs <- list(1, "a", 3, -1)
results <- map(inputs, safe_log)

Warning in .Primitive("log")(x, base): NaNs wurden erzeugt

results

[[1]]
[[1]]$result
[1] 0

[[1]]$error
NULL

[[2]]
[[2]]$result
NULL

[[2]]$error
<simpleError in .Primitive("log")(x, base): Nicht-numerisches Argument für
mathematische Funktion>

[[3]]
[[3]]$result
[1] 1.098612

[[3]]$error
NULL

[[4]]
[[4]]$result
[1] NaN

[[4]]$error
NULL

Mit transpose()  kann man die Ergebnisse umstrukturieren:

results_t <- results %>% transpose()

results_t$result

[[1]]
[1] 0

[[2]]
NULL

[[3]]
[1] 1.098612
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[[4]]
[1] NaN

results_t$error

[[1]]
NULL

[[2]]
<simpleError in .Primitive("log")(x, base): Nicht-numerisches Argument für
mathematische Funktion>

[[3]]
NULL

[[4]]
NULL

possibly(): Fehler mit Default ersetzen
Oft reicht ein einfacherer Ansatz: Fehler durch einen Default-Wert ersetzen. Dafür gibt es
possibly() :

# Fehler werden zu NA
map_dbl(inputs, possibly(log, otherwise = NA_real_))

Warning in .Primitive("log")(x, base): NaNs wurden erzeugt

[1] 0.000000       NA 1.098612      NaN

Das ist besonders praktisch mit map_dbl() , da man direkt einen Vektor bekommt statt einer
verschachtelten Liste.

Fehler inspizieren
Nach der Iteration möchte man oft wissen, welche Elemente fehlgeschlagen sind:

# Welche hatten Fehler?
results <- map(inputs, safe_log)

Warning in .Primitive("log")(x, base): NaNs wurden erzeugt

fehlgeschlagen <- map_lgl(results, \(x) !is.null(x$error))
fehlgeschlagen

[1] FALSE  TRUE FALSE FALSE

# Die fehlerhaften Inputs
inputs[fehlgeschlagen]

[[1]]
[1] "a"

# Nur die erfolgreichen Ergebnisse
erfolgreich <- map(results, "result") %>%
  compact() %>%
  map_dbl(identity)

erfolgreich

[1] 0.000000 1.098612      NaN

11



BioMath

12/18

 Übung: Fehler identifizieren

Gegeben ist eine Liste von Dateipfaden, von denen einige nicht existieren. Verwende
safely() , um alle vorhandenen Dateien einzulesen und herauszufinden, welche
Dateien nicht gefunden wurden.

# Testdaten vorbereiten
temp_dir <- tempdir()

for (i in 1:2) {
  tibble(id = 1:3, wert = rnorm(3)) %>%
    write_csv(file.path(temp_dir, glue::glue("test_{i}.csv")))
}

dateipfade <- c(
  file.path(temp_dir, "test_1.csv"),
  "nicht_vorhanden.csv",
  file.path(temp_dir, "test_2.csv"),
  "auch_nicht_da.csv"
)
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 Lösung

safe_read <- safely(read_csv)

ergebnisse <- dateipfade %>%
  set_names() %>%
  map(\(f) safe_read(f, show_col_types = FALSE))

# Welche haben funktioniert?
erfolg <- map_lgl(ergebnisse, \(x) is.null(x$error))

cat("Erfolgreich gelesen:\n")

Erfolgreich gelesen:

names(ergebnisse)[erfolg]

[1] "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\Rtmp0E3DZg/test_1.csv"
[2] "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\Rtmp0E3DZg/test_2.csv"

cat("\nNicht gefunden:\n")

Nicht gefunden:

names(ergebnisse)[!erfolg]

[1] "nicht_vorhanden.csv" "auch_nicht_da.csv"  

# Nur die erfolgreichen Daten kombinieren
daten <- ergebnisse[erfolg] %>%
  map("result") %>%
  list_rbind(names_to = "quelle")

daten

# A tibble: 6 × 3
  quelle                                                               id   wert
  <chr>                                                             <dbl>  <dbl>
1 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\Rtmp0E3DZg/test_1.cs…     1 -0.367
2 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\Rtmp0E3DZg/test_1.cs…     2  0.185
3 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\Rtmp0E3DZg/test_1.cs…     3  0.582
4 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\Rtmp0E3DZg/test_2.cs…     1  1.40 
5 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\Rtmp0E3DZg/test_2.cs…     2 -0.727
6 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\Rtmp0E3DZg/test_2.cs…     3  1.30 

Praktische Anwendungen
Batch-Import: Mehrere Dateien einlesen
Ein häufiger Anwendungsfall: Man hat einen Ordner voller CSV-Dateien und möchte alle
einlesen und kombinieren.

# Alle CSV-Dateien im Ordner finden
dateien <- list.files("data/", pattern = "\\.csv$", full.names = TRUE)

# Alle einlesen und zu einem Dataframe kombinieren
alle_daten <- dateien %>%
  map(\(f) read_csv(f, show_col_types = FALSE)) %>%
  list_rbind()
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# Mit Dateinamen als Spalte
alle_daten <- dateien %>%
  set_names() %>%
  map(\(f) read_csv(f, show_col_types = FALSE)) %>%
  list_rbind(names_to = "quelle")

Der Trick mit set_names()  ohne Argument macht die Dateipfade zu Namen der Liste, die

dann in die quelle -Spalte übernommen werden.

Batch-Export: Mehrere Dateien schreiben
Das Gegenstück: Daten aufteilen und in separate Dateien schreiben.

# Daten nach Gruppe aufteilen
mtcars_split <- mtcars %>%
  group_by(cyl) %>%
  group_split()

# Dateinamen generieren
dateinamen <- mtcars %>%
  distinct(cyl) %>%
  pull(cyl) %>%
  map_chr(\(x) glue::glue("output/mtcars_cyl{x}.csv"))

# Alle Dateien schreiben
walk2(mtcars_split, dateinamen, \(daten, datei) {
  write_csv(daten, datei)
})

 Übung: Batch-Import simulieren

Erstelle erst drei temporäre CSV-Dateien, lies sie dann mit map()  ein und kombiniere sie
zu einem Dataframe.

# Temporäre Dateien erstellen
batch_dir <- tempdir()

for (i in 1:3) {
  tibble(
    id = 1:5,
    wert = rnorm(5),
    gruppe = i
  ) %>%
    write_csv(file.path(batch_dir, glue::glue("batch_{i}.csv")))
}

14



BioMath

15/18

 Lösung

dateien <- list.files(batch_dir, pattern = "batch_.*\\.csv$", full.names = TRUE)

alle_daten <- dateien %>%
  set_names() %>%
  map(\(f) read_csv(f, show_col_types = FALSE)) %>%
  list_rbind(names_to = "quelle")

alle_daten

# A tibble: 15 × 4
   quelle                                                      id    wert gruppe
   <chr>                                                    <dbl>   <dbl>  <dbl>
 1 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\Rtmp0E3DZg/…     1  0.336       1
 2 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\Rtmp0E3DZg/…     2  1.04        1
 3 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\Rtmp0E3DZg/…     3  0.921       1
 4 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\Rtmp0E3DZg/…     4  0.721       1
 5 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\Rtmp0E3DZg/…     5 -1.04        1
 6 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\Rtmp0E3DZg/…     1 -0.0902      2
 7 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\Rtmp0E3DZg/…     2  0.624       2
 8 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\Rtmp0E3DZg/…     3 -0.954       2
 9 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\Rtmp0E3DZg/…     4 -0.543       2
10 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\Rtmp0E3DZg/…     5  0.581       2
11 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\Rtmp0E3DZg/…     1  0.768       3
12 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\Rtmp0E3DZg/…     2  0.464       3
13 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\Rtmp0E3DZg/…     3 -0.886       3
14 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\Rtmp0E3DZg/…     4 -1.10        3
15 "C:\\Users\\BIOMAT~1\\AppData\\Local\\Temp\\Rtmp0E3DZg/…     5  1.51        3

Modelle auf Gruppen fitten
Mit nest()  kann man Dataframes verschachteln und dann Modelle pro Gruppe fitten:

# Daten verschachteln
mtcars_nested <- mtcars %>%
  group_by(cyl) %>%
  nest()

mtcars_nested

# A tibble: 3 × 2
# Groups:   cyl [3]
    cyl data              
  <dbl> <list>            
1     6 <tibble [7 × 10]> 
2     4 <tibble [11 × 10]>
3     8 <tibble [14 × 10]>

# Modell pro Gruppe fitten
mtcars_models <- mtcars_nested %>%
  mutate(
    model = map(data, \(df) lm(mpg ~ wt, data = df)),
    tidied = map(model, broom::tidy)
  )

# Ergebnisse extrahieren
mtcars_models %>%
  select(cyl, tidied) %>%
  unnest(tidied)

# A tibble: 6 × 6
# Groups:   cyl [3]
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    cyl term        estimate std.error statistic    p.value
  <dbl> <chr>          <dbl>     <dbl>     <dbl>      <dbl>
1     6 (Intercept)    28.4      4.18       6.79 0.00105   
2     6 wt             -2.78     1.33      -2.08 0.0918    
3     4 (Intercept)    39.6      4.35       9.10 0.00000777
4     4 wt             -5.65     1.85      -3.05 0.0137    
5     8 (Intercept)    23.9      3.01       7.94 0.00000405
6     8 wt             -2.19     0.739     -2.97 0.0118    

Mehrere Plots erstellen und speichern
Ein vollständiges Beispiel, das nest(), map() und walk() kombiniert:

# Daten vorbereiten
plot_data <- mtcars %>%
  group_by(cyl) %>%
  nest() %>%
  mutate(
    plot = map2(data, cyl, \(df, zyl) {
      ggplot(df, aes(x = wt, y = mpg)) +
        geom_point() +
        geom_smooth(method = "lm", se = FALSE) +
        labs(title = glue::glue("{zyl} Zylinder: MPG vs. Weight"))
    }),
    filename = glue::glue("plots/scatter_cyl{cyl}.png")
  )

# Alle Plots speichern
walk2(plot_data$plot, plot_data$filename, \(p, f) {
  ggsave(f, p, width = 6, height = 4)
})

 Übung: Summary-Statistiken pro Gruppe

Verwende nest()  und map() , um für jeden Wert von cyl  im mtcars-Datensatz

Mittelwert und Standardabweichung von mpg  zu berechnen. Das Ergebnis sollte ein
übersichtlicher Dataframe sein.

 Lösung

mtcars %>%
  group_by(cyl) %>%
  nest() %>%
  mutate(
    mean_mpg = map_dbl(data, \(df) mean(df$mpg)),
    sd_mpg = map_dbl(data, \(df) sd(df$mpg))
  ) %>%
  select(cyl, mean_mpg, sd_mpg)

# A tibble: 3 × 3
# Groups:   cyl [3]
    cyl mean_mpg sd_mpg
  <dbl>    <dbl>  <dbl>
1     6     19.7   1.45
2     4     26.7   4.51
3     8     15.1   2.56
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List-Columns: Dataframes mit Listen als
Spalten
Die vorherigen Beispiele haben bereits nest()  verwendet, um “List-Columns” zu erstellen —
Spalten, die Listen statt atomarer Vektoren enthalten. Das ist ein mächtiges Konzept, das
hier kurz vorgestellt wird.

# nest() erstellt eine List-Column
nested <- mtcars %>%
  group_by(cyl) %>%
  nest()

nested

# A tibble: 3 × 2
# Groups:   cyl [3]
    cyl data              
  <dbl> <list>            
1     6 <tibble [7 × 10]> 
2     4 <tibble [11 × 10]>
3     8 <tibble [14 × 10]>

# Die data-Spalte enthält Dataframes
nested$data[[1]]

# A tibble: 7 × 10
    mpg  disp    hp  drat    wt  qsec    vs    am  gear  carb
  <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1  21    160    110  3.9   2.62  16.5     0     1     4     4
2  21    160    110  3.9   2.88  17.0     0     1     4     4
3  21.4  258    110  3.08  3.22  19.4     1     0     3     1
4  18.1  225    105  2.76  3.46  20.2     1     0     3     1
5  19.2  168.   123  3.92  3.44  18.3     1     0     4     4
6  17.8  168.   123  3.92  3.44  18.9     1     0     4     4
7  19.7  145    175  3.62  2.77  15.5     0     1     5     6

Mit unnest()  kann man List-Columns wieder “auspacken”:

nested %>%
  unnest(data)

# A tibble: 32 × 11
# Groups:   cyl [3]
     cyl   mpg  disp    hp  drat    wt  qsec    vs    am  gear  carb
   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
 1     6  21    160    110  3.9   2.62  16.5     0     1     4     4
 2     6  21    160    110  3.9   2.88  17.0     0     1     4     4
 3     6  21.4  258    110  3.08  3.22  19.4     1     0     3     1
 4     6  18.1  225    105  2.76  3.46  20.2     1     0     3     1
 5     6  19.2  168.   123  3.92  3.44  18.3     1     0     4     4
 6     6  17.8  168.   123  3.92  3.44  18.9     1     0     4     4
 7     6  19.7  145    175  3.62  2.77  15.5     0     1     5     6
 8     4  22.8  108     93  3.85  2.32  18.6     1     1     4     1
 9     4  24.4  147.    62  3.69  3.19  20       1     0     4     2
10     4  22.8  141.    95  3.92  3.15  22.9     1     0     4     2
# ℹ 22 more rows

List-Columns sind besonders nützlich in Kombination mit map()  innerhalb von mutate() .
Sie ermöglichen es, komplexe Workflows (wie das Fitten vieler Modelle) in einem
übersichtlichen, tabellarischen Format zu organisieren.
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 Weiterführend

List-Columns und fortgeschrittene Anwendungen von nest() / unnest()  sind ein eigenes
großes Thema. Für mehr Details empfehlen wir das Kapitel 23: Hierarchical Data und
das Kapitel 25: Many Models (aus der 1. Auflage von R4DS).

for vs. map: Entscheidungshilfe
Wann sollte man for-Schleifen verwenden, wann map-Funktionen? Hier eine Orientierung:

for-Schleifen sind oft besser, wenn:

• Die Logik komplex ist und man maximale Kontrolle braucht
• Jede Iteration vom Ergebnis der vorherigen abhängt
• Man gerade erst programmieren lernt und die explizite Schreibweise hilft

map-Funktionen sind oft besser, wenn:

• Man dieselbe Operation auf viele Elemente anwendet (der Standardfall)
• Man den Code in einer Pipe-Kette verwenden möchte
• Man Typsicherheit will (map_dbl, map_chr, etc.)
• Man die funktionale, deklarative Schreibweise bevorzugt

Der wichtigste Ratschlag: Das verwenden, was man versteht. Beide Ansätze sind legitim.
for-Schleifen sind nicht “schlecht” oder “langsam” (dieses Vorurteil ist veraltet). map-
Funktionen sind nicht “besser”, nur anders. Mit der Zeit entwickelt man ein Gefühl dafür,
welcher Ansatz in welcher Situation natürlicher passt.

# Dasselbe Ergebnis, unterschiedliche Stile

# for-Schleife
ergebnisse_for <- vector("double", 3)
for (i in 1:3) {
  ergebnisse_for[i] <- mean(mtcars[[i]])
}
ergebnisse_for

[1]  20.09062   6.18750 230.72188

# map
ergebnisse_map <- map_dbl(mtcars[1:3], mean)
ergebnisse_map

      mpg       cyl      disp 
 20.09062   6.18750 230.72188 
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